IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013 221

GPU Implementation of an Automatic Target
Detection and Classification Algorithm
for Hyperspectral Image Analysis

Sergio Bernabé, Sebastian Lopez, Member, IEEE, Antonio Plaza, Senior Member, IEEE, and Roberto Sarmiento

Abstract—The detection of (moving or static) targets in re-
motely sensed hyperspectral images often requires real-time re-
sponses for swift decisions that depend upon high computing
performance of algorithm analysis. The automatic target detection
and classification algorithm (ATDCA) has been widely used for
this purpose. In this letter, we develop several optimizations for
accelerating the computational performance of ATDCA. The first
one focuses on the use of the Gram-Schmidt orthogonalization
method instead of the orthogonal projection process adopted
by the classic algorithm. The second one is focused on the de-
velopment of a new implementation of the algorithm on com-
modity graphics processing units (GPUs). The proposed GPU
implementation properly exploits the GPU architecture at low
level, including shared memory, and provides coalesced accesses to
memory that lead to very significant speedup factors, thus taking
full advantage of the computational power of GPUs. The GPU
implementation is specifically tailored to hyperspectral imagery
and the special characteristics of this kind of data, achieving
real-time performance of ATDCA for the first time in the litera-
ture. The proposed optimizations are evaluated not only in terms
of target detection accuracy but also in terms of computational
performance using two different GPU architectures by NVIDIA:
Tesla C1060 and GeForce GTX 580, taking advantage of the
performance of operations in single-precision floating point. Ex-
periments are conducted using hyperspectral data sets collected by
three different hyperspectral imaging instruments. These results
reveal considerable acceleration factors while retaining the same
target detection accuracy for the algorithm.

Index Terms—Automatic target detection and classification al-
gorithm (ATDCA), commodity graphics processing units (GPUs),
Gram-Schmidt (GS) orthogonalization, hyperspectral imaging.

I. INTRODUCTION

YPERSPECTRAL target detection and identification are
very important tasks in remotely sensed hyperspectral
data exploitation [1]. Over the last few years, several algorithms
have been developed for the purpose of target identification,
including the automatic target detection and classification al-
gorithm (ATDCA) [2], an unsupervised fully constrained least

Manuscript received November 25, 2011; revised March 17, 2012; accepted
April 27, 2012. This work was supported by the Spanish Ministry of Science
and Innovation CEOS-SPAIN project (Reference AYA2011-29334-C02-02)
and DREAMS project (Reference TEC2011-28666-C04-04).

S. Bernabé and A. Plaza are with the Hyperspectral Computing Laboratory,
University of Extremadura, 10071 Cdceres, Spain (e-mail: sergiobernabe@
unex.es; aplaza@unex.es).

S. Lépez and R. Sarmiento are with the Institute for Applied Microelec-
tronics, University of Las Palmas de Gran Canaria, 35017 Tafira Baja, Spain
(e-mail: seblopez@iuma.ulpgc.es; roberto@iuma.ulpgc.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2012.2198790

squares (UFCLS) algorithm [3], an iterative error analysis
(IEA) algorithm [4], or the well-known Reed—Xiaoli (RX)
algorithm developed by Reed and Xiaoli for anomaly detection
purposes [5]. The ATDCA algorithm finds a set of spectrally
distinct target pixel vectors using the concept of orthogonal
subspace projection (OSP) [6] in the spectral domain. On the
other hand, the UFCLS algorithm generates a set of distinct
targets using the concept of least square-based error minimiza-
tion. The IEA uses a similar approach but with a different
initialization condition. The RX algorithm is based on the
well-known Mahalanobis distance. Many other target/anomaly
detection algorithms use different concepts, such as background
modeling and characterization [7]. Quantitative and compar-
ative assessments of target detection algorithms reveal good
performance of ATDCA with regard to other approaches in
terms of detection accuracy and computational performance
[1]. Depending on the complexity and dimensionality of the
hyperspectral data, the aforementioned algorithms may be com-
putationally very expensive, a fact that limits the possibility
of utilizing those algorithms in time-critical applications [8].
Despite the growing interest in parallel hyperspectral imaging
research, only a few parallel implementations of automatic
target detection algorithms for hyperspectral data exist in the
open literature [9]. With the recent explosion in the amount and
dimensionality of hyperspectral imagery, parallel processing is
a requirement in many remote sensing missions.

In this letter, we develop the first real-time implementation of
the ATDCA algorithm for remotely sensed hyperspectral data
exploitation. It is based on two optimizations: 1) use of the
Gram-Schmidt (GS) orthogonalization method instead of the
OSP process adopted by the classic algorithm, which has al-
ready demonstrated its effectiveness when applied to the vertex
component analysis endmember extraction algorithm [10], and
2) the development of an efficient implementation of the algo-
rithm on commodity graphics processing units (GPUs), a low-
weight hardware platform that offers a tremendous potential to
bridge the gap toward real-time analysis of remotely sensed
hyperspectral data [11]-[13]. The proposed implementation
exploits the GPU architecture at low level, including shared
memory, and provides coalesced accesses to memory that lead
to very significant speedup factors, thus taking full advantage
of the computational power of GPUs. The remainder of this
letter is organized as follows. Section II describes the original
ATDCA and the adopted GS optimization. Section III de-
scribes a new and fully optimized GPU implementation of this
algorithm. Section IV evaluates the proposed GPU implemen-
tation in terms of target detection accuracy and computational
performance. Section V concludes this letter with some remarks
and future research lines.

1545-598X/$31.00 © 2012 IEEE

222 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

II. ATDCA AND ITS GS OPTIMIZATION

The original ATDCA algorithm is based on OSP concepts
and will be referred to hereinafter as ATDCA-OSP. This method
is summarized in Algorithm 1, where U is a matrix of spectral
signatures, U is the transpose of this matrix, and I is the
identity matrix.

Algorithm 1 Pseudocode of ATDCA-OSP
1: INPUTS: F' € R" and t;

% F' denotes an n-dimensional hyperspectral image

with r pixels, and ¢ denotes the number of targets to be detected

2:U = [(130|0|, SERE) |O]7

% x is the pixel vector with maximum length in F’
3:fori=1tot —1do
4 PH=I-UU'U)'U";

% Pg; is a vector orthogonal to the subspace
spanned by the columns of U

5. v=P4F,

% F' is projected onto the direction indicated by

P
6: i =argmaxy ., v[:,i;

% The maximum projection value is found,
where 7 denotes the total number of pixels in the hyperspectral
image and the operator “:” denotes “all elements”

7. x; =U[:,i+ 1] = F[.,1];
% The target matrix is updated
8: end for
9: OUTPUT: U = [k, x1,..

. 7$t71};

An optimization of the ATDCA-OSP algorithm consists of
using the GS method (instead of the OSP) for orthogonalization
purposes. This version, called ATDCA-GS hereinafter, selects
a finite set of linearly independent vectors A = {aq,...,ax}
in the inner product space R™ in which the original hyper-
spectral image F' is defined and generates an orthogonal set of
vectors B = {by, ..., by} which spans the same k-dimensional
subspace of R" (k < n) as A. In particular, B is obtained as
follows:

b
b1 =as, e = m
1
. b,
by =ay — proje, (az), = 15,1
2
) . b3
b3 =as —PTOJbl(as) — Projb, (03)7 €3 = m
3
by = a4 — projp, (as)
.) b,
— Proje, (04) — Projs, (a'4)a €y = T
[| b ||
- k-1 ’ b
by =ap — me]bj(ak), e, = Toul (1)

Jj=1
where the projection operator is defined in (2), in which (a, b)

denotes the inner product of vectors a and b

{a,b)
(b,b)

proje(a) = 2)

The sequence by,...,b; in (1) represents the set of or-
thogonal vectors generated by the GS method, and thus, the
normalized vectors ey, ..., e, in (1) form an orthonormal set.
As far as B spans the same k-dimensional subspace of R"
as A, an additional vector by, ; computed by following the
procedure stated in (1) is also orthogonal to all the vectors
included in A and B. This algebraic assertion constitutes the
cornerstone of the ATDCA-GS algorithm, whose pseudocode
is represented in Algorithm 2.

As it can be observed from Algorithm 2, the computation
of the orthogonal projector Pg; starts by first initializing it
to an arbitrary n-dimensional vector (step 6 of Algorithm 2).
Then, the GS orthogonal set B is generated from the targets
already detected in the image (steps 7—10 of Algorithm 2). The
main modification of this method consists in fixing the vector
w to [1,...,1]T rather than generating a random vector at
each iteration. As far as the underlying reason for generating a
random vector is only to get a nonnull projection, this can also
be achieved by fixing w in the way that it has been previously
mentioned, which allows the reduction of the computational
cost of the ATDCA-GS algorithm by avoiding the generation
of random vectors. Finally, P; is updated in steps 11-14 of
Algorithm 2 by forcing it to be orthogonal to all the vectors in
B and, as a consequence, to all the targets already stored in U'.
At this point, it is important to emphasize that the n components
of the orthogonal projector Pg; could be initialized to any other
values, since this would not affect its orthogonality with respect
to the targets already extracted from the input hyperspectral
image F'. Last but not least, we emphasize that the ATDCA-GS
is ideally suited for hardware implementation as it avoids the in-
verse operation which is very difficult to implement in hardware
and obtains the same functionality with simpler operations.

Algorithm 2 Pseudocode of ATDCA-GS
1: INPUTS: F € R" and t;
% F' denotes an n-dimensional hyperspectral image
with 7 pixels, and ¢ denotes the number of targets to be detected
2:U = [x0]0],...,]0];
% x is the pixel vector with maximum length in F'
3: B = [0[0)..... 0]}
% B is an auxiliary matrix for storing the orthogonal
base generated by the GS process
4:fori=1tot —1do
5. B[,i]=U[,1;

% the ith column of B is initialized with the
target computed in the last iteration (here, the operator ‘“:”
denotes “all elements”)

6: Py =11,...,1];
7. forj =2toido
8: prOjB[:,jfl](U[:ui]) :U[ﬂ’]TB[aJ_l]/B[
7j -]TB[:aj - I]B[7,7 - 1]»
9: B[.,i] = B[:,i] — projpf. j—11(U[:,1]);
9% The ith column of B is updated
10: end forj
% The computation of B is finished for the
current iteration of the main loop
11: fork =1to:do
12: projB[:,k] (’lU) = ’LUTB[:, k]/B[, k]TB[:v k}B[v k}’
13: Pg = P§ — projp i (w);
14: end for k

BERNABE et al.: GPU IMPLEMENTATION OF AN ATDCA FOR HYPERSPECTRAL IMAGE ANALY SIS 223

Thread S ¢ R Per-thread
local memory

Per-block

Block shared memory

Y

009 (10

2,0

g

Grid 0

Global memory

0,00 (1,0

Fig. 1. GPU parallelism at the thread, block, and grid levels.

% The computation of Pg is finished for the

current iteration of the main loop
15: v=PgF;

% F is projected onto the direction indicated by

P
16: i =argmaxy . v[;i];

% The maximum projection value is found,
where r denotes the total number of pixels in the hyperspectral
image

17 a; =Ul[;,i+ 1] = F[:,i;
% The target matrix is updated
18: end for

19: OUTPUT: U = [xo, x1,..., Tt 1];

III. GPU IMPLEMENTATION

In this section, we describe an efficient implementation
of ATDCA-GS on GPUs. It should be noted that a GPU
implementation of the original ATDCA-OSP algorithm was
presented in [9]. In the context of NVIDIA compute unified
device architecture (CUDA)! adopted for our implementation,
GPUs can be abstracted in terms of a stream model, under
which all data sets are represented as streams (i.e., ordered data
sets) [14]. The architecture of a GPU can be seen as a set of mul-
tiprocessors (MPs), where each MP is characterized by a single-
instruction multiple-data architecture, i.e., in each clock cycle,
each processor executes the same instruction but operating on
multiple data streams. Each processor has access to a local
shared memory and also to local cache memories in the MP,
while the MPs have access to the global GPU (device) memory.
Algorithms are constructed by chaining so-called kernels which
operate on entire streams and which are executed by an MP,
taking one or more streams as inputs and producing one or more
streams as outputs. Thereby, data-level parallelism is exposed

1 http://www.nvidia.com/object/cuda_home_new.html

to hardware, and kernels can be concurrently applied without
any sort of synchronization. The kernels can perform a kind of
batch processing arranged in the form of a grid of blocks, where
each block is composed by a group of threads which share data
efficiently through the shared local memory and synchronize
their execution for coordinating accesses to memory (Fig. 1).

Next, we describe the different steps and architecture-related
optimizations carried out in the development of the GPU ver-
sion of the ATDCA-GS algorithm. The first step is related
with the proper arrangement of the hyperspectral data in the
local GPU memory. In order to optimize accesses, bearing in
mind that the ATDCA-GS algorithm uses the pixel vector as
the minimum unit of computation, we store the pixel vectors
of the hyperspectral image F' by columns. Our arrangement is
intended to access consecutive wavelength values in parallel by
the processing kernels (coalesced accesses to memory). This
means that the ith thread of a block will access the ith wave-
length component of a pixel vector of the image. This technique
is used to maximize global memory bandwidth and minimize
the number of bus transactions. Once the hyperspectral image is
mapped onto the GPU memory using the aforementioned strat-
egy, a structure is created in which the number of blocks equals
the number of pixel vectors in the hyperspectral image divided
by the number of threads per block, where the maximum
number of supported threads depends on the considered GPU
architecture. A kernel is now used to calculate the brightest
pixel x(in F'. This kernel computes (in parallel) the dot product
between each pixel vector and its own transposed version,
retaining the pixel that results in the maximum projection value.

Once the brightest pixel in F' has been identified, the pixel
is allocated as the first column in matrix U. In this way, we
ensure that memory accesses are coalesced. The algorithm now
calculates the orthogonal vectors through the GS method as
detailed in Algorithm 2. This operation is performed in the CPU
because this method operates on a small data structure and the
results can be obtained very quickly. A new kernel is created, in
which the number of blocks equals the number of pixel vectors
in the hyperspectral image divided by the number of threads
per block, where the maximum number of supported threads
depends on the considered GPU architecture. This kernel is now
applied to project the orthogonal vector onto each pixel in the
image. An important optimization applied at this point involves
the effective use of the shared memories, which act as small and
very fast cache memories available for the processing elements
within the same block. Allocating the data properly in these
shared memories is crucial for obtaining good performance
in the GPU. In our case, we use these memories to store the
most orthogonal vectors obtained at each iteration of ATDCA-
GS (this is because these vectors will be accessed every time
that the projection onto each pixel of the image is performed).
Hence, it is crucial to store these vectors in these small cache
memories in order to perform the projection operations much
faster and with fewer memory accesses as compared to the case
in which these vectors are stored in the main GPU memory. The
maximum of all projected pixels is calculated using a separate
reduction kernel which also uses shared memory to store each
of the projections and obtains the new target x;. The algorithm
now extends the target matrix as U = [xox1] and repeats the
same process until the desired number of targets (specified by
the input parameter ¢) has been detected. The output of the
algorithm is a set of targets U = [z, @1, ..., T 1].

224 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 2, MARCH 2013

TABLE 1
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN THE TARGET PIXELS
EXTRACTED BY ATDCA-OSP AND ATDCA-GS AND THE KNOWN
GROUND TARGETS IN THE AVIRIS WORLD TRADE CENTER SCENE

TABLE 1II
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN THE TARGET PIXELS
EXTRACTED BY ATDCA-OSP AND ATDCA-GS AND THE KNOWN
GROUND TARGETS IN THE AVIRIS CUPRITE SCENE

Version A B C D L F G H Version Alunite Buddingtonite Calcite Kaolinite Muscovite Average
ATDCA-OSP 0.00° 14.43° 0.00° 27.38° 20.32° 7.13° 4.15° 31.27° ATDCA-OSP 4.81° 4.16° 9.52° 10.76° 5.29° 6.91°
ATDCA-GS 0.00° 27.16° 0.00° 15.62° 27.81° 3.98° 272 24.26° ATDCA-GS 5.48° 4.08° 5.87° 11.14° 5.68° 6.45°

IV. EXPERIMENTAL RESULTS
A. Hyperspectral Image Data

Four hyperspectral images are used in our experiments. Two
of them were obtained by the National Aeronautics and Space
Administration Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS)? over the Cuprite mining district, Nevada, and
over the World Trade Center, New York, just 5 days after
the terrorist attacks of September 11, 2001. The Cuprite data
correspond to a 350 x 350 pixel subset of the sector labeled as
f970619t01p02_r02_sc03.a.rfl in the online data, which com-
prise 188 spectral bands in the range from 400 to 2500 nm and
a total size of around 50 MB. The World Trade Center data
consist of 614 x 512 pixels, 224 spectral bands, and a total
size of (approximately) 140 MB. Another data set collected
by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) sensor was used in experiments, which represents
a subset of the well-known forest radiance data [1] consisting
of 64 x 64 pixels and 169 spectral bands for a total size of 5.28
MB. Finally, we have also used a well-known hyperspectral
data set collected by the Reflective Optics Imaging Spectro-
graphic System (ROSIS) over an urban area in the city of Pavia,
Italy, which has been also widely used in the literature [8]. It
consists of 610 x 340 pixels and 103 spectral bands, for a total
size of 40.7 MB.

B. Analysis of Target Detection Accuracy

In this subsection, we compare the performance of ATDCA-
GS and ATDCA-OSP implementations using the two AVIRIS
scenes for which ground-truth information is available. Table I
shows the spectral angle distance (SAD) [1] values (in degrees)
between the most similar target pixels detected by ATDCA-
OSP and the pixel vectors at the known target positions, labeled
from “A” to “H,” in the AVIRIS World Trade Center image.
The same results are reported for the ATDCA-GS. In all cases,
the number of target pixels to be detected was set to ¢ = 30
after calculating the virtual dimensionality (VD) of the data
[15]. As shown by Table I, the ATDCA-OSP and ATDCA-GS
extracted targets which were similar, spectrally, to the known
ground-truth targets. Both versions were able to perfectly detect
the targets labeled as “A” and “C” and had more difficulties in
detecting other targets. In the case of targets labeled as “D”
to “H,” the ATDCA-GS improved the target detection results
(lower SAD values in Table I) with regard to the ATDCA-OSP.

Table II shows the SAD values (in degrees) between the most
similar target pixels detected by the two considered versions:
ATDCA-OSP and ATDCA-GS, and the pixel vectors at the
known positions of the target minerals in the AVIRIS Cuprite
image. In all cases, the number of target pixels to be detected
was set to t =19 after calculating the VD. As shown by
Table II, the ATDCA-GS extracted targets which were slightly
more similar (on average) to the ground references than those

Zhttp://aviris.jpl.nasa.gov

provided by ATDCA-OSP. This indicates that the proposed GS
optimization does not penalize the ATDCA algorithm in terms
of target detection accuracy.

C. Analysis of Parallel Performance

Two different GPU platforms have been used in our exper-
iments. The first one is the NVIDIA Tesla C1060 GPU,? and
the second is the NVIDIA GeForce GTX 580 GPU.* Both
GPUs are connected to an Intel Core 17 920 CPU at 2.67 GHz
with eight cores, which uses a motherboard ASUS P6T7 WS
SuperComputer. Before analyzing the parallel performance of
the proposed GPU implementation, we emphasize that our
parallel versions provide exactly the same results as the cor-
responding serial versions, executed in one of the cores of the
i7 920 CPU and implemented using the GCC (GNU compiler
default) with optimization flag —O3 to exploit data locality and
avoid redundant computations. As a result, the only difference
between the serial and parallel versions is the time they need
to complete their calculations. The reported GPU times are the
mean of ten executions in each platform (the measured times
were always very similar, with differences—if any—on the
order of only a few milliseconds).

Table III reports the processing times obtained for the GPU
implementations of ATDCA-OSP and ATDCA-GS on the two
considered GPU architectures and for the four considered hy-
perspectral scenes. It should be noted that the GPU implemen-
tation of ATDCA-OSP corresponds to an improvement of the
one described in [9] (some kernels were further optimized),
while the GPU implementation of ATDCA-GS is the one
described in this letter. As shown by Table III, the ATDCA-GS
achieved significant speedups in both GPU architectures and
offered significant improvements with regard to the previously
available GPU implementation of ATDCA-OSP. The slightly
lower speedups achieved for the HYDICE image (5.28 MB in
size) compared to those obtained for the AVIRIS World Trade
Center (140 MB in size) indicate that the ATDCA-GS provides
more significant acceleration factors as the amount of data to
be processed is larger. The processing times achieved by the
GPU implementation of ATDCA-GS are strictly in real time
for the AVIRIS data. The cross-track line scan time in AVIRIS,
a push-broom instrument, is quite fast (8.3 ms to collect 512
full-pixel vectors). This introduces the need to process the
AVIRIS World Trade Center scene (614 x 512 pixels and 224
spectral bands) in less than 5.09 s and the AVIRIS Cuprite scene
(350 x 350 pixels and 188 spectral bands) in less than 1.98 s in
order to achieve real-time performance. As noted in Table III,
all the proposed GPU implementations of ATDCA-GS are well
below 1 s in processing time, including the loading times and
the data transfer times from CPU to GPU and vice-versa. This
represents a significant improvement with regard to previous
GPU implementations of ATDCA [9], [13].

3http://WWW.nVidia.COm/Obj ect/product_tesla_c1060_us.html
“http://www.nvidia.com/object/product- geforce- gtx- 580-us.html

BERNABE et al.: GPU IMPLEMENTATION OF AN ATDCA FOR HYPERSPECTRAL IMAGE ANALY SIS 225

TABLE 1II
PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED BY ATDCA-OSP AND ATDCA-GS WITH OPTIMIZATIONS IN TWO DIFFERENT GPUS

AVIRIS World Trade Center AVIRIS Cuprite ROSIS Pavia University HYDICE Forest Radiance
ATDCA-OSP ATDCA-GS ATDCA-OSP ATDCA-GS ATDCA-OSP ATDCA-GS ATDCA-OSP ATDCA-GS
Serial time 512.1120 7.3230 87.9820 1.5950 20.2672 0.6460 2.2341 0.0331
Time Tesla C1060 GPU 51.4626 0.1663 9.0032 0.0560 2.2840 0.0407 0.4523 0.0045
Time GeForce GTX 580 GPU 10.5747 0.1554 1.9947 0.0456 0.5834 0.0308 0.1837 0.0035
Speedup Tesla C1060 GPU 9.95 44.03 9.77 28.48 8.87 15.87 4.94 7.36
Speedup GeForce GTX 580 GPU 48.43 47.12 44.11 35.01 34.74 20.97 12.16 9.46
GPU Time (Total)
0.00% 5.40% 10.79% 16.19% 21.59% 26.98% 32.38% 37.77% 43.17% 48.57% 53.96%
PixelProjection (29)
memcpyHtoD (30)
memcpyDtoH (30)
Get_pixel_max_bright (1)
T T T T T T T T T T
0.00% 5.40% 10.79% 16.19% 21.59% 26.98% 32.38% 37.77% 43.17% 48.57% 53.96%
GPU Time (Total)
0.00% 6.29% 12.58% 18.87% 25.16% 31.45% 37.73% 44.02% 50.31% 56.60% 62.89%

PixelProjection (29)
memcpyHtoD (30)
ReductionProjection (30)
Get_pixel_max_bright (1}
memepyDtoH (60)

F T T T T
0.00% 6.29% 12.58% 18.87% 25.16%

31.45% 37.73% 44.02% 50.31% 56.60% 62.89%

Fig. 2. Summary plot describing the percentage of the total GPU time consumed by memory-transfer operations and by the different kernels used by ATDCA-GS
in the NVIDIA GeForce GTX 580 GPU (AVIRIS World Trade Center scene) (top) without and (bottom) with architecture optimizations.

For illustrative purposes, Fig. 2 shows the percentage of the
total GPU execution time consumed by memory transfers and
by each CUDA kernel (obtained after profiling the ATDCA-
GS implementation) along with the number of times that each
kernel was invoked (in the parentheses) for the detection of ¢ =
30 targets from the AVIRIS World Trade Center scene in the
NVIDIA GeForce GTX 580 architecture, with and without the
GPU architecture optimizations related with the use of shared
memories and coalesced accesses described in Section III.
As shown by Fig. 2, the GPU implementation without opti-
mizations uses approximately 55% of the execution time for
running the kernels and 45% of the time for memory transfers.
On the other hand, the version with optimizations significantly
decreases the percentage of time devoted to memory transfers
and increases the percentage of time used for running the ker-
nels. This indicates that the proposed implementation does not
represent a straightforward parallelization effort but, instead,
a careful effort to adapt the GPU architecture to the specific
issues involved in hyperspectral data processing.

V. CONCLUSION AND FUTURE RESEARCH

In this letter, we have developed the first real-time implemen-
tation of an ATDCA, implemented with GS orthogonalization,
on GPU architectures. The proposed implementation has been
specifically tailored to specific aspects involved in hyperspec-
tral data processing and makes advanced use of the GPU archi-
tecture including considerations such as the arrangement of the
data in the GPU local and shared memories in order to ensure
coalesced memory accesses and low memory-transfer times.
Although the results obtained with a variety of hyperspectral
images are very encouraging, GPUs are still far from being ex-
ploited in real missions due to power consumption and radiation
tolerance issues to be addressed in future developments. Future
work will also explore how to merge different kernels used to
reduce kernel-invoking time.

REFERENCES

[1] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection
and Classification. New York: Kluwer, 2003.

[2] H. Ren and C.-I. Chang, “Automatic spectral target recognition in hy-
perspectral imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
pp. 1232-1249, Oct. 2003.

[3] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mix-
ture analysis for material quantification in hyperspectral imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.

[4] R. A. Neville, K. Staenz, T. Szeredi, J. Lefebvre, and P. Hauff, “Automatic
endmember extraction from hyperspectral data for mineral exploration,”
in Proc. 21st Can. Symp. Remote Sens., 1999, pp. 21-24.

[5] I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.

[6] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification

and dimensionality reduction: An orthogonal subspace projection,” IEEE

Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.

G. Shaw and D. Manolakis, “Signal processing for hyperspectral image

exploitation,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16,

Jan. 2002.

A. Plaza and C.-1. Chang, High Performance Computing in Remote Sens-

ing. Boca Raton, FL: Taylor & Francis, 2007.

[9] A. Paz and A. Plaza, “Clusters versus GPUs for parallel automatic target
detection in remotely sensed hyperspectral images,” EURASIP J. Adv.
Signal Process., vol. 2010, pp. 915 639-1-915 639-18, Feb. 2010.

[10] S. Lopez, P. Horstrand, G. M. Callico, J. F. Lopez, and R. Sarmiento, “A
low-computational-complexity algorithm for hyperspectral endmember
extraction: Modified vertex component analysis,” IEEE Geosci. Remote
Sens. Lett., vol. 9, no. 3, pp. 502-506, May 2012.

[11] H. Yang, Q. Du, and G. Chen, “Unsupervised hyperspectral band selection
using graphics processing units,” IEEE J. Sel. Topics Appl. Earth Obser-
vations Remote Sens., vol. 4, no. 3, pp. 660-668, Sep. 2011.

[12] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing:
From multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observations
Remote Sens., vol. 4, no. 3, pp. 643—652, Sep. 2011.

[13] S. Sanchez, A. Paz, G. Martin, and A. Plaza, “Parallel unmixing of re-
motely sensed hyperspectral images on commodity graphics processing
units,” Concurrency Comput. Pract. Exp., vol. 23, no. 13, pp. 1538-1557,
Sep. 2011.

[14] J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, ‘“Parallel mor-
phological endmember extraction using commodity graphics hardware,”
IEEE Geosci. Remote Sens. Lett., vol. 43, no. 3, pp. 441-445, Jul. 2007.

[15] Q.Du and C.-I. Chang, “Estimation of number of spectrally distinct signal
sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 3, pp. 608-619, Mar. 2004.

[7

—

[8

—

