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Abstract—Hyperspectral remote sen-
sing technology has advanced sig-
nificantly in the past two decades. 
Current sensors onboard air-
borne and spaceborne plat-
forms cover large areas of the 
Earth surface with unprec-
edented spectral, spatial, and 
temporal resolutions. These 
characteristics enable a myriad 
of applications requiring fine 
identification of materials or 
estimation of physical parameters. 
Very often, these applications rely 
on sophisticated and complex data 
analysis methods. The sources of diffi-
culties are, namely, the high dimension-
ality and size of the hyperspectral data, the 
spectral mixing (linear and nonlinear), and the 
degradation mechanisms associated to the measure-
ment process such as noise and atmospheric effects. This 
paper presents a tutorial/overview cross section of some rele-
vant hyperspectral data analysis methods and algorithms, organized 
in six main topics: data fusion, unmixing, classification, target detection, 
physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, 
provide illustrative examples, and point to future challenges and research directions.

I. INTRODUCTION

Hyperspectral remote sensing is concerned with the extraction of information from objects or 
scenes lying on the Earth surface, based on their radiance acquired by airborne or spaceborne 

sensors [1], [2]. Hyperspectral sensing, namely its imaging modality termed hyperspectral imaging, has 
been increasingly used in applications at lab scale (e.g., food safety, pharmaceutical process monitoring 
and quality control, biomedical, industrial, biometric, and forensic) using small, commercial, high spatial 
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and spectral resolution instruments (see [3] and refer-
ences therein).

Figure 1 gives a partial account of the relevance of 
hyperspectral applications, by comparing paper counts 
per year in the hyperspectral and radar areas. These results 
were obtained by searching the SCI-Expanded database of 
the ISI Web-Of-Science with the topics “(hyperspectral) 
and (remote sensing),” in the left hand side, and “(radar) 
and (remote sensing),” in the right hand side. We conclude 
that the number of items per year in 2011 is similar for the 
hyperspectral and radar areas, with a clear increasing trend 
in the former and a stabilization or decrease in the latter.

In hyperspectral imaging, also termed imaging spec-
troscopy [4], the sensor acquires a spectral vector 

with hundreds or thousands of elements from 
every pixel in a given scene. The result is 

the so-called hyperspectral image 
(HSI). It should be noted that HSIs 

are spectrally smooth and spa-
tially piece-wise smooth: the 

values in neighboring loca-
tions and wavelengths 

are highly correlated. 
This can be observed 
by extremely non-
diagonal covariance 
matrices and wide 
autocorrelation func-
tions [1]. This piece-
wise smoothness 
holds as well in the 

spatio-spectral direc-
tion. The characteristics 

are similar to those of nat-
ural photographic images 

and videos and, therefore, 
many tools that were developed 

for these data can be extended for 
HSI analysis.

An equivalent interpretation of an HSI 
is given by the acquisition of a stack of images 

representing the radiance in the respective band 
(wavelength interval). Due to this interpretation, the HSIs 
are also termed hyperspectral data cubes. These two points 
of view are illustrated in the top left hand side of Fig. 2, 
where the HSI has nb spectral bands and n n1 2#  pixels. The 
plots on the top right hand side show the spectra of pixels 
containing soil, vegetation, and water. Owing to the high 
spectral sampling, the spectral information is often highly 

correlated and thus lives in a low dimensional manifold. 
This is illustrated at the bottom of Fig. 2, where the spectral 
vectors of soil, vegetation, and water are represented as Rnb

dimensional points on a surface.
In terms of the geometrical properties of a remote sens-

ing imaging system, the spatial resolution of a sensor is 
given by its field of view (FOV), and the obtained spectrum 
is the average of the material’s reflectances within this FOV. 
The spectral resolution is determined by the bandwidth 
of the spectral bands. When spatially and spectrally sam-
pling the information (we will assume that the sampling is 
performed at the sensors spatial and spectral resolution), 
a 3D “hypercube” X Rn n nb1 2! # #  is obtained, containing 
n n n1 2#=  pixels and nb bands (see Fig. 2). Different forms 
of representation can be used for HSIs:
◗ In the spectral representation, each pixel is defined in 

the spectral space x Rnb! . Since neighboring spectra cor-
respond to similar materials, grouping in this spectral 
space is commonly applied to characterize materials. 
This can be done by clustering neighboring spectra, or 
by supervised classification (see section on Classifica-
tion). Since the spectral correlation is high, the data are 
likely to reside on a very low-dimensional submanifold 
of the spectral space, and projection of the data on a sub-
space of dimension d nb% , using, e.g., principal compo-
nent analysis (PCA) [3], is commonly applied.

◗ In the spatial representation, each image band is a 
matrix X Ri

n n1 2! # . Because of the high spatial correla-
tion, neighboring pixels are likely to belong to a simi-
lar material and spatial grouping (e.g., segmentation) is 
commonly applied.

◗ In the spatial-spectral representation spectral processing 
of a pixel is performed taking neighboring pixels into 
account, while spatial processing of an image band is 
performed by accounting for the other bands.
These representations have been actively exploited, 

namely, in dimensionality reduction, feature extraction, 
unmixing, classification, segmentation, and detection [1], 
[5]. Still related with the high dimensionality of the spectral 
information, the most recent trend is sparse and redundant 
modeling, which is currently reaching the areas of, e.g., 
restoration, unmixing, classification, segmentation, and 
detection (see, e.g., [6], [7] and references therein).

Since the output of a hyperspectral sensor provides raw 
digital number (DN) values and for quantification pur-
poses, a conversion to apparent surface reflectance values 
is required before using advanced information extraction 
techniques such as those mentioned above [8]. The char-
acteristics of the sensor itself are described by its transfer 
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function. To account for this, first a radiometric calibration 
of the spectra is generally performed to obtain at-sensor or 
top-of-atmosphere (TOA) radiance values. As the reflected 
sunlight passes through the atmosphere, it gets partially 
absorbed and scattered. Since these effects have a huge 
influence on the spectral values, they need to be corrected 
to obtain the ground-leaving radiance or reflectance values 

[9]. Finally, one has to account for the effects of illumination 
and viewing angle and the surfaces structural and optical 
properties, to lead to the surface reflectance values.

The interactions of the light with the atmosphere are 
extremely complex. The radiative transfer theory is often 
used to derive models for these interactions [10]. Originally 
developed for simulating TOA radiance for the prepara-
tion of future satellite missions, inversion of these models 
allows for atmospheric correction. The bidirectional reflec-
tance distribution functions (BRDF) describe the reflected 
light on a surface as a function of the incoming and outgo-
ing light directions. A first approximation for the BRDF, 
termed ’albedo’, is the ratio between the reflectance and 
the sun’s irradiance. BRDF’s are usually accompanied by 
complex surface structure models such as leaf-to-canopy 
models. A schematic overview of the spectral characteris-
tics of hyperspectral data is given in Fig. 3. We remark that, 
besides for the conversion to surface reflection, all these 
models are relevant as well for quantitative analysis (see 
Sections III and VI).

For illustrative purposes, Table 1 displays spatial and 
spectral parameters of eight hyperspectral instruments: 
two airborne (HYDICE1 and AVIRIS2) and six spaceborne 
(HYPERION3, EnMAP4, PRISMA5, CHRIS6, HyspIRI7 and 
IASI8). From this list, EnMAP, PRISMA and HyspIRI are 

FIGURE 1. Paper counts per year in hyperspectral and radar topics obtained by searching the SCI-Expanded database of the ISI Web-Of-
Science with the following topics: (a) hyperspectral and remote sensing; (b) radar and remote sensing. Search done on January 2013.
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FIGURE 2. (a) Hyperspectral imaging concept. (b) Hyperspectral 
vectors represented in a low-dimensional manifold.
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1http://rsd-www.nrl.navy.mil/hydice
2http://aviris.jpl.nasa.gov
3http://eo1.usgs.gov
4http://www.enmap.org
5http://www.asi.it/en/flash en/observing/prisma
6https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/
proba 
7http://hyspiri.jpl.nasa.gov
8http://smsc.cnes.fr/IASI
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not yet operational. The spatial resolutions are higher for 
sensors carried by low altitude platforms and vice-versa. 
The spectral coverage of HYDICE, AVIRIS, HYPERION, 
EnMAP, PRISMA and HyspIRI corresponds to the vis-
ible, the near-infrared, and the shortwave infrared spec-
tral bands, whereas CHRIS covers the visible bands and 
IASI covers the mid-infrared and the long-infrared bands. 
The number of bands is approximately 200 for HYDICE, 
AVIRIS, HYPERION, EnMAP, PRISMA and HyspIRI, with 
a spectral resolution of the order of 10 nm. The number of 
bands for CHRIS is 63, with spectral resolutions of 4 and 12 
nm (depending on the region of the spectrum) and 8461 
for IASI, with a resolution of .0 5cm 1- . In any case, the reso-
lution is very high (offering a huge potential to discrimi-
nate materials) in the case of the first seven sensors, and to 
estimate physical parameters (temperature, moisture and 
trace gases across the atmospheric column), in the case of 
the IASI sensor. A summary of the characteristics of several 
hyperspectral imaging instruments currently in operation, 
under construction, and missions in a planning stage has 
been recently provided [11].

Several factors make the analysis of hyperspectral data 
an often complex and hard task calling for sophisticated 
methods and algorithms. Among these factors, we refer to 
spectral mixing (linear and nonlinear), and degradation 
mechanisms associated to the measurement process (e.g., 
noise and atmosphere). Another important issue is the 
extremely high dimensionality and size of the data, result-
ing from the improved spatial, spectral and temporal resolu-
tions provided by hyperspectral instruments. This demands 
fast computing solutions that can accelerate the interpreta-
tion and efficient exploitation of hyperspectral data sets 
in various applications [12]. For example, it has been esti-
mated by the NASA’s Jet Propulsion Laboratory (JPL) that 
a volume of 4.5 TBytes of data will be daily produced by 
HyspIRI (1630 TBytes per year). Similar data volume ratios 
are expected for EnMAP and PRISMA. Unfortunately, this 
extraordinary amount of information jeopardizes the use 
of latest-generation hyperspectral instruments in real-time 
or near real-time applications, due to the prohibitive delays 
in the delivery of Earth Observation payload data to ground 
processing facilities [13]. In this respect, the European Space 

Agency (ESA) already flagged up in 2011 that “data rates and 
data volumes produced by payloads continue to increase, while the 
available downlink bandwidth to ground stations is comparatively 
stable” [14]. In this context, the design of solutions aimed 
at taking advantage of the ever increasing dimensionality 
of remotely sensed hyperspectral images for near real-time 
applications has gained significant relevance and momen-
tum during the last decade [15], [16].

This paper presents a tour over relevant and distinctive 
hyperspectral data analysis themes, organized in six main 
topics: data fusion, unmixing, classification, target detec-
tion, physical parameter retrieval, and fast computing. Most 
of the frameworks used in these topics are rooted on signal 
and image processing, statistical inference, and machine 
learning fields. In all topics, we describe the state-of-the-art 
and point to the most likely future challenges and research 
directions. Illustrative examples with real data are provided 
for some of the topics covered.

The remainder of the paper is organized as follows. 
Section II discusses processing techniques aimed at fus-
ing spatial and spectral information from multiple 
observation and sources. Section III addresses linear and 
nonlinear hyperspectral mixing and unmixing. Section 
IV outlines some of the main techniques and challenges 

FIGURE 3. Spectral characterization of hyperspectral data.
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PARAMETER HYDICE AVIRIS HYPERION EnMAP PRISMA CHRIS HyspIRI IASI

Altitude (km) 1.6 20 705 653 614 556 626 817

Spatial resolution (m) 0.75 20 30 30 5–30 36 60 V: 1–2 km
H: 25 km

Spectral resolution (nm) 7–14 10 10 6.5–10 10 1.3–12 4–12 0.5 cm-1

Coverage (µm) 0.4–2.5 0.4–2.5 0.4–2.5 0.4–2.5 0.4–2.5 0.4–1.0 0.38–2.5 
and 7.5–12

3.62–15.5 
(645–2760 
cm-1)

Number of bands 210 224 220 228 238 63 217 8461

Data cube size
(sample # lines # bands)

200 # 320  
# 210

512 # 614  
# 224

660 # 256  
# 220

1000 # 1000 
# 228

400 # 880  
# 238

748 # 748  
# 63

620 # 512  
# 210

765 # 120  
# 8461

TABLE 1. PARAMETERS OF EIGHT HYPERSPECTRAL INSTRUMENTS.
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in hyperspectral image classification. Section V addresses 
hyperspectral target detection. Section VI reviews the main 
problems and methods in model inversion and estimation 
of physical parameters, and finally Section VII outlines sev-
eral strategies to accelerate the hyperspectral image compu-
tations using different hardware architectures.

II. DATA FUSION
In this section, we will discuss hyperspectral processing 
techniques (image in-image out), that fuse spatial and 
spectral information from one or multiple hyperspectral 
observations, or a combination of hyperspectral images 
and other image sources. We will refer to this processing as 
data fusion. In Fig. 4, a schematic overview of the different 
strategies is given.

A. RESTORATION
Signal processing techniques can be applied to restore or 
improve the signal-to-noise ratio (SNR) and/or the spatial 
resolution. In the case of gray-scale images, many denois-
ing and deconvolution techniques were developed to restore 
SNR and spatial resolution. It is clear that a band-by-band 
treatment of the restoration problem in HSIs would not 
benefit from the high spectral redundancy. The traditional 
image restoration techniques are extended to account for 
this spectral redundancy. In this way, hyperspectral image 
denoising techniques were recently developed by, e.g., 
employing spatial-spectral information [17] or employing 
tensor decompositions and multilinear algebra [18]. In [19], 
restoration of hyperspectral images was proposed based on 
anisotropic diffusion filtering. Remark that all the above 
mentioned methods preserve the original spatial and spec-
tral sampling and thus do not improve the spatial resolution.

B. SPECTRAL DATA FUSION
Here, we discuss the fusion of spectral bands of an HSI, in 
this way removing high spectral redundancy. Since the high 
number of bands causes dimensionality problems, a dimen-
sionality reduction of the hyperspectral vectors can highly 
facilitate the analysis afterwards. The goal is to obtain an 
image of reduced number of bands while trying to preserve 
the most useful spectral information as possible. The sim-
plest way is to select a few of the available bands, but it is 
clear that better performance can be obtained when bands 
are fused together. Traditionally, methods based on PCA 
are applied that decorrelate bands. In many occasions, the 
dimensionality reduction is applied for an improved clas-
sification afterwards. This topic is treated in Section IV 
(IV.A.1 and IV.A.2).

A specific application of spectral data fusion is the visu-
alization of HSIs. A user may need to visualize hyperspec-
tral image data for exploration purposes, e.g., for generating 
ground reference data. However, an HSI contains far more 
image bands than can be displayed on a standard tristimu-
lus display. By fusion of the spectral bands, an image of lim-
ited number of bands can be generated, e.g., a panchromatic 
image or an RGB image; how to fuse preserving as much 
information as possible is an issue. In [20], hyperspectral 
images are linearly projected onto color matching basis 
functions specifically designed as RGB primaries of a stan-
dard tristimulus display. A spatio-spectral approach allows 
to retain spatial details as well, and often generally generates 
high-contrast images. Spatio-spectral methods that were 
developed use e.g. wavelet transforms to fuse multiresolu-
tion information of the image bands [21], Markov Random 
Fields that model the spatial relationship between neigh-
boring pixels [22] or constrained optimization to enforce 

spatial smoothness [23]. In Fig. 5, 
four different color visualizations 
of an AVIRIS hyperspectral image 
of 224 spectral bands are shown, 
obtained by PCA and the methods of 
[20]–[22] respectively.

C. SPATIAL DATA FUSION (MULTI-
FRAME SUPERRESOLUTION)
The term (geometric) superresolu-
tion (SR) refers to the enhancement 
of the spatial resolution of imag-
ing sensors by inferring informa-
tion at the subpixel level. Subpixel 
image information is for instance 
available as subpixel shifts of mul-
tiple low-resolution observations 
(multiframe SR). In practice, the 
images are subsampled by divid-
ing each pixel into m m#  subpix-
els and interpolating the pixel gray 
levels. Then, corresponding areas 
between the multiple observations FIGURE 4. A schematic overview of the five different hyperspectral data fusion methodologies.

Restoration
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are detected, geometrically registered and combined to 
generate one image of high spatial resolution.

When applying SR on hyperspectral images, each image 
band can be processed separately, but it is clear that a joint 
processing of all bands is superior [24]. Multiple low-res-
olution hyperspectral observations from the same scene 
are obtained for instance by overlapping flight lines, multi-
angle data [25], or multiframe instances in time [26].

D. SPATIAL-SPECTRAL DATA 
FUSION SUPERRESOLUTION
Another way of performing superresolution is by fusion of 
different parts of a single image (single frame SR), which in 
the case of hyperspectral data amounts to spatial-spectral 
fusion. In [27], the interband spatial subpixel shifts that 
are intrinsically present in a hyperspectral data cube are 
applied for obtaining a SR image.

Since a low-resolution hyperspectral pixel contains a 
spectral mixture of different materials, superresolution can 
be accomplished by a spatial localization of the materials 
fractions at subpixel level. How to obtain the fractions of 
the present materials will be explained in the section on VI 
devoted to spectral unmixing. The fractions can be obtained 
as well by using probabilistic classifiers that assign classifica-
tion probabilities for each of the materials classes to the pixel. 
Then the pixel is subsampled. Subpixel mapping or super-
resolution mapping refers to techniques that try to spatially 
organize the fractional spectra of the different materials 
within a pixel [28]. This mapping can then further be used to 
simulate a subsampled hyperspectral image [29], [30].

E. MULTISOURCE DATA FUSION
A third way of performing superresolution of an HSI is 
by the use of other available image sources of high spatial 

FIGURE 5. Visualization of hyperspectral AVIRIS image, from (a) to (d) using PCA and the methods of [20]–[22], respectively.

(a) (b)

(c) (d)
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resolution, acquired by other sensors [e.g. mounted on 
unmanned aerial vehicles (UAV)]. Several strategies are 
possible. First of all, many methods originally designed for 
pansharpening, i.e. fusion of multispectral images with a 
high spatial resolution panchromatic image [31] are eas-
ily transferable to HSIs. A large majority of these methods 
rely in one way or another on the injection of high spatial 
information of the panchromatic image into the hyper-
spectral image bands. Another approach is to assume a 
joint statistical model between the two image sources and 
apply Bayesian estimation techniques for enhancing the 
spatial resolution of the HSI [32], [33]. Alternatively, simi-
lar subpixel mapping strategies as in the spatial-spectral 
fusion can be applied, in which the high-resolution image 
can deliver the required materials spectral information 
[34], [35]. Alternatively, the local correlation with the high 
spatial resolution image can be employed [36].

F. CHALLENGES
All described methods for enhancement of the spatial res-
olution will generate images at a higher spatial sampling 
that show higher contrast and finer details, but this does 
not necessarily guarantee an improvement of the actual 
spatial resolution [37]. In particular for HSIs, the described 
methods will be very useful for exploratory analysis and 
visualization purposes. However, a quantitative analysis 
requires a high reliability of the obtained spectra. Further 
research needs to be conducted on validation methodolo-
gies of these fusion methods [38].

Moreover, with technological progress, the spatial 
resolution of sensors improves largely. Also the employ-
ment of UAV’s leads to very high spatial resolution data. 
While most spatial resolution enhancement methods aim 
at a resolution improvement of a factor of 2-3, in practice, 
resolution differences on the order of a factor of 10 need to 
be bridged.

Finally, some but certainly not all of the methods men-
tioned explicitly make use of transfer function information 
of the employed sensors. When available, it is expected 
that this information improves the performance of data 
fusion methods.

III. HYPERSPECTRAL UNMIXING
The signal recorded by a hyperspectral sensor at a given 
band and from a given pixel, letting alone the effects of 
the atmosphere, is a mixture of the “light” scattered by the 
constituent substances located in the respective pixel cover-
age. Fig. 6 illustrates three types of mixtures owing to low 
spatial resolution of the sensor (a), presence of intimate 
mixtures (b), and multiple light scattering in a two-layer 
media (c). As a result, when mixing occurs, it is not any-
more possible to determine what materials are present in 
the pixels directly from the respective measured spectral 
vectors. This is to say that the key feature of the spectral 
sensors, which is its ability to discriminate materials based 
on the their spectral responses, is compromised. This sec-
tion addresses spectral mixing modeling, provide insights 
on the spectral unmixing inverse problems, and point to 
algorithms to solve them.

With the objective of recovering the ability to discrimi-
nate materials, an impressive amount of research work has 
been devoted to hyperspectral unmixing (HU) (see, e.g., [3], 
[39], and references therein). HU is, however, a hard inverse 
problem. The difficulties begin with its formulation. Put in 
simple terms, given a measured spectral vector y Rnb! , HU 
aims at explaining y in terms of the spectral properties of 
the materials present the respective pixel an of its distribu-
tion. An useful treatment of this problem cannot be given 
without a formal model, f( )y i= , where f( )$  is the so-called 
forward operator, linking the measurements y to the scene 
parameters i. In conclusion, the precise meaning of HU 
depends on the meaning of parameter vector i.

FIGURE 6. Schematic view of three types of spectral mixing. (a) Linear mixing in a checkerboard type surface. (b) Nonlinear (linear plus 
bilinear) mixing in a two-layer media. (c) Nonlinear mixing in an intimate (particulate) media.
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RTT is a mathematical model for the transfer of energy 
as photons interacts with the materials in the scene, and 
thus to the derive forward operators necessary to solve HU 
problems. The core of the RTT is a differential equation 
describing radiance read by the sensor. It can be derived via 
the conservation of energy and the knowledge of the phase 
function, which represents the probability of light with a 
given propagation direction be scattered into a specified 
angle solid around a given scattering direction.

In general, the forward operator f( )i  is not invertible, 
unless we have partial knowledge of vector i, which usu-
ally depends on scene parameters often very hard to obtain. 
Three notable exceptions to these scenario, schematized in 
Fig. 6, are the linear model, the bilinear model, and the 
Hapke model [3], [40]. These are three approximations for 
the analytical solution to the RTT suitable to unsupervised 
applications, i.e., when no prior knowledge exits about the 
materials and its distributions.

The linear mixing holds true when the mixing scale 
is macroscopic and the incident light interacts with just 
one material, as is the case in checkerboard type scenes 
[40] schematized in Fig. 6. The light from the materials, 
although almost completely separated, is linearly mixed 
within the measuring instrument, owing to insufficient 
spatial resolution. Formally, the measured spectral vector 

:y [ , , ] ,y yn
T

1 bf=  holding the radiances at bands , , ,i n1 bf=

is expressed as

y m ,i i
i

p

1
a=

=

/ (1)

where m ,Ri
nb!  for , , ,i p1 f=  is the spectral signature of 

the ith material, termed endmember, and ia  is the percent-
age that the ith material occupies inside the pixel, termed 
fractional abundance or simply abundance. Inspired in the 
linear mixing model (LMM), the HU problem is very often 
defined as the unsupervised estimation of the endmembers 
and of the respective fractional abundances.

The LMM has been widely used in the past decade to 
address HU problems. The reason is threefold: a) despite 
its simplicity, LMM is an acceptable approximation for 
the light scattering in many real scenarios; b) under suit-
able conditions of the data set, LMM yields well-posed 
inverse problems; c) under the LMM, HU is interpret-
able as a blind source separation (BSS) problem or a non-
negative matrix factorization problem, which have been 
vastly researched in many signal processing areas. In sec-
tion III-A, we address in more details relevant aspects of 
HU under the LMM.

In spite of the LMM attractiveness, researchers are 
beginning to expand more aggressively into the nonlin-
ear mixing field to cope with the LMM limitations. In sec-
tion III-F, we address in more detail relevant aspects of the 
nonlinear HU.

Unmixing via sparse regression (SR) is still another 
direction recently introduced to circumvent part of the limi-
tations of the blind linear HU. This line of attack formulates 

HU as a semiblind approach in which the endmember 
identification is replaced with a SR over a library of spectral 
signatures, usually overcomplete, obtained in laboratory. 
Details of this approach are given in section III-G.

A. LINEAR UNMIXING
Under the LMM (1), a given measured hyperspectral vec-
tor can be written as y M w,a= +  where M m m: [ , , ]p1 f=

stands for the mixing matrix, : [ , , ]p
T

1 fa a a=  stands for 
the fractional abundance vector, and w accounts for addi-
tive perturbations due to, for example, model mismatches 
and additive noise. Because the 
components of a represent frac-
tions, then they satisfy the con-
straints ,0i $a  for , ,i p1 f=  and 

1ii

p

1 a =
=
/ , termed abundance 
nonnegativity constraint (ANC) and 
abundance sum constraint (ASC), 
respectively. Owing to signature 
variability, the ASC is seldom 
observed in real applications. 
Nevertheless, because the spec-
tral vectors are non-negative, is it 
always possible to build rescaled 
versions thereof, belonging to an 
affine set [41], and thus satisfying 
the ASC (see [3] for details). We 
assume, therefore, that the ASC holds true.

Before unmixing, the hyperspectral data set usu-
ally undergoes atmospheric calibration and dimension 
reduction. The atmospheric calibration step converts the 
measured radiance into reflectance, which is an intrinsic 
characteristic of the materials. However, the unmixing 
inverse problem can also be formulated in the radiance 
data, provided that the effects of atmosphere are pixel invar-
iant. The dimension reduction step (see IV-A for additional 
details) identifies the subspace where the spectral vectors 
live and projects them onto this subspace. Given that the 
identified subspace is generally of much lower dimension 
than that of the spectral vectors, this projection yields con-
siderable gains in algorithm performance and complexity, 
data storage, and noise reduction.

Suppose we are given a hyperspectral data set contain-
ing n spectral vectors of size nb arranged in the matrix 
Y y y: [ , , ] .Rn

n n
1

bf != #  Defining the abundance fraction 
matrix A : [ , , ],n1 f aa=  where ia  represents the fractional 
abundance vector of the ith pixel, then the linear HU 
inverse problem can be stated as

 
Y MA

A 0 1 A 1: , ,

min

subject to
M A,

F

p
T

n

< <

$

-

=
 

(2)

where X XX: { },traceF
T< < = A 0$  is to be understood in 

the componentwise sense and 1p and 1p are column vectors 
with p and n ones, respectively. Note the inequality A 0,$  is 
the ANC and the equality 1 A 1p

T
n=  is the ASC.
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The optimization (2) is interpretable both as a linear 
blind source separation problem and as a matrix factoriza-
tion problem. In the former case the independent compo-
nent analysis (ICA) come to mind to separate sources (i.e., 
the fractional abundances). ICA have in fact been consid-
ered to solve spectral unmixing problems. Unfortunately, 
ICA is based on the assumption of mutually independent 
sources, which is not the case of hyperspectral data, since 
the sum of abundance fractions is constant, implying sta-
tistical dependence among them. This dependence com-
promises ICA applicability to hyperspectral data as shown 
in [42].

1) The convex geometry of linear unmixing: In order to shed 
light into the linear HU problem, we now give an interpre-
tation of problem (2) based on convex geometry. The set

y M: { : , , , , }C j p1 0 1j j
j

p

1
f$a a a= = = =

=

/

i.e., the convex hull of the columns of M, is a ( )p 1- -simplex 
in Rnb. Fig. 7 illustrates a 2-simplex C for a hypothetical mix-
ing matrix M containing three endmembers. The points in 

green denote non-pure spectral vectors, whereas the points 
in red are pure spectral vectors, thus corresponding to the 
vertices of the simplex. Note that the inference of the mix-
ing matrix M amounts to identify the vertices of the sim-
plex C. This geometrical point of view has been exploited 
by many unmixing algorithms, which can be mainly classi-
fied either as pure pixel or non-pure pixel based.

B. PURE PIXEL BASED ALGORITHMS
In the pure pixel based algorithms it is assumed the presence 
in the data of at least one pure pixel per endmember, mean-
ing that there is at least one spectral vector on each vertex of 
the data simplex. This geometric picture is illustrated in the 
left hand side of Fig. 8. The pure pixel assumption, though 
enabling the design of very efficient algorithms from the 
computational point of view, is a strong requisite that may 
not hold in many datasets. These class of algorithms have 
been the most often used in linear HU applications, per-
haps because of their light computational burden and clear 
conceptual meaning.

Most of the pure pixel based algorithms exploit one of 
the following properties of the endmember signatures: a) 
the extremes of the projection of the spectral vectors onto 
any subspace correspond to endmembers; b) the volume 
defined by any set of p spectral vectors is maximum when 
those are endmembers. Representative algorithms of class 
a) are pixel purity index (PPI) [43], vertex component analysis 
(VCA) [44], simplex growing algorithm (SGA) [45] successive 
volume maximization (SVMAX) [46], and the recursive algo-
rithm for separable NMF (RSSNMF) [47]; Representative algo-
rithms of class b) are N-FINDR [48], iterative error analysis 
(IEA), [49], sequential maximum angle convex cone (SMACC), 
and alternating volume maximization (AVMAX) [46].

C. NON-PURE PIXEL BASED ALGORITHMS
Fig. 8, middle and right hand side, schematizes two data 
sets without pure pixels; the data set in the middle does not 
contain pure pixels but contains at least p 1-  spectral vec-
tors on each facet. In this data set, the endmembers may be 
inferred by fitting a minimum volume (MV) simplex to the 
data; this rather simple and yet powerful idea, introduced 
by Craig in his seminal work [41], underlies several geo-
metrical based unmixing algorithms.

FIGURE 7. Illustration of the simplex set C for p 3=  (C is the 
convex hull of the columns of ,M  { }MC conv= ). Green circles 
represent spectral vectors. Red circles represent vertices of the 
simplex and correspond to the endmembers.
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FIGURE 8. Illustration of the concept of simplex of minimum volume containing the data for three data sets.
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From an optimization point of view, the MV based 
unmixing algorithms are formulated as

 
Y MA M

A 0 1 A 1

( )

: , ,

min V

subject to
M A,

F

p
T

n

2< <

$

m- +

=
 

(3)

where M( )V  is a volume regularizer, promoting mixing 
matrices of “minimum volume” and 02m  is a regulariza-
tion parameter setting the relative weight between the data 
term and the volume term. Most of the methods adopting 
the above formulation implement an a nonlinear block 
Gauss-Seidel iterative scheme minimizing successively with 
respect to M and to A. This is the case of iterative constrained 
endmembers (ICE) algorithm [50] and of the minimum vol-
ume transform-nonnegative matrix factorization (MVC-NMF) 
[51], whose main differences are related with the way 
they define the regularizer M( )V . For variations of these 
ideas recently introduced, see [3]. The sparsity-promoting 
ICE (SPICE) [52] is an extension of the ICE algorithm that 
incorporates sparsity-promoting priors aiming at finding 
the number of endmembers.

Problem (3) is non-convex. Thus the solutions provided 
by greedy solvers are strongly dependent on the initializa-
tion. This handicap was circumvented in the simplex identifi-
cation via variable splitting and augmented Lagrangian (SISAL) 
[53], the minimum volume enclosing simplex (MVES) [54] by 
reformulating (3) with respect to M 1-  instead of M.

D. STATISTICAL ALGORITHMS
The MV simplex shown in the right hand side example of 
Fig. 8 is smaller than the true one. This situation corre-
sponds to a highly mixed data set where there are no spec-
tral vectors near the facets. For these classes of problems, 
the MV algorithms fail and we usually resort to the statis-
tical framework, formulating HU as a statistical inference 
problem, usually adopting the Bayesian paradigm.

The Bayesian approaches often have the following flavor 
(see, e.g., [55] [3] and references therein): The posterior dis-
tribution of the parameters of interest is computed from the 
linear observation model (1) within a hierarchical Bayes-
ian model, where conjugate prior distributions are chosen 
for some unknown parameters to account for physical con-
straints. The hyperparameters involved in the definition of 
the parameter priors are then assigned non-informative pri-
ors. Due to the complexity in obtaining close-form expres-
sion for the posterior density, the parameters of interest, 
namely the mixing matrix and the fractional abundances, 
are, often, estimated from samples of the posterior den-
sity generated with Markov chain Monte Carlo (MCMC) 
techniques.

A clear illustration of the potential of the Bayesian 
approach to cope with highly mixed data sets is provided 
by the DECA [56] algorithm; it models the abundance 
fractions as mixtures of Dirichlet densities. A cyclic mini-
mization algorithm is developed where: 1) the number 
of Dirichlet modes is inferred based on the minimum 

description length (MDL) principle; 2) a generalized expec-
tation maximization (GEM) algorithm is derived to infer 
the model parameters.

Finally, we note that most of the matrix factorization 
methods referred to in sections III-B and III-C may be also 
be formulated as Bayesian inference problems, with the 
advantage of attaching meaning to the model parameters 
and providing a suitable framework to deal with them.

E. UNMIXING EXAMPLE
In this section, we illustrate part 
of the concepts presented before 
by unmixing the publicly avail-
able TERRAIN HSI9 acquired 
by the HYDICE sensor [57] (see 
HYDICE parameters in Table 1). 
The low SNR bands due to water 
absorption were removed yield-
ing a data set with 166 bands.

The TERRAIN HSI, shown in 
the top left column of Fig. 9, was 
calibrated to reflectance, has size 

,500 307#  and is mainly com-
posed of soil, trees, grass, a lake, 
and shadows, disposed on a flat surface. The signal subspace 
was identified with the HySime [58] algorithm and the ori-
ginal data projected onto this subspace. The identified sub-
space dimension was 20. We have, however, discarded those 
orthogonal directions corresponding to 10SNR 1  to avoid 
instability of the endmember identification (see [3] for more 
details). After this procedure, we ended up with a subspace 
of dimension 6.

The plots on the top right column of Fig. 9 show the 
identified endmember signatures with the VCA algorithm 
[44]. The corresponding pixels are referenced in the original 
image. They represent three types of soil, trees, grass, and 
a spectrum obtained in the lake, which we termed shade 
due to its low amplitude. The figure in the middle of the left 
column shows a scatterogram of the data set projected on 
the subspace defined by the first two subspace eigen direc-
tions determined by HySime. The endmembers identified 
by VCA and N-FINDR area also represented. The solution 
provided by the two algorithms are identical and, due to the 
high spatial resolution of the sensor, correspond to nearly 
pure pixels. Notice that there are endmembers placed in 
all the “extremes” of the scatterogram, which is coherent 
with the pure pixel hypothesis. The remaining parts of Fig. 9 
shows the estimated abundance fractions for soil 1, trees, 
and grass.

F. NONLINEAR UNMIXING
A complete physics based approach to nonlinear HU would 
involve the inversion of the RTT, which is an extremely 
complex ill-posed problem, relying on scene parameters 

9Data set available at http://www.agc.army.mil/Missions/Hypercube.aspx.
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that are very hard or impossible to obtain. For this reason, 
the research on nonlinear HU is far more immature com-
pared to linear HU. To avoid the complex physical models, 

usually simpler strategies are applied using data-driven but 
physics-inspired models, such as the bilinear and Hapke’s 
models.

FIGURE 9. Unmixing results: (a) TERRAIN HSI; (b) identified endmembers; (c) data projection onto the subspace defined by the first two 
eigen directions; (d) soil abundance map; (e) tree abundance map; and (f) grass abundance map.
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The bilinear model is valid when the scene can be par-
titioned in successive layers with similar scattering proper-
ties. Fig. 6, in the middle, schematizes a two-layer scene and 
shows the expression for the measured light. The sum on 
the left hand side accounts for the single scattering and is 
similar to the LMM; the sum on the right hand side accounts 
for the double scattering, where the vectors m m Ri j

nb9 !

(symbol 9 stands for elementwise multiplication) account 
for pairwise interactions.

Fig. 6, right hand side, illustrates an intimate mixture, 
meaning that the materials are in close proximity and the 
mixture occurs at a microscopic level. The Hapke approxi-
mation [40] for intimate mixtures models the reflec-
tance as a nonlinear function of a convex combination of 
the individual endmember albedos. The coefficients of 
the linear combination are the relative geometric cross-
sections of the components. When the endmember par-
ticle sizes and densities are similar, the coefficients are 
good approximations for the mass fractions of the differ-
ent endmembers. However, in general, one needs infor-
mation concerning the particle sizes of the components to 
relate the mass fractions and the relative geometric cross-
sections [59].

Several strategies have successfully applied the bilinear 
model to treat the double scattering problem, such as Bayes-
ian algorithms, where prior models are chosen to satisfy the 
positivity and sum-to-one constraints [60]. On the other 
hand, kernel-based methods can design flexible kernels to 
handle the problem of intimate mixtures. Linear kernels, 
radial-basis functions, polynomial, and physics-based 
kernels were proposed [61]. To cope with both scattering 
and intimate mixture problems simultaneously, machine 
learning technologies have been proposed, where training 
samples were used to train artificial neural networks for 
nonlinearities (see [62] and references therein). Polynomial 
functions can be applied as well to model the nonlineari-
ties [63].

A disadvantage of the above methods is that they 
require the knowledge of the endmember signatures. 
Fully unsupervised nonlinear unmixing methods have 
only very recently been explored. One possibility is to 
work directly on the nonlinear data manifold on which 
it can be shown that the concepts of convex geometry still 
hold. The geometry of the data manifold is described by 
graph-based methods, and geodesic distances between 
spectra are approximated by shortest-path distances on 
this graph. If then endmember extraction and unmix-
ing methods can be completely rewritten in terms of 
distance geometry, a complete nonlinear unmixing ver-
sion is obtained [5]. Although this method is completely 
data-driven, geodesic distances can be calculated as well 
on manifolds induced by nonlinear models, such as the 
bilinear model [64].

Other methods utilize the LMM and Hapke’s approxi-
mation to model macroscopic and intimate mixtures, 
respectively. The mixtures are estimated directly from 

the data without the need for a priori knowledge of the 
mixture types. In addition, the explicit modeling of both 
mixture types allows for direct estimation of the end-
members [65].

G. UNMIXING VIA SPARSE REGRESSION
HU via SR has recently been introduced with the objective 
of coping with data sets not fulfilling the geometrical or 
statistical assumptions on which the HU methodologies 
presented in the previous sections rely. In the SR formu-
lation, it is assumed that the measured spectral vectors 
can be expressed as linear com-
binations of a small number of 
pure spectral signatures known 
in advance [6] (e.g., spectra col-
lected on the ground by a field 
spectro-radiometer). Unmixing 
then amounts to finding the 
optimal subset of signatures in 
a (potentially very large) spec-
tral library (dictionary in the 
SR jargon) that can best model 
each mixed pixel in the scene. 
In practice, this is a combina-
torial problem, which calls for efficient linear SR tech-
niques based on sparsity-inducing regularizers. Linear 
SR is an area of very active research with strong links to 
compressed sensing [66].

Let us assume that we are given a spectral library 
A Rn mb! #  containing m spectral samples. Usually, we have 
m nb2  and, therefore, the linear problem in hand is under-
determined. Let x Rn!  denote the fractional abundance 
vector with respect to the library A. With these definitions 
in place, we can now write our SR problem as

x Ax y x 0, ,min subject to
x 0 2< < < < # $d-  (4)

where x ,0< <  termed the 0,  norm, denotes the number of non-
zero components of x, and 0$d  is the error tolerance due to 
noise and modeling errors. Problem (4) is NP-hard [67] and 
therefore there is no hope in solving it in a straightforward 
way. Greedy algorithms such as the orthogonal matching 
pursuit (OMP) [68] and convex relaxations replacing the 0,

norm with the 1,  norm are alternative approaches to com-
pute the sparsest solution [69].

Contrary to problem (4), there are efficient solvers to 
solve the convex approximations of it conceived to HU 
applications [70]. What is, perhaps, totally unexpected is 
that sparse fractional abundances vectors can be exactly 
reconstructed by the convex relaxations, provided that the 
columns of matrix A are incoherent in a given sense [69]. 
The applicability of sparse regression to HU was studied in 
detail in [6]. Two main conclusions were drawn:
a) spectral signatures tend to be highly correlated what 

imposes limits to the quality of the results provided by 
solving the convex relaxations of (4).
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b) the limitation imposed by the high correlation of the 
spectral signatures is mitigated by the high level of spar-
sity often observed in the hyperspectral mixtures.
The current research efforts to cope with the high cor-

relation of the spectral signature are aligned with the 
recent advances in the area of structured sparsity [71]. This 
research direction exploits prior information about pat-
terns of sparsity known to exist in specific applications. The 
types of structured sparsity exploited in HU are directly 
linked with two characteristics of hyperspectral data: i) 
the fractional abundance maps are piecewise smooth; and 
ii) the fractional abundance vectors for the different pix-
els in the HSI share the same support (i.e., the set of non-
zero elements).

The structured sparsity referred to in i) is linked to the 
fact that, in piece-wise smooth maps, it is very likely that 
neighboring pixels have very close values. These ideas are 
exploited in [72] by including the total variation (TV) reg-
ularization term in the objective function (4), which pro-
motes piecewise-smooth abundance maps.

The structured sparsity referred to in ii), termed col-
laborative sparsity, is promoted, for example, by the ,2 1,

mixed norm X x: ,,
i

i

n
2 1 21< < < <=

=
/  where X x x: [ , , ]n1 f=

holds the fractional abundance vectors in its columns 
and xi is the ith row of X [73]. The work [74] introduces 
the collaborative sparsity approach in HU. Fig. 10 shows 
in false color the inference of X R250 50! #  using a subset 
of the USGS library splib0610 with 250 signatures of size 
220. The simulated ground-truth abundances contain 

50 pixels and 4 endmembers randomly extracted from 
the library. The simulated measurement were contami-
nated with additive noise and SNR 30=  dB. The image 
on the left hand side corresponds to the 1,  relaxation 
of (4) computed with the SUnSAL algorithm [70], thus 
treating each pixel independently. The image on the 
right hand side is the solution of the group sparse prob-
lem using the mixed ,2 1,  norm and was computed with 
the CLSUnSAL algorithm introduced in [74]. The col-
laborative regularization yields a cleaner solution with 
many rows set to zero.

H. CHALLENGES
As a result of intense work in the last ten years, the 
research boundary in HU has advanced considerably. 
Many instances of HU are, however, hard inverse prob-
lems far from being solved in reasonable terms. The 
need for reliable unmixing results will continue to foster 
active research in HU, namely in areas of mixing mod-
els, accounting for the measurement process, and data 
representation or prior knowledge. In the area of mixing 
models, researchers are starting to derive and use nonlin-
ear forward models, usually based on the RTT, which are 
application specific. In the area of data representation or 
prior knowledge, the objective is to approximate the low 
dimensional data manifolds using sparse and redundant 
representation models, possibly learned from the data. 
Array signal processing is yet another research direction 
merging ideas coming from sparse representation and 
multiple measurements, with a large potential for exam-
ple in pruning the size of the hyperspectral libraries.

FIGURE 10. Sparse regression solutions X for 50 simulated spectral LMM generated with 4 endmembers and 30SNR dB=  and using 
a subset of the USGS library with 250 signatures. The horizontal axis represents pixels and the vertical axis represents endmembers. 
(a) Solution computed by the SUnSAL algorithm treating independently each pixel. (b) Solution computed by CLSUnSAL algorithm, 
enforcing collaborative sparsity.

CLSUnSALSUnSAL

(b)(a)

10http://speclab.cr.usgs.gov/spectral.lib06
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IV. CLASSIFICATION
Hyperspectral image classification has been a very active 
area of research in recent years [75]. Given a set of observa-
tions (i.e., pixel vectors in a hyperspectral image), the goal 
of classification is to assign a unique label to each pixel vec-
tor so that it is well-defined by a given class.

The availability of hyperspectral data with high spa-
tial resolution has been quite important for classification 
techniques, as their main assumption is that the spatial 
resolution of the data is high enough to assume that the 
data mostly contains pure pixels (i.e., pixels represented by 
a single predominant spectral signature). In the opposite 
scenario (i.e., the data mostly contains mixed pixels) it is 
preferable to use spectral unmixing techniques to perform 
the analysis.

In this section, we outline some of the main techniques 
and challenges in hyperspectral image classification. We 
focus mainly on supervised and semi-supervised classifi-
cation, although techniques for unsupervised classification 
and/or clustering have also been used in the literature [3]. 
For instance, a relevant unsupervised method successfully 
applied to hyperspectral image data is Tilton’s recursive hier-
archical segmentation (RHSEG) algorithm11. Supervised 
classification has been more widely used [76], but it also 
faces challenges related with the high dimensionality of the 
data and the limited availability of training samples [75].

In order to address these issues, feature mining [3], sub-
space-based approaches [58] and semi-supervised learning 
techniques [1] have been developed. In feature mining and 
subspace approaches, the goal is to reduce the dimensional-
ity of the input space in order to better exploit the (limited) 
training samples available. In semi-supervised learning, the 
idea is to exploit the information conveyed by additional 
(unlabeled) samples, which can complement the available 
labeled samples with a certain degree of confidence. In 
all cases, there is a clear need to integrate the spatial and 
spectral information to take advantage of the complemen-
tarities that both sources of information can provide [76]. 
An overview of these different aspects, which are crucial 
to hyperspectral image classification, is provided in the 
following subsections.

A. FEATURE MINING
Hyperspectral imaging is characterized by the high spectral 
resolution available, which allows capturing fine details of 
the spectral characteristics of materials in a wide range of 
applications. However, it has been demonstrated that the 
original spectral features contain high redundancy [3]. Spe-
cifically, there is a high correlation between adjacent bands 
and the number of the original spectral features may be too 
high for classification purposes [3], [75]. In addition, the 
original spectral features may not be the most effective ones 
to separate the objects of interest from others. These obser-
vations have fostered the use of feature mining techniques 

so that an effective set of features can be identified prior 
to classification. In this subsection we briefly outline some 
of the available approaches for feature mining from hyper-
spectral data sets.

1) Feature extraction: Several strategies have been used 
in the hyperspectral imaging literature to perform feature 
extraction prior to classification purposes. A distinguish-
ing characteristic of feature extraction methods is that 
they exploit all available spectral measurements in order 
to extract relevant features. A widely used approach has 
been the generation of features in a new space, like those 
obtained from the PCA [3] or the minimum noise fraction 
(MNF) [77]. In these techniques, the hyperspectral data are 
projected onto a new space in which the first few compo-
nents account for most of the total information in the data, 
and therefore only the first few features could be retained. 
The segmented PCA [78] reduces the computational load 
significantly for feature extraction, compared with the 
conventional PCA. Another spectral-based approach to 
generate new features has been the discrete wavelet trans-
form (DWT), which allows for the separation of high and 
low frequency components separately. This allows a form 
of derivative analysis which has been also used to gener-
ate features prior to hyperspectral image classification [79]. 
Another popular strategy has been canonical analysis [3], 
which is focused on the extraction of features that maxi-
mize the ratio between the variance among classes and the 
average variance within the classes. However, this approach 
requires good estimates of the class covariance matrices, 
and therefore a generally large number of training samples 
(which may not be available in practice) are often required. 
An alternative strategy to deal with this problem has been 
to use semi-supervised feature extraction [80], in which 
only a few labeled samples and additional unlabeled sam-
ples are used. Other widely used methods have been non-
parametric weighted feature extraction (NWFE) or decision 
boundary feature extraction (DBFE) [75]. Another strat-
egy for feature extraction has been grouping of neighbor-
ing bands, using techniques such as the weighted sum or 
average of each group [81]. A free Matlab toolbox for linear 
and nonlinear feature extraction methods is simFEAT12. 

2) Feature selection: In feature selection, the idea is to 
select a set of spectral bands from the initial pool of bands 
available prior to classification. A particular characteristic 
of feature selection methods is that they tend to retain the 
spectral meaning (while reducing the number of bands). 
In unsupervised feature selection, the goal is to automati-
cally find statistically important features. The advantage 
of unsupervised methods is that they do not need training 
data. Quite opposite, supervised feature selection is based 
on general/expert knowledge, and require labeled and 
(often) unlabeled training samples. Techniques in the lat-
ter category comprise methods based on class separability 
measures using standard distance metrics (e.g., Euclidean, 

11http://opensource.gsfc.nasa.gov/projects/HSEG/ 12http://www.uv.es/gcamps/code/simfeat.htm
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Mutual information, Bhattacharyya), or more sophisticated 
class separability measures in feature space [3]. In this regard, 
methods have been proposed that implement an exhaustive 
search of optimal features, such as the progressive two-class 
decision classifier [82]. Other advanced feature selection 
strategies (e.g., using kernels) are described in [83].

B. SUPERVISED CLASSIFICATION
Several techniques have been used to perform supervised 
classification of hyperspectral data. For instance, in dis-
criminant classifiers several types of discriminant func-
tions can be applied: nearest neighbor, decision trees, linear 
functions, nonlinear functions, etc. In linear discriminant 
analysis (LDA) [84], a linear function is used in order to 
maximize the discriminatory power and separate the avail-
able classes effectively. However, such a linear function 
may not be the best choice and nonlinear strategies such as 
quadratic discriminant analysis (QDA) or logarithmic dis-
criminant analysis (LogDA) have also been used. The main 
problem of these classic supervised classifiers, however, is 
their sensitivity to the Hughes effect.

In this context, kernel methods such as the support vec-
tor machine (SVM) have been widely used in order to deal 
effectively with the Hughes phenomenon [85], [86]. The 
SVM was first investigated as a binary classifier [87]. Given 
a training set mapped into an Hilbert space by some map-
ping, the SVM separates the data by an optimal hyperplane 

that maximizes the margin. If the data are not linearly sep-
arable, soft margin classification with slack variables can be 
used to allow mis-classification of difficult or noisy cases. 
However, the most widely used approach in hyperspectral 
classification is to combine soft margin classification with a 
kernel trick that allows separation of the classes in a higher 
dimensional space by means of a nonlinear transformation. 
In other words, the SVM used with a kernel function is a 
nonlinear classifier, where the nonlinear ability is included 
in the kernel and different kernels lead to different types 
of SVMs. The extension of SVM to the multi-class cases is 
usually done by combining several binary classifiers. Two 
classical procedures are the one versus the rest and the one 
versus one [87].

In the following, we illustrate the performance of SVMs 
(implemented using the Gaussian radial basis function 
kernel) by processing a widely used hyperspectral data set 
collected by the Reflective Optics Imaging Spectrographic 
System (ROSIS) optical sensor over the urban area of the 
University of Pavia, Italy. The flight was operated by the 
Deutschen Zentrum for Luftund Raumfahrt (DLR, the Ger-
man Aerospace Agency) in the framework of the HySens pro-
ject, managed and sponsored by the European Commission. 
The image size in pixels is ,610 340#  with very high spatial 
resolution of 1.3 meters per pixel. The number of data chan-
nels in the acquired image is 103 (with spectral range from 
0.43 to 0.86 mn ). Fig. 11(a) shows a false color composite of 

FIGURE 11. (a) False color composition of the ROSIS University of Pavia scene. (b) Reference map containing 9 mutually exclusive land-
cover classes. (c) Training set used in experiments.
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the image, while Fig. 11(b) shows nine reference classes of 
interest, which comprise urban features, as well as soil and 
vegetation features. Finally, Fig. 11(c) shows a fixed training 
set available for the scene which comprises 3921 training 
samples (42776 samples are available for testing).

Table 2 illustrates the classification results obtained by 
different supervised classifiers for the ROSIS University of 
Pavia scene in Fig. 11(a), using the same training data in 
Fig. 11(c) to train the classifiers and a mutually exclusive 
set of labeled samples in Fig. 11(b) to test the classifiers. 
As shown by Table 2, the SVM classifier obtained compara-
tively superior performance in terms of the overall classifi-
cation accuracy (OA), average classification accuracy (AV) 
and kappa statistic [88] when compared with discriminant 
classifiers such as LDA, QDA or LogDA. In this experiment, 
the SVM was also slightly superior to the multinomial 
logistic regression (MLR) classifier [89], which has been 
recently explored in hyperspectral imaging as a technique 
able to model the posterior class distributions in a Bayesian 
framework, thus supplying (in addition to the boundaries 
between the classes) a degree of plausibility for such classes 
[90]. A subspace-based version of this classifier, called MLR-
sub [91], is also included in the comparison given in Table 2. 
The idea of applying subspace projection methods relies on 
the basic assumption that the samples within each class can 
approximately lie in a lower dimensional subspace. How-
ever, in the experiments reported in [91] for the MLRsub it 
was observed that spatial information needs to be included 
in this (and other classifiers) in order to improve classifi-
cation performance. In the following subsection, we sum-
marize some techniques for spatial-spectral classification.

C. SPATIAL-SPECTRAL CLASSIFICATION
Several efforts have been performed in the literature in 
order to integrate spatial-contextual information in spec-
tral-based classifiers for hyperspectral data [76]. It is now 
commonly accepted that using the spatial and the spectral 
information simultaneously provides significant advan-
tages in terms of improving the performance of classifica-
tion techniques. Some of these approaches include spatial 
information prior to the classification, during the feature 
extraction stage. Mathematical morphology [92] has been 
particularly successful for this purpose. Morphology is a 
widely used approach for modeling the spatial character-
istics of the objects in remotely sensed images. Advanced 
morphological techniques such as morphological pro-
files (MPs) [93] have been successfully used for feature 

extraction prior to classification of hyperspectral data by 
extracting the first few principal components of the data 
using the PCA [3], and then building so-called extended 
morphological profiles (EMPs) on the first few components 
to extract relevant features for classification [94].

As shown by Table 3, the combination of EMP for feature 
extraction followed by SVM for classification (EMP/SVM) 
provides good classification results for the ROSIS Uni-
versity of Pavia scene. Recently, morphological attribute 
profiles (APs) [95] were introduced as an advanced mecha-
nism to obtain a detailed multilevel characterization of a 
hyperspectral image created by the sequential application 
of morphological attribute filters that can be used (prior 
to classification) to model different kinds of the structural 
information. According to the type of the attributes consid-
ered in the morphological attribute transformation, differ-
ent parametric features can be modeled. The use of different 
attributes leads to the concept of extended multi-attribute 
profiles (EMAPs) which have been also used successfully 
for hyperspectral image classification purposes [96].

Another strategy in the literature has been to exploit 
simultaneously the spatial and the spectral information. 
For instance, in order to incorporate the spatial context 
into kernel-based classifiers, a pixel entity can be redefined 
simultaneously both in the spectral domain (using its spec-
tral content) and also in the spatial domain, by applying 
some feature extraction to its surrounding area which yields 
spatial (contextual) features, e.g., the mean or standard 
deviation per spectral band. These separated entities lead 
to two different kernel matrices, which can be easily com-
puted. At this point, one can sum spectral and textural dedi-
cated kernel matrices and introduce the cross-information 
between textural and spectral features in the formulation. 
This simple methodology yields a full family of new ker-
nel methods for hyperspectral data classification, defined 
in [97] and implemented using the SVM classifier thus pro-
viding a composite kernel-based SVM (SVM-CK) illustrated 
in Table 3 (using the summation kernel). Recently, compos-
ite kernels have been generalized in [98], using the MLR 

METRIC LDA QDA LogDA SVM MLR MLRsub 

OA 77.95 77.95 78.41 80.99 80.11 67.08

AV 73.67 78.73 79.82 88.28 87.80 77.20

kappa 0.606 0.770 0.720 0.761 0.750 0.703

TABLE 2. ACCURACIES OBTAINED BY DIFFERENT SUPERVISED 
CLASSIFIERS FOR THE ROSIS UNIVERSITY OF PAVIA SCENE.

METRIC ECHO LDA-MLL QDA-MLL LOGDA-MLL SVM-CK EMP/SVM SVM-W SVM-RHSEG MLR-MLL MLRsub MLL MLR-GCK

OA 87.58 80.27 89.48 87.04 87.18 85.22 85.42 93.85 85.57 94.10 98.09 

AV 92.16 78.05 91.91 83.32 90.47 90.76 91.31 97.07 92.54 93.45 97.76 

kappa 0.839 0.739 0.864 0.872 0.871 0.808 0.813 0.918 0.818 0.922 0.974

TABLE 3. OVERALL ACCURACIES OBTAINED BY DIFFERENT SUPERVISED 
SPATIAL-SPECTRAL CLASSIFIERS FOR THE ROSIS UNIVERSITY OF PAVIA SCENE.
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classifier and EMAPs to define spatial context. The resulting 
generalized composite kernel-based MLR (MLR-GCK) can 
linearly combine multiple kernels without any restriction of 
convexity. This introduces a different approach with regards 
to the SVM-CK and multiple kernel learning methods, in 
which composite kernels need to be convex combinations 
of kernels. This approach provided the best classification 
result for the ROSIS University of Pavia scene in Table 3.

Another approach to jointly exploit spatial and spectral 
information is to use Markov random fields (MRFs) for 
the characterization of spatial information. MRFs exploit 
the continuity, in probability sense, of neighboring labels 
[99]. In this regard, several techniques have introduced an 
MRF-based multinomial logistic level (MLL) prior which 
encourages neighboring pixels to have the same label when 
performing probabilistic classification of hyperspectral data 
sets. As it can be seen in Table 2, such MLL prior can sig-
nificantly improve the results provided by spectral-based 
classifiers such as the LDA, QDA, LogDA, MLR and, most 
notably, the MLRsub described in the previous subsection. At 
this point, it is worth noting that the combination of a sub-
space-based classifier such as the MLRsub with an MLL prior 
enforcing spatial homogeneity in the resulting segmentation 
provides one of the best classification results in Table 3.

Several other approaches include spatial information as a 
post-processing, i.e., after a spectral-based classification has 
been conducted. One of the first classifiers with spatial post-
processing developed in the hyperspectral imaging literature 
was the well-known ECHO (extraction and classification 
of homogeneous objects) [75]. Another one is the strategy 
adopted in [100], which combines the output of a pixel-wise 
SVM classifier with the morphological watershed (SVM-
W) transformation [92] in order to provide a more spatially 
homogeneous classification. A similar strategy is adopted in 
[101], in which the output of the SVM classifier is combined 
with the segmentation result provided by the RHSEG seg-
mentation algorithm (SVM-RHSEG). These strategies lead to 
much improved classification results with regards to spec-
tral-based classification, as it can be observed in Table 3. A 
detailed overview of recent advances in spatial-spectral clas-
sification of hyperspectral data is available at [102].

Last but not least, an important recent development 
has been the use of sparse representation classifiers using 
dictionary-based generative models [103]. In this case, an 
input signal is represented by a sparse linear combination of 
training samples (atoms) from a dictionary [103]. The clas-
sification can be improved by incorporating the contextual 
information from the neighboring pixels into the classifier. 
This can be done indirectly by exploiting the spatial correl-
ation through an structured sparsity prior imposed in the 
optimization process. As shown in [103], the performance 
of different sparsity-based classifiers are comparable to the 
state-of-the-art SVM-CK classifier. Given sufficient training 
data some researchers have also developed discriminative 
as well as compact class dictionaries to improve classifica-
tion performance [104].

D. SEMI-SUPERVISED CLASSIFICATION
A relevant challenge for supervised classification techniques 
is the limited availability of labeled training samples, since 
their collection generally involves expensive ground cam-
paigns [105]. While the collection of labeled samples is 
generally difficult, expensive and time-consuming, unla-
beled samples can be generated in a much easier way. This 
observation has fostered the idea of adopting semi-super-
vised learning techniques in hyperspectral image classi-
fication. The main assumption of such techniques is that 
new (unlabeled) training samples can be obtained from a 
(limited) set of available labeled samples without signifi-
cant effort/cost.

In contrast to supervised classification, semi-supervised 
algorithms generally assume that a limited number of 
labeled samples are available a priori, and then enlarge the 
training set using unlabeled samples, thus allowing these 
approaches to address ill-posed problems. However, in 
order for this strategy to work, several requirements need 
to be met. First and foremost, the new (unlabeled) samples 
should be obtained without significant cost/effort. Second, 
the number of unlabeled samples required for the semi-
supervised classifier to perform properly should not be too 
high in order to avoid increasing computational complexity 
in the classification stage. In other words, as the number of 
unlabeled samples increases, it may be unbearable for the 
classifier to properly exploit all the available training sam-
ples due to computational issues. Further, if the unlabeled 
samples are not properly selected, these may confuse the 
classifier, thus introducing significant divergence or even 
reducing the classification accuracy obtained with the ini-
tial set of labeled samples. In order to address these issues, 
it is very important that the most highly informative unla-
beled samples are identified in computationally efficient 
fashion, so that significant improvements in classification 
performance can be obtained without the need to use a 
very high number of unlabeled samples.

The area of semi-supervised learning for remote sens-
ing data analysis has experienced a significant evolution 
in recent years. For instance, in [106] transductive SVMs 
(TSVMs) are used to gradually search a reliable separating 
hyperplane (in the kernel space) with a transductive process 
that incorporates both labeled and unlabeled samples in the 
training phase. In [107], a semi-supervised method is pre-
sented that exploits the wealth of unlabeled samples in the 
image, and naturally gives relative importance to the labeled 
ones through a graph-based methodology. In [108], kernels 
combining spectral-spatial information are constructed by 
applying spatial smoothing over the original hyperspectral 
data and then using composite kernels in graph-based clas-
sifiers. In [109], a semi-supervised SVM is presented that 
exploits the wealth of unlabeled samples for regularizing 
the training kernel representation locally by means of clus-
ter kernels. In [90], a new semi-supervised approach is pre-
sented that exploits unlabeled training samples (selected by 
means of an active selection strategy based on the entropy of 
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the samples). Here, unlabeled samples are used to improve 
the estimation of the class distributions, and the obtained 
classification is refined by using a spatial multi-level logis-
tic prior. In [110], a novel context-sensitive semi-supervised 
SVM is presented that exploits the contextual information 
of the pixels belonging to the neighborhood system of each 
training sample in the learning phase to improve the robust-
ness to possible mislabeled training patterns.

In [111], two semi-supervised one-class (SVM-based) 
approaches are presented in which the information pro-
vided by unlabeled samples present in the scene is used to 
improve classification accuracy and alleviate the problem 
of free-parameter selection. The first approach models data 
marginal distribution with the graph Laplacian built with 
both labeled and unlabeled samples. The second approach 
is a modification of the SVM cost function that penalizes 
more the errors made when classifying samples of the target 
class. In [112] a new method combines labeled and unla-
beled pixels to increase classification reliability and accu-
racy, thus addressing the sample selection bias problem. In 
[113], an SVM is trained with the linear combination of two 
kernels: a base kernel working only with labeled examples 
is deformed by a likelihood kernel encoding similarities 
between labeled and unlabeled examples, and then applied 
in the context of urban hyperspectral image classification. 
In [114], similar concepts to those addressed before are 
adopted using a neural network as the baseline classifier. 
In [115], a semi-automatic procedure to generate land cover 
maps from remote sensing images using active queries is 
presented and discussed.

At this point, it should be noted that active learning 
techniques have been mainly exploited in a supervised 
context, i.e. a given supervised classifier is trained with 
the most representative training samples selected after a 
(machine-human) interaction process in which the sam-
ples are actively selected according to some criteria based 
on the considered classifier, and then the labels of those 
samples are assigned by a trained expert in fully supervised 
fashion [90], [116]–[118]. In this supervised context, sam-
ples with high uncertainty are generally preferred as they 
are usually more informative. At the same time, since the 
samples are labeled by a human expert, high confidence 
can be expected in the class label assignments. As a result, 
classic (supervised) active learning generally focuses on 
samples with high confidence at the human level and high 
uncertainty at the machine level.

Recently, standard active learning methods have been 
adapted into a semi-supervised self-learning scenario [119]. 
The main idea is to obtain unlabeled samples (from a pool 
of samples) using machine-machine interaction instead of 
human supervision. The first (machine) level—similar to 
the human level in classic (supervised) active learning—is 
used to infer a set of candidate unlabeled samples with high 
confidence. In a second (machine) level—similar to the 
machine level for supervised active learning—the machine 
learning algorithm itself automatically selects the samples 

with highest uncertainty from the obtained candidate set. 
This strategy relies on two main assumptions. The first 
assumption (global) is that training samples having the 
same spectral structure likely belonging to the same class. 
The second assumption (local) is that spatially neighbor-
ing pixels likely belong to the same class. As a result, this 
approach naturally integrates the spatial and the spectral 
information in the semi-supervised classification process.

E. CHALLENGES
There are several important challenges when performing 
hyperspectral image classification. Supervised classifica-
tion faces challenges related with the unbalance between 
high dimensionality and limited availability of training 
samples, or the presence of mixed pixels in the data (which 
may compromise classification results for coarse spatial 
resolutions). Another relevant challenge is the need to inte-
grate the spatial and spectral information to take advantage 
of the complementarities that both sources of informa-
tion can provide. These challenges are quite important for 
future developments and solutions to some of them have 
been outlined in this section. Specifically, we have explored 
techniques such as supervised and semi-supervised tech-
niques for hyperspectral image classification, strategies 
for integrating the spatial and the spectral information, 
or sparse classifiers that can bring solutions to the afore-
mentioned problems. However, some issues still remain. 
For instance, the geometry of hyperspectral data is quite 
complex and dominated by nonlinear structures. This issue 
has undoubtedly an impact in the outcome of the classi-
fication techniques discussed in this section. In order to 
mitigate this, manifold learning has been proposed [120]. 
An important property of manifold learning is that it can 
model and characterize the complex nonlinear structure 
of the data prior to classification [121]. Another remaining 
issue is the very high computational complexity of some of 
these classifiers discussed in this section. In other words, 
there is a need to develop efficient classification techniques 
that can deal with the very large dimensionality and com-
plexity of hyperspectral data. In Section VII we discuss fast 
computing solutions for hyperspectral imaging algorithms.

Last but not least, we emphasize that the techniques 
described in this section only represent a small sample 
(and somehow subjective selection) of the vast collection 
of approaches presented in recent years for hyperspectral 
image classification. For a more exhaustive summary of 
available techniques and future challenges in this area, we 
point interested readers to [1].

V. HYPERSPECTRAL TARGET DETECTION
Hyperspectral imagery has been used in reconnaissance 
and surveillance applications where targets of interest are 
detected and identified [7], [122]. The process of detect-
ing and identifying a target in hyperspectral imagery can 
be considered as consisting of two stages. The first stage is 
an anomaly detector [123], [124] which identifies spectral 
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vectors that have significant spectral differences from their 
surrounding background pixels. Man-made anomalies can 
also be detected through change detectors [125], [126], 
which are used to identify changes within a scene that 
occur over time. The second stage is to identify whether or 
not the anomaly is a target or natural clutter. This stage can 
be achieved if the spectral signature of the target is known 
which can be obtained from a spectral library [122] or from 
a set of training data which could also be synthetically gen-
erated [127]. Almost all the classical target detection tech-
niques in the literature [127]–[131] are based on a linear 
process that only exploits the first and second order statis-
tics to identify anomalies or targets. Advanced nonlinear 
detection techniques based on statistical kernel learning 
theory [132] have also been developed in [133] that indi-
rectly exploit the higher order statistics between the spec-
tral bands through a kernel function [132].

A. ANOMALY DETECTION
Anomaly detectors, outlier detectors, or novelty detec-
tors are pattern recognition or statistical schemes that are 
used to detect objects that stand out from their cluttered 
background. In spectral anomaly detection algorithms 
[123], [124], [134]–[136] pixels (materials) that have a sig-
nificantly different spectral signature from their neigh-
boring background clutter pixels are identified as spectral 
anomalies. In such algorithms, no prior knowledge of the 
target spectral signature is utilized or assumed. In [134], a 
spectral anomaly detection algorithm was developed for 
detecting targets of unknown spectral distribution against 
a background with unknown spectral covariance. This 
algorithm is now commonly referred to as the Reed-Xiaoli 
(RX) anomaly detector, has been successfully applied to 
many hyperspectral target detection applications [7], [124], 
[135], [136] and is considered as the benchmark anomaly 
detection algorithm for multispectral/hyperspectral data. 
The RX algorithm is a constant false alarm rate adaptive 
anomaly detector which is derived from the generalized 
likelihood ratio test (GLRT). Assuming a single pixel target 
y as the observation test vector, the results of RX-algorithm 
is given by

 y y C y( ) ( ) ( )RX b
T

b b
1 nn= - --t t t , (5)

where bnt  is the estimated background clutter sample mean 
and Cb

t  is the estimated background clutter covariance.
The background mean and covariance matrix can be 

estimated globally from the whole hyperspectral image or 
locally using a double concentric window approach [123]. 
To estimate Cb

t  globally the background pixels are usually 
modeled as a mixture of multivariate Gaussian distribu-
tions [137], linear subspace [138], [139], linear or stochastic 
mixture models [140] or by some clustering or segmentation 
techniques [141]–[143] which are used to segment the back-
ground into several clusters. On the other hand the local 
background covariance matrix can be estimated by using a 
sliding double concentric window, centered at each test pixel, 
which consists of a small inner window region (IWR) cen-
tered within a larger outer window region (OWR), as shown 
in Fig. 12. The local background mean vector and covariance 
matrix are then computed from the spectral pixels falling 
within the OWR. The size of the inner window is assumed 
to be the size of the typical target of interest in the image. A 
guard band surrounding the IWR is also sometimes used 
to prevent the target pixels from corrupting the calculation 
of the background OWR statistics. The whole background 
probability density function has also been modeled by a sin-
gle class support vector machine in [144] and spectral pixels 
that fall outside this model are considered as anomalies. 
Anomaly detection techniques formulated as eliminating 
the whole or local background subspace from every pixel 
have also been investigated in [145].

Several variations of the RX detector that attempt to 
alleviate the limitation of RX have been proposed in the lit-
erature [135]–[137]. In [146], a modification to the RX algo-
rithm called SubSpace RX (SSRX) was outlined that is based 
on the PCA of the background covariance matrix. In the 
SSRX algorithm, several high-variance background dimen-
sions are deleted before applying the RX algorithm as these 
are assumed to capture non-normal background clutter vari-
ance. Another consideration in RX implementation is poten-
tial ill-conditioning of the local covariance matrix due to the 
high correlation, high dimensionality of the hyperspectral 
data and a limited background sample size. This ill-condi-
tioning is typically addressed by a regularization procedure 
such as PCA-based regularization or adding a scaled identity 
matrix to the background covariance matrix [147].

B. SIGNATURE-BASED TARGET DETECTION
In some applications, we have some prior knowledge about 
the spectral characteristics of the desired targets. In these 
situations, the target spectral characteristics can be defined 
by a single target spectrum [148] or by a signal subspace 
[129]. The GLRT detector using a single targets spectrum 
is referred to as the spectral matched filter (SMF) and the 
maximum likelihood abundance estimate of the target in a 
test pixel y is given in [130] as

 y
s C s
s C y
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T
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FIGURE 12. An example of a dual window.
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where s is the spectral signature of the target and Ct  rep-
resents the estimated covariance matrix for the centered 
observation data. The SMF model is based on the assump-
tion that the background clutter noise has a Gaussian 
distribution 0 C( , )N t  and the target distribution is also a 
Gaussian s C( , )N a t  with the same covariance statistics but 
with a mean of s,a  where a is an scalar abundance value 
representing the target strength.

The mean and covariance matrix appearing in (6) are 
estimated from the data either locally, or globally under the 
assumption that the number of target pixels contaminating 
the estimation of the covariance matrix is insignificant. The 
spectral target signatures are usually obtained from the spec-
tral library or from a target training data set. An essential pre-
processing stage to implement a signature-based detector is 
to estimate and compensate the atmospheric effects on the 
data [149] in order to transform the known target spectrum 
and measurement data into a common domain where an 
algorithm such as the SMF can be applied. Another consid-
eration in SMF implementation is potential ill-conditioning 
of the covariance matrix due to the high correlation, high 
dimensionality of the hyperspectral data and from a limited 
background sample size. Representing the inverse covariance 
matrix in terms of its eigenvector-eigenvalue decomposition, 
it becomes clear that the behavior of the inverse covariance 
matrix depends heavily on the small eigenvalues which 
could render it unstable. In order to reduce SMF sensitivity to 
statistical and numerical errors, eigenvectors corresponding 
to eigenvalues below an appropriate condition number or 
estimated sensor noise level are discarded [150], or a scaled 
identity matrix is added to the background clutter covariance 
before inverting, which is equivalent to including a regulari-
zation term (penalty term) in the design of the SMF [151].

In a situation when the target and background pixel 
characteristics are modeled by two linear subspaces with 
additive noise the resulting detector is referred to as the sub-
space matched detector (MSD). The GLRT for such a two 
subspace model is given in [129] as

 y
y I P y
y I P y
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MSD T
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-
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^

h
h

(7)

where PB is the projection matrix associated with the back-
ground subspace B , and PTB is the projection matrix 
associated with the target-and-background subspace TB .
Usually, the eigenvectors corresponding to the significant 
eigenvalues of the target and background covariance matri-
ces are used to generate the columns of T and B, respectively. 
To generate appropriate target and background linear sub-
spaces researchers have used scene samples from the hyper-
spectral image itself or have used the MODTRAN software 
package to generate a large number of synthetic target and 
background spectral pixels [127] for a given environment 
in order to estimate the two environmentally invariant sub-
spaces T and B.

Using some variations of the models used in SMF 
and MSD, researchers have also developed a number of 

different detectors, such as the adaptive subspace detec-
tor (ASD) [131] and orthogonal subspace projection (OSP) 
[128]. In ASD the target signature is represented by a lin-
ear subspace and the background statistics by a zero-mean 
Gaussian distribution whose covariance is estimated from 
the hyperspectral image data itself. In the case of OSP the 
target signature is represented by a single spectral vector s
and the background is represented by the spectral signa-
tures of the undesired background endmembers B. The OSP 
algorithm is based on maximizing the signal-to-noise ratio 
(SNR) in the subspace orthogonal to the background sub-
space which is given by s P yD BOSP

T= =  where P I BB#
B = -=

is the background rejection operator and ( )#$  denotes the 
pseudo inverse matrix.

C. SPARSE REPRESENTATION TARGET DETECTION
In the sparse representation classifiers (SRC) a test sample 
is approximately represented by very few training samples 
from both target and background dictionaries, and the 
recovered sparse representation is directly used for classifi-
cation [152]. Given the concatenated training samples from 
the target and background dictionaries as A A A ,b t= 6 @  the 
sparse representation vector c satisfying A yc =  can be 
obtained by solving the following optimization problem

A y,arg min subject to0c c c= =t (8)

where ,0c  termed the 0, -norm, is defined as the number 
of non-zero entries in the vector c that also represents a 
sparsity prior or penalty in (8). The above problem of mini-
mizing the 0, -norm is NP-hard, but its approximate solu-
tion can be obtained by greedy algorithms [68]. The 0,

-norm can also be replaced by an 1, -norm regularization 
prior term in (8) [69], where standard convex optimiza-
tion algorithms [70] can be used. Once the sparse coeffi-
cient vector c is obtained, the class of the test pixel y can be 
determined by comparing the residuals y y A( )rb b 2a= - t

and y y A( ) ,rt t 2b= - t  where at  and bt  represent the recov-
ered sparse coefficient vectors corresponding to the back-
ground and target dictionaries, respectively.

In the above process, the sparsity-based target detector 
is applied to each pixel in the test region independently 
without considering the correlation (contextual) between 
neighboring pixels. To incorporate contextual information 
within the SRC algorithm other sparsity priors or penalties, 
such as joint sparsity (collaborative) or an l2-norm smooth-
ness constraint [153] can be considered. Fig. 13 shows the 
receiver operating characteristic (ROC) curves for several 
different target detection techniques on a typical hyper-
spectral image, the forest radiance I data collection (FR-I), 
obtained from a hyperspectral digital imagery collection 
experiment (HYDICE) sensor which consists of 210 bands 
across the whole spectral range from 0.4 to 2.5 nm which 
includes the visible and short-wave infrared bands. As seen 
from the ROC curves in Fig. 13 the SVM-CK and sparsity-
based with smoothing classifiers outperform the classical 
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signature-based target detection techniques, the experi-
mental detail and results for couple of other hyperspectral 
images can be found in [152].

D. NONLINEAR DETECTORS
Almost all the anomaly and target detectors are based on 
only exploiting first and second order statistics in order 
to identify anomalies or targets. Kernel machine learning 
theory [132] has emerged as a new nonlinear-based learn-
ing approach for extending the classical pattern recognition 
algorithms. The implicit exploitation of nonlinear features 
through kernels provides crucial information about a given 
dataset which, in general, the learning methods based on 
linear models cannot achieve. The RX anomaly detection 
algorithm, the statistical target detection algorithms and 
the sparsity-based target classifier have all been extended 

to their nonlinear versions [133], [154] by using the ideas in 
kernel machine learning theory. Experimental results show 
that typically the kernel-based algorithms outperform their 
linear versions.

E. CHALLENGES
The major challenges in the classical anomaly and target 
detection techniques (RX, SMF, MSD, ASD, OSP) are still 
the need for developing new approaches for estimating the 
background/target covariance matrices or their correspond-
ing subspaces given a limited training data. Further research 
is also needed in the classical techniques to incorporate the 
spatial-contextual information about the targets that are 
more than one pixel size. In the case of sparsity-based tech-
niques more research is needed to develop the appropriate 
class sub-dictionaries as well as compact discriminative 
dictionaries. More advanced structured sparsity priors are 
to be incorporated and their performance evaluated. Cur-
rently most of the non-linear methods are based on kernel 
learning theory, other nonlinear approaches beside kernel-
based methods need to be introduced.

VI. ESTIMATION OF LAND PHYSICAL PARAMETERS
This section reviews the main problems and methods in 
the field of model inversion and estimation of physical 
parameters. Our main goal in remote sensing is to monitor 
the Earth and its interaction with the atmosphere. The 
analysis can be done at local or global scales by looking at 
bio-geo-chemical cycles, atmospheric state and evolution, 
and vegetation dynamics [155], [156]. All these com-
plex interactions can be studied through the definition of 
physical parameters representing different properties for 
land (e.g., surface temperature, biomass, leaf area coverage), 
water (e.g., yellow substance, ocean color, suspended matter) 
or the atmosphere (e.g., temperature and moisture pro-
files at different altitudes). The field of physical parameter 
estimation is an intermediate modeling step necessary to 
transform the measurements13 into useful estimates [157].

The remote sensing modeling system is illustrated in 
Fig. 14. The forward (or direct) problem involves radiative 
transfer models (RTMs). These models summarize the physi-
cal processes involved in the energy transfer from canopies 
and atmosphere to measured radiance. They simulate the 
reflected or emitted radiation transmitted through the 
atmosphere for a given observation configuration (e.g., 
wavelength, view and illumination directions) and some 
auxiliary variables (e.g., vegetation and atmosphere charac-
teristics). Solving the inversion problem implies the design 
of algorithms that, starting from the radiation acquired by 
the sensor, can give accurate estimates of the variables of 
interest, thus “inverting” the RTM. In the inversion process, 
a priori information of the variables of interest can also be 

FIGURE 14. Forward (solid lines) and inverse (dashed lines) 
problems in remote sensing. Figure adapted from [157].
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13The acquired data may consist of multispectral or hyperspectral images 
provided by satellite or airborne sensors, but can also integrate spectra ac-
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FIGURE 13. ROC curves for a typical hyperspectral image (FR-I) 
with several military targets reproduced from [152].
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included to improve the performance, such as the type of 
surface, geolocation, or acquisition time.

Notationally, a discrete forward model can be expressed as

Y x n( , ) ,f i= +

where Y is a set of measurements (such as the expected 
radiance); x is the state vector that describes the system 
(e.g., parameters such as temperature or moisture); i contains 
a set of controllable measurement conditions (e.g., different 
combinations of wavelength, viewing direction, time, Sun 
position, and polarization); n is an additive noise vector; and 
( )f $  is a complex nonlinear continuous function that relates x

with Y. The discrete inverse model is then defined as

x Y( , ),g ~=t

where ( )g $  is a possibly nonlinear function, parameter-
ized by weights ,~  that approximates the measurement 
conditions, x, using a set of observations as inputs, Y.

A. TAXONOMY OF INVERSION METHODS
Model inversion methods can be roughly divided into statis-
tical, physical or hybrid. In what follows, we review the main 
contributions in each family for land parameter retrieval. 
The reader is referred to [1] for an updated review on atmo-
spheric and ocean parameter retrieval methodologies.

1) Statistical inversion: Statistical inversion can be done 
either with parametric or non-parametric models. Para-
metric models rely on physical knowledge of the problem 
and build explicit parameterized expressions that relate a 
few spectral channels with the bio-geo-physical parameter 
of interest. Different narrowband vegetation indices (VIs) 
have been proposed to study the vegetation status by esti-
mating chlorophyll content and other leaf pigments, as well 
as vegetation density parameters like the leaf area index 
(LAI) and the fractional vegetation cover (FVC) [158]. The 
simple calculation of these indices has made possible deriv-
ing reasonable maps of vegetation properties in a quick and 
easy way. Furthermore, since the launch of imaging spec-
trometers into space crafts, these VIs have been applied at 
canopy level on ecosystems across the globe [159]. Never-
theless, the majority of the indices only use up to five bands 
thus under-exploiting the full potential information con-
tained in hyperspectral images [160].

Alternatively, non-parametric models estimate the vari-
able of interest using a set of input-output training data 
pairs, which come from concurrent measurements of the 
parameter and the corresponding reflectance/radiance 
observation. A terrestrial campaign is thus necessary at the 
same time the satellite overpasses the study area to measure 
the surface parameter. Several nonparametric approaches 
have been introduced for land parameter retrieval. In [161], 
biomass was estimated using common spectral band ratios, 
vegetation indices and linear/stepwise multiple regression 
models. Partial least squares (PLS) regression has been 

used for mapping canopy nitrogen [162]. Nonlinear exten-
sion of PLS was introduced via kernels in [163] for chlo-
rophyll concentration estimation. Recently, the support 
vector regression (SVR) has yielded good results in mod-
eling oceanic chlorophyll [164]. In the recent years, Gauss-
ian Process (GP) regression has shown very good properties 
to tackle the physical parameter estimation: GPs are sim-
pler to train than other models, they show good numerical 
performance and stability and provide sensible confidence 
intervals for the predictions [165].

2) Physical inversion: Statistical approaches may lack 
transferability, generality, or robustness to new geographi-
cal areas. Physical inversion models can alleviate these 
shortcomings by coupling models from lower to higher 
levels (e.g., canopy level models built upon leaf models). 
Therefore, they provide a physically-based, interpretable 
and broad linkage between Earth observation data and bio-
chemical or structural state variables [166]. Running RTMs 
in forward mode enables creating a database covering a wide 
range of situations and configurations. Forward RTM simu-
lations allow for sensitivity studies of canopy parameters 
relative to diverse observation specifications, and allow us 
to better understand the observed signal. The use of RTMs 
to generate datasets is a common practice, and especially 
convenient because acquisition campaigns are very costly 
(in terms of time, money, and human resources), and usu-
ally limited in terms of parameter combinations. RTMs are 
also widely used in the preliminary phase of a new sensor 
design, which allows understanding both the limits and 
capabilities of the instrument for the retrieval tasks. There 
exist many RTMs implemented in software packages to 
deal with the forward modeling. For example, PROSPECT 
is an RTM accounting for leaf optical properties while SAIL 
constitutes a canopy bidirectional reflectance model. Their 
combination led to the PROSAIL model. Other RTMs are 
more specific to ocean or atmosphere applications.

Physical inversion models essentially try to reverse 
(invert) data generated with an RTM. The basic assumption 
for inverting RTMs is that the forward model, ( )f $ , contains 
all the necessary information about the problem, so its 
inversion may lead to accurate parameter estimates. When a 
unique solution is not achieved, more a priori information 
is required to overcome the ill-posed problem. After gener-
ating the dataset, Y x{ , }, the problem reduces to, given new 
spectra, assign the parameter of the ‘closest’ spectra. Several 
approaches and metrics have been considered to solve the 
problem: iterative optimization, look-up-tables (LUTs), sim-
ulated annealing and genetic algorithms, and Markov chain 
Monte Carlo (MCMC). See [156] and references therein.

3) Hybrid inversion: Hybrid inversion models combine 
the previous approaches: they exploit the input-output data 
generated by RTMs simulations, Y x{ , }, and train statistical 
methods (typically neural networks) to invert the model, 
i.e., learn ( )g $ . Nonparametric statistical inversion is com-
putationally efficient and can replace more costly physical 
inversion learning ( )g $ . Regression trees has been used for 
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example to estimate land surface variables like LAI, frac-
tion of photo-synthetically active radiation (FAPAR), and 
chlorophyll content [167]. However, the vast majority of 
hybrid inversion methods consider the use of neural net-
works [168]–[170] for canopy parameter retrieval, mainly 
due to their capability to ingest huge databases. Neural net-
work revealed less biased than standard LUT methods in 
LAI retrieval [171]. In [172], neural networks were trained 
on a reflectance database made of RTM simulations, and 
LAI, FAPAR and FCOVER were accurately retrieved as 
compared with ground measurements. Very recently, the 
combination of clustering and neural networks inverted 
simulated data with additive noise. Inclusion of multian-
gle images improved the LAI estimations. Lately, in [173], 
neural networks were successfully developed over RTMs to 
estimate LAI, FCOVER and FAPAR. Only very recently, ker-
nel methods [174] have been used: In [175], the SVR was 
used to retrieve LAI by inverting PROSAIL.

RTMs have become important tools for the analysis of 
Earth observation data, providing meaningful links between 
radiometry and environmental applications. However these 
models are still often perceived as excessively complicated 

tools and are not always easily accessible. A recent effort 
that is worth mentioning is the automated radiative trans-
fer models operator (ARTMO) Matlab toolbox. ARTMO 
provides all necessary tools for running and inverting a 
suite of plant RT models, both at the leaf and at the canopy 
level. The toolbox is freely available14, and will soon inte-
grate advanced statistical regression for inversion. Currently, 
the simpleR toolbox15 provides easy Matlab code to develop 
parametric and nonparametric retrieval algorithms.

B. EXPERIMENTS
We here illustrate the performance of both empirical and 
statistical approaches to retrieve chlorophyll concentration 
from hyperspectral images. The data were obtained in the 
SPARC-2003 (SPectra bARrax Campaign) and SPARC-2004 
campaigns in Barrax, La Mancha, Spain. The region consists 
of approximately 65% dry land and 35% irrigated land. The 
methodology applied to obtain the in situ leaf-level Chlab

data consisted of measuring samples with a calibrated CCM-
200 Chlorophyll Content Meter in the field. Concurrently, 
we used CHRIS images Mode 1 (62 spectral bands, 34 m 
spatial resolution at nadir). The images were preprocessed, 
geometrically and atmospherically corrected. A total of 
n 136=  datapoints in a 62-dimensional space and the meas-
ured chlorophyll concentration constitute the database.

Performances of a wide array of established vegeta-
tion indices, linear regression with all bands (LR), SVR, 
and GP [165] were tested. Models were run for a total of 
50 random realizations of the training and test data. Aver-
aged correlation coefficients are shown for the test set in 
Table 4. Nonparametric methods show the best results both 
in correlation and stability, with GP performing best of the 
tested methods.

The best GP model was used for prediction on the 
whole CHRIS image to generate a pixel-by-pixel map of 
Chl and its confidence map (see Fig. 15). The maps show 
clearly the irrigated crops (the circles in orange-red), the 
semi-natural areas (light blue) and the bare soil areas (dark 
blue). Gaussian Processes also provide confidence inter-
vals for the predictions, Fig. 15(b), which may be helpful 
to identify anomalies. For example, the high confidences 
(western part of the image) were the fields sampled the 
most, while low confidence predictions (center of the 
image) correspond to areas particularly underrepresented 
in the training data, such as dry barley, harvested barley, 
and bright bare soils. This product may be used to set sen-
sitivity margins of field instruments quite intuitively: areas 
are thresholded with error levels above 10% of the total Chl
range (e.g. 26.5 µg/cm-2), see Fig. 15(c).

C. CHALLENGES
We reviewed the very active field of physical parameter 
estimation from acquired images. We presented the main 

14https://sites.google.com/site/jochemverrelst/ARTMO
15http://www.uv.es/gcamps/code/simpleR.html

METHOD FORMULATION R

GI R672/R550 0.52 (0.09)

GVI (R682-R553)/(R682+R553) 0.66 (0.07)

MCARI2 1.2[2.5(R800-R670)-1.3(R800-R550)] 0.71 (0.12)

mNDVI (R800-R680)/(R800+R680-2R445) 0.77 (0.12)

mNDVI705 (R750-R705)/(R750+R705-2R445) 0.80 (0.07)

mSR705 (R750-R445)/(R705+R445) 0.72 (0.07)

mTVI 1.2[1.2(R800-R550)-2.5(R670-R550)]) 0.73 (0.07)

NDVI (R800-R670)/(R800+R670) 0.77 (0.08)

NDVI2 (R750-R705)/(R750+R705) 0.81 (0.06)

NPCI (R680-R430)/(R680+R430) 0.72 (0.08)

OSAVI 1.16(R800-R670)/(R800+R670+0.16) 0.79 (0.09)

PRI (R531-R570)/(R531+R570) 0.77 (0.07)

PRI2 (R570-R539)/(R570+R539) 0.76 (0.07)

PSRI (R680-R500)/R750 0.79 (0.08)

RDVI ( )/ ( )R R R R800 670 800 670- + 0.76 (0.08)

SIPI (R800-R445)/(R800-R680) 0.78 (0.08)

SPVI 0.4[3.7(R800-R670)-1.2(R530-R670)] 0.70 (0.08)

SR1 R750/R700 0.74 (0.07)

SR3 R750/R550 0.75 (0.07)

SR4 R672/R550 0.76 (0.10)

SRPI R430/R680 0.76 (0.09)

TVI 0.5[120R750-R550)-200(R670-R550)] 0.70 (0.10)

VOG R740/R720 0.76 (0.06)

NAOC Area in [ , ]643 795 0.79 (0.09)

LR Least squares linear regression 0.88 (0.06)

SVR RBF kernel 0.98 (0.03)

KRR RBF kernel 0.98 (0.04)

GP [165] Anisotropic RBF kernel 0.99 (0.02)

TABLE 4. CORRELATION COEFFICIENT R RESULTS OF 
STANDARD NARROWBAND AND BROADBAND INDICES ALONG 
WITH RECENT NONPARAMETRIC NONLINEAR MODELS.
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approaches in the literature and 
introduced the principles and 
standard terminology. The use 
and performance of the differ-
ent existing approaches were 
illustrated in a real problem of 
vegetation monitoring which 
confirmed the excellent results 
obtained by nonparametric sta- 
tistical approaches. The field 
encompasses both physics of 
land and atmosphere, optimi-
zation, and machine learning. 
The future poses some chal-
lenging problems: the community will be confronted to the 
availability of huge amount of training data coming from 
RTMs, the design of more sophisticated and realistic RTMs, 
the combination of both statistical and physically-based 
models, and the specification of models that can adapt to 
multitemporal domains.

VII. FAST COMPUTING
In this section, we outline several strategies to accelerate 
hyperspectral image computations using different kinds of 
high-performance computing (HPC) architectures. As men-
tioned before in this contribution, the improved spatial, 
spectral and temporal resolutions provided by hyperspec-
tral instruments demand fast computing solutions that can 
accelerate the efficient exploitation of hyperspectral data 

sets. Specifically, we describe techniques based on different 
types of hardware accelerators (see Fig. 16), such as clusters, 
distributed platforms and specialized devices such as com-
modity graphics processing units (GPUs) or field program-
mable gate arrays (FPGAs). The section concludes with a 
summary of the main challenges in the exploitation of HPC 
platforms in hyperspectral remote sensing missions.

A. CLUSTERS AND DISTRIBUTED 
PLATFORMS FOR HYPERSPECTRAL PROCESSING
Clusters were originally developed with the purpose of creat-
ing a cost-effective parallel computing system able to satisfy 
specific computational requirements in different applica-
tions. In remote sensing, the need for large amounts of com-
putation was first identified for processing multispectral 

FIGURE 15. Chlorophyll concentration estimated map (a), predictive standard deviation (b), and 
masked confidence map (c) generated with GP on the CHRIS 12-07-2003 nadir image.

(a) (b) (c)

FIGURE 16. Different types of hardware accelerators commonly used to improve computational performance of hyperspectral 
imaging applications.
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imagery with tens of bands. As sensor instruments incor-
porated hyperspectral capabilities, it was soon recognized 
that computer mainframes and mini-computers could not 
provide sufficient power for effectively processing this kind 
of data. It is worth noting that NASA and ESA are currently 
supporting massively parallel clusters for remote sens-
ing applications including hyperspectral imaging, such as 
the Columbia supercomputer16 at NASA Ames Research 
Center. Another example of massively parallel computing 
facility which has been exploited for hyperspectral imaging 
applications is located at the High Performance Comput-
ing Collaboratory (HPC2) at Mississippi State University17, 
which has several supercomputing facilities that have been 
used in hyperspectral imaging studies.

Homogeneous clusters have already offered access to 
greatly increased computational power at a low cost (com-
mensurate with falling commercial PC costs) in a number 
of hyperspectral imaging applications, such as classifica-
tion or spectral unmixing [15]. However, a recent trend in 
the design of HPC systems for data-intensive problems, 
such as those involved in hyperspectral image analysis, is 
to utilize highly heterogeneous computing resources [176]. 
In this regard, networks of heterogeneous workstations can 
realize a very high level of aggregate performance in hyper-
spectral imaging applications, and the pervasive avail-
ability of these resources resulted in the current notions of 
grid and, later, cloud computing, which are yet to be fully 
exploited in hyperspectral imaging problems [177].

Although hyperspectral processing algorithms generally 
map quite nicely to clusters or networks of CPUs, these 
systems are generally expensive and difficult to adapt 
to onboard remote sensing data processing scenarios, in 
which low-weight and low-power integrated components 
are essential to reduce mission payload and obtain analysis 
results in real-time, i.e., at the same time as the data is 
collected by the sensor. In this regard, the emergence of 
specialized hardware devices such as FPGAs [178] or 
GPUs [179] exhibit the potential to bridge the gap towards 
onboard and real-time analysis of remote sensing data.

B. GPUS FOR HYPERSPECTRAL PROCESSING
In recent years GPUs have evolved into highly parallel, multi-
threaded, many-core coprocessors with tremendous compu-
tational power, consumption and memory bandwidth [179]. 
The combined features of general-purpose supercomputing, 
high parallelism, high memory bandwidth, low cost, com-
pact size, and excellent programmability are now making 
GPU-based desktop computers an appealing alternative to 
a massively parallel systems made up of commodity CPUs. 
The exploding GPU capability has attracted more and more 
scientists and engineers to use it as a cost-effective high-
performance computing platform, including scientists in 
hyperspectral processing areas. In addition, GPUs can also 

significantly increase the computational power of cluster-
based and distributed systems (e.g., the fastest supercomput-
ers in the world are now clusters of GPUs18).

Several efforts exploiting GPU technology can already 
be found in the hyperspectral imaging literature [15], [16], 
[180]. For instance, only in the area of spectral unmixing 
there have been many developments already. A GPU-based 
implementation of an automated morphological end-
member extraction (AMEE) algorithm for pure spectral 
signature (endmember) identification is described in [181]. 
In this case, speedups on the order of 15# were reported. 
A full spectral unmixing chain comprising the automatic 
estimation of the number of endmembers, the identifica-
tion of the endmember signatures, and quantification of 
endmember fractional abundances has been reported in 
[182] with speedups superior to 50#. Additional efforts 
towards real-time and on-board hyperspectral target detec-
tion and classification [183], [184] using GPUs have also 
been recently available. It should be noted that, despite 
the increasing programmability of low-power GPUs such 
as those available in smartphones, radiation-tolerance and 
power consumption issues still prevent the full incorpor-
ation of GPUs to spaceborne Earth observation missions.

C. FPGAS FOR HYPERSPECTRAL PROCESSING
An FPGA [178] can be roughly defined as an array of inter-
connected logic blocks. One of the main advantages of 
these devices is that both the logic blocks and their inter-
connections can be (re)configured by their users as many 
times as needed in order to implement different combi-
national or sequential logic functions. This characteristic 
provides FPGAs with the advantages of both software and 
hardware systems in the sense that FPGAs exhibit more 
flexibility and shorter development times than application 
specific integrated circuits (ASICs) but, at the same time, 
are able to provide much more competent levels of perfor-
mance, closer to those offered by GPUs (but with much 
lower power consumption). In fact, the power and energy 
efficiency of FPGAs has significantly improved during the 
last decade. FPGA vendors have achieved this goal improv-
ing the FPGA architectures, including optimized hardware 
modules, and taking advantage of the most recent silicon 
technology. For instance, manufacturing companies such 
as Xilinx19 or Altera20 have reported a 50% reduction in 
the power consumption when moving from their previous 
generation of FPGAs. This feature, together with the avail-
ability of more FPGAs with increased tolerance to ionizing 
radiation in space, have consolidated FPGAs as the current 
standard choice for on-board hyperspectral remote sensing. 
In the following, we outline several hyperspectral analysis 
techniques that have been recently implemented in FPGAs.

If we consider the area of spectral unmixing, implemen-
tation of endmember extraction algorithms using a Xilinx 

16http://www.nas.nasa.gov/Resources/Systems/columbia.html
17http://www.hpc.msstate.edu

18http://www.top500.org
19http://www.xilinx.com
20http://www.altera.com
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Virtex-4 FPGA have been recently described in [185]. This 
FPGA model is similar to radiation-hardened FPGAs certi-
fied for space operation. The acceleration factor or speedup 
of this implementation, compared with a software descrip-
tion developed in C language and executed on a PC with 
AMD Athlon 2.6 GHz processor and 512 Mb of RAM, is 
37x for the well-known AVIRIS Cuprite scene (16 endmem-
bers)21, 38x for a hyperspectral image collected also in the 
Cuprite mining district by EO-1 Hyperion (21 endmem-
bers), and 37x for an AVIRIS image collected over the Jasper 
Ridge biological preserve in California (19 endmembers). 
The speedup factor is quite constant across all the images, 
even taking into account the differences in the number of 
endmembers. Similarly FPGA implementations of abun-
dance estimation algorithms have also been described in 
[186]. This implementation was tested in the same FPGA 
used in [185], and achieved a speedup factor of 10x when 
processing the AVIRIS Cuprite scene and over 12# when it 
comes to the AVIRIS Jasper Ridge scene. Authors also reach 
the conclusion that, using FPGAs, the execution time scales 
linearly with the size of the image. FPGA implementations 
of other classic unmixing algorithms have also been dis-
cussed in chapter 2 of [180].

Other areas in which FPGA implementations have been 
particularly relevant is target detection and classification. In 
this context, [180] discusses several examples. Specifically, 
chapter 15 in [180] discusses the use of FPGAs in detection 
applications and provides specific application case studies. 
Chapter 16 in [180] describes FPGA implementations of 
techniques for hyperspectral target detection applications. 
Chapter 17 in [180] describes an on-board real-time pro-
cessing technique for fast and accurate target detection and 
discrimination in hyperspectral data. Real-time implemen-
tations of several popular detection and classification algo-
rithms for hyperspectral imagery have also been discussed 
in [187].

D. CHALLENGES
Despite the individual success of the different types of HPC 
architectures described in this section in different prob-
lems, a key aspect still missing is the integration of such sys-
tems in complementary fashion. Although the role of each 
type of accelerator depends heavily on the considered appli-
cation domain, cluster-based systems seem particularly 
appropriate for efficient information extraction from very 
large data archives comprising data sets already transmit-
ted to Earth, while the time-critical constraints introduced 
by many remote sensing applications call for on-board and, 
often, real-time processing developments which require the 
use of specialized hardware architectures such as GPUs and 
FPGAs. What is still missing is an infrastructure in which 
these computing resources are available on-demand, possi-
bly from a distributed cloud resource that can support cou-
pled HPC codes with strict processing deadlines. Clearly, 

such a grand challenge system could support a wider vari-
ety of hyperspectral imaging applications.

VIII. CONCLUDING REMARKS
Among the remote sensing modalities, the role of the 
hyperspectral technology in the detection and identifica-
tion of materials, determination of physical parameters, 
and change detection cannot be overstated. A few signs of 
the crescent importance of the 
hyperspectral remote sensing 
technology are the increasing 
number of hyperspectral space-
borne and airborne sensors 
and applications supported on 
hyperspectral remote sensing 
data. Another sign is the grow-
ing number of scientific pub-
lications, which has reached 
a figure comparable to that of 
radar remote sensing, as docu-
mented in the Introduction.

Owing to several factors 
among which we refer to the 
high dimensionality and size 
of the hyperspectral data, the spectral mixing (linear 
and nonlinear), and the degradation mechanisms asso-
ciated to the measurement process such as noise and 
atmospheric effects, the extraction of information from 
hyperspectral remote sense data relies on sophisticated 
and complex data analysis methods. In this paper, we pre-
sented a tour over a number of representative and attrac-
tive hyperspectral data analysis methods and algorithms, 
organized in six main topics: data fusion, unmixing, clas-
sification, target detection, physical parameter retrieval, 
and fast computing. In all topics, we described the state-
of-the-art, provided illustrative examples, and pointed to 
future challenges and research directions.

As the reader has noted, the remote sensing data analysis 
chain is very broad. For this reason, we could not cover all 
the interesting and relevant aspects exhaustively. For exam-
ple, we do not cover the important field of change detec-
tion and multitemporal classification, which are very active 
areas of research. Also note that the relevant field of image 
compression is missing, while the crucial steps of atmos-
pheric and geometric corrections, co-registration, decon-
volution, or image restoration and quality assessment have 
been treated only superficially.

As it can be concluded from the material presented in the 
paper, hyperspectral remote sensing data analysis is a mul-
tidisciplinary area using and adapting frontier concepts, 
frameworks, and algorithms from the field of signal and 
image processing, statistical inference, and machine learn-
ing. Note that the methods used in hyperspectral remote 
sensing data analysis are not always simple adaptations of 
well-known methods developed in the above fields. For 
example, hyperspectral unmixing has provided a unique 21http://aviris.jpl.nasa.gov/data/free data.html
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problem scenario to the development of new blind source 
separation solutions that are not interpretable as particular-
izations of known solutions. The same is true, in different 
degrees, in the remaining addressed topics.

As a conclusion, hyperspectral remote sensing data 
analysis is a mature field in the intersection of signal and 
image processing, statistical inference, and machine learn-
ing, contributing actively with frontier cross-disciplinary 
research activities. We hope that this paper be useful for 
researchers working in the field and foster curiosity in post-
graduate students looking for a PhD theme and in research-
ers looking for a new research area.
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