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Abstract—This paper presents a new framework for the de-
velopment of generalized composite kernel machines for hy-
perspectral image classification. We construct a new family of
generalized composite kernels which exhibit great flexibility when
combining the spectral and the spatial information contained in
the hyperspectral data, without any weight parameters. The classi-
fier adopted in this work is the multinomial logistic regression, and
the spatial information is modeled from extended multiattribute
profiles. In order to illustrate the good performance of the pro-
posed framework, support vector machines are also used for eval-
uation purposes. Our experimental results with real hyperspectral
images collected by the National Aeronautics and Space Admin-
istration Jet Propulsion Laboratory’s Airborne Visible/Infrared
Imaging Spectrometer and the Reflective Optics Spectrographic
Imaging System indicate that the proposed framework leads to
state-of-the-art classification performance in complex analysis
scenarios.

Index Terms—Extended multiattribute morphological profiles
(MPs), generalized composite kernel, hyperspectral imaging,
multinomial logistic regression (MLR), supervised classification.

I. INTRODUCTION

HE rich spectral information available in remotely sensed

hyperspectral images allows for the possibility to distin-
guish between spectrally similar materials [1]. However, su-
pervised classification of hyperspectral images (which assumes
prior knowledge in the form of class labels for some spectral
signatures) is a very challenging task due to the generally
unfavorable ratio between the (large) number of spectral bands
and the (limited) number of training samples available a priori,
which results in the Hughes phenomenon [2]. The application
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of methods originally developed for the classification of lower
dimensional data sets (such as multispectral images) generally
provides poor results when applied to hyperspectral images,
particularly in the case of small training sets [3].

On the other hand, the collection of reliable training samples
is very expensive in terms of time and finance, and the possi-
bility to exploit large ground truth information is not common
[4]. To address this issue, kernel methods [5] have been widely
used due to their insensitivity to the curse of dimensionality [6].
A relevant aspect of these methods in the context of supervised
classification techniques is their ability to perform with limited
training sets [6], [7]. The good generalization capability of ma-
chine learning techniques such as the support vector machine
(SVM) [6] and multinomial logistic regression (MLR) [8]-[12]
can still be enhanced by reducing the input data dimensionality
[13], [14], which can help in addressing ill-posed problems
based on limited training samples [7], [15], [16]. On the other
hand, recent studies have shown that composite kernels [17] and
multiple kernels [18]-[22] can provide enhanced classification
accuracy by incorporating the spatial information in addition
to the spectral information. This approach exhibits flexibility
to balance between the spatial and spectral information and
computational efficiency.

The introduction of composite kernels opened a wide field for
future developments in which spatial and spectral information
can be easily integrated. However, standard composite kernels
and multiple kernel learning (MKL) methods based on SVM
classifiers generally require convex combinations of kernels.
This introduces some practical limitations. First, the kernels
are bounded by convex combinations. Second, it is difficult to
optimize the parameters involved in the learning process. In
order to overcome these limitations, in this paper, we introduce
anew framework for the development of generalized composite
kernel machines intended to perform hyperspectral image clas-
sification, which proposes several innovative contributions with
regards to previously developed approaches.

1) First and foremost, our multiple kernels can be linearly
combined without any restriction of convexity. This in-
troduces a different approach with regards to standard
composite kernels and MKL methods, in which compos-
ite kernels need to be convex combinations of kernels.
Compared with our approach, these methods are less flex-
ible when modeling the classifier boundaries and further
depend on weight parameters which need to be carefully
adjusted in order to control the ratio of spatial to spectral
information in the final classification.

2) Another innovative contribution of this work is to use
the MLR classifier in order to implement the pro-
posed framework. Unlike SVMs—which require convex
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combinations of kernels—the MLR classifier has a lot
of flexibility in the construction of nonlinear kernels. As
a consequence, our logistic regression functions do not
even need to be kernels. Since we are working under a
probabilistic framework, the MLR 1is a natural approach
to derive probabilities, and this allows a perfect blend
with composite kernels while allowing us, at the same
time, to control the generalization capacity by using
logistic regressors [11]. By adopting a Laplacian prior
[8], [11], our optimization problem is convex, and we can
provide powerful algorithms to solve the problem with
ensured convergence [9].

3) Finally, the proposed approach models the spatial in-
formation using extended multiattribute morphological
profiles (MPs) [23], defined as a generalization of the
well-known MPs [24], [25] that provide a multilevel
characterization of an image created by the sequential
application of morphological filters that can be used to
model different kinds of spatial structures in the scene.

The aforementioned features conform an innovative frame-
work rooted on solid fundamental principles and which brings
the composite kernel idea to a new domain. At the same time,
the proposed approach allows for a more flexible generalized
formulation (not necessarily based on kernels) in order to
naturally integrate the spatial and the spectral information in
hyperspectral image classification, without the need for com-
plex parameter settings. The remainder of this paper is orga-
nized as follows. Section II briefly outlines the MLR classifier
used to model the posterior class probabilities and the EMAPs
used to model the spatial information. Section III presents the
proposed generalized composite kernel framework. Section IV
reports classification results using real hyperspectral images
collected by the Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) [26] and Reflective Optics Spectrographic Imag-
ing System (ROSIS) [25] imaging spectrometers. Comparisons
with standard composite kernels implemented using the SVM
classifier are also included. Section V concludes this paper with
some remarks and hints at plausible future research lines.

II. MODULES USED FOR BUILDING THE
PROPOSED APPROACH

A. Classification Using MLR

First of all, we define the notation that will be adopted
throughout this paper. Let K := {1,..., K} denote a set of
K class labels, let S :={1,...,n} denote a set of integers
indexing the n pixels of a hyperspectral image, let x :=

(X1,...,X,) € R? denote such hyperspectral image made up
of d-dimensional feature vectors, lety := (y1, ..., y,) denote
an image of labels, and let Dy, := {(x1,¥1),--., (XL, yr)} be

the labeled training set with L being the number of samples
in Dy . In this work, we model the posterior class probabilities
using MLR [27]

exp (l/(k) h(x )
Zk Lexp (v h(x;))

where h(x;) := [h1(x;),...,hi(x;)]T is a vector of [ fixed
functions of the input data, often termed features, v denotes the

p(yi = klxi,v) := 6]
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regressors, and v := [p()" u(K‘l)T]T
(1) does not depend on translations on the regressors v
in this work, we take vX) = 0. It should be noted that the
function h may be linear (i.e., h(x;) :==[1,2;1,...,2:4]7,
where x; ; is the jth component of x;) or nonlinear. A kernel
is some symmetric function which offers a mechanism to deal
with the nonlinear case, i.e.,

h(Xz) =

. Since the density
(k)

[1, K(xi,X1), .-, K(xi7xl)}T ,
whete K (xi,%;) i= (6(x:), 6(x;)) (2

where (-,-) denotes the inner product and ¢(-) is a nonlinear
mapping function [5]. Kernels have been largely used in this
context since they tend to improve data separability. In this
work, we use the Gaussian radial basis function kernel, i.e.,
K (xi,%;) := exp(—||x; — x;]|?/20?) kernel, which is widely
used in hyperspectral image classification [6]. In the present
scenario, learning the class densities amounts to estimating the
logistic regressors v. Following previous works [8], [10], [11],
[27], we compute v by calculating the maximum a posteriori
estimate

U = argmax {(v) + log p(v) 3)

where /(1) is the log-likelihood function given by

L

((v) = log [ [ p(uilxi,v)
i=1
L K
-y (hT ~log y_ exp (" (x v“‘”)) @)
i=1 k=1

and logp(v) is a prior over v which is independent from
the observation x. In order to control the machine complexity
and, thus, its generalization capacity, we model v as a random
vector with Laplacian density p(v) « exp(—A||v||1), where A
is the regularization parameter controlling the degree of sparsity
(8], [11].

Therefore, problem (3) turns to

L
ﬁ:argmaxz <hT(xi)u(yi)
i=1
K
- logZexp (hT(x )l/(k)> >
k=1

+logp(v) &)

= arg max Z u(y’) + log p(v) (6)

(yY)
.7+1

+§L:Z< (%, %;)

=1 j=1
lOgZeXp (1/1 ) 4K (xi, %) M)) )
k=1

where the term in (6) is independent from the observation data
x; therefore, it is also independent from the kernel function.
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The optimization problem (5) can be solved by sparse MLR
(SMLR) [8] and fast SMLR [12]. However, most hyperspectral
data sets are beyond the reach of these algorithms as their
analysis becomes unbearable as the kernel size increases. This
is even more critical in our framework in which we use multiple
kernels. In order to address this issue, we take advantage of
the logistic regression via variable splitting and augmented
Lagrangian (LORSAL) algorithm [9] with overall complexity
O(L?K) (recall that L is the number of training samples and
K is the number of classes), which is able to deal with large
kernel sizes. LORSAL plays a central role in this work, as in
previous contributions [10], [11].

B. Modeling Spatial Information With EMAPs

MPs [25] and attribute profiles (APs) [23], [28] have been
successfully employed for combining the spectral and spatial
information while classifying remote sensing imagery. APs are
obtained by applying a sequence of attribute filters (AFs) to a
gray-level image [23]. AFs are operators defined in the math-
ematical morphology framework which operate by merging
connected components at different levels in the image [29].
Extended APs (EAPs) [28] are an extension of APs for the
analysis of multi-/hyperspectral images. The EAP is a stack of
APs obtained with different features. When the EAPs obtained
using different types of attributes are stacked together, the
resulting profile is called as extended multiattribute profile
(EMAP) [28].

The filtering operation is based on the evaluation of how an
attribute A, computed for every region, compares to a given
reference value \. For a connected component of the image
C;, if A(C;) > A, then the region is kept unaltered; otherwise,
it is set to the grayscale value of the adjacent region with
closer value, thereby merging the connected components. When
the region is merged to the adjacent region of a lower (or
greater) gray level, the operation performed is a thinning (or
thickening). Given a sequence of thresholds {\1, Ao, ..., An},
an AP is obtained by applying a sequence of attribute thinning
and attribute thickening operations as follows [30]:

AP (fj(x:)) == {®n (f5(xi)) -, P (f(x4)), f(x4),
st (fj(xi))v'“v’Yn (fj(xl))} (8)

where ®; and ; denote the thickening and thinning transforma-
tions, respectively, and f;(x;) denotes a feature extracted from
the original pixel information x;. This is because the aforemen-
tioned formulation refers to a single feature (or spectral band)
extracted from the hyperspectral data, and therefore, the full
spectral information contained in x is not considered. In [25], it
was suggested to use several principal components (PCs) [31]
of the hyperspectral data to address this issue, but any feature
reduction technique on the hyperspectral image could also be
used [23]. In this way, the EAP is obtained by generating an
AP on each of the first ¢ PCs (or any other features retained
after applying feature selection on the hyperspectral image),
thus building a stacked vector using the AP on each feature,
as illustrated graphically in Fig. 1. This leads to the following
definition of the EAP for the pixel x;:
EAP(x;) := {AP (fi(xi)), AP (f2(xi)) ..., AP (fq(xi))gg)
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Fig. 1. Graphical illustration of the procedure adopted in order to construct
an EAP from a hyperspectral image. The EMAP is a combination of EAPs
obtained with different attributes.

where ¢ is the number of retained features. In our experiments,
we have used ¢ = 3, i.e., we retain the first three PCs which
account for most of the variance present in the considered
data sets. From the EAP definition in (9), the consideration
of multiple attributes leads to the concept of EMAP which
improves the capability in extracting the spatial characteristics
of the structures in the scene. However, a significant increase
of the dimensionality of the data is also obtained. In this work,
only area and standard deviation attributes are considered as
they can be more easily calculated and are well related to the
object hierarchy in the images [32].

III. GENERALIZED-COMPOSITE-KERNEL-BASED
FRAMEWORK

In this section, we present a new generalized composite
kernel framework for spectral-spatial classification of hyper-
spectral images using the modules described in the previous
section. Let us redefine a pixel entity x; as x;’ when its original
spectral information is considered and as x; when its associated
spatial-contextual information, obtained using (9), is consid-
ered. Hence, we can refer to a spectral kernel as K (x¥, x‘;’)
and to a spatial kernel as K*(x7,x;). The proposed method

stacks the spectral and spatial kernels as follows:
w w w S S S T
K(x;,%x5) = [K (xi ,xj) K (x,;,xj)} (10)

With these definitions in mind, the input function h(x;)
becomes

T
h(x;) := [1,KT(X1',X1),...,KT(XZ',XL)}
= [LKW (X‘z‘d’xblu)v"'va (X;‘uvxlz),)’Ks (Xf,X‘;)

LK (xS x|t (11)

(R
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Therefore, problem (5) changes to

L L L
U=arg mﬁxxz () +1ogp(u)+z Z
=1 j=1

i=1

K
x;) —log Z exp
k=1

’ (v;mw (¢ ) + o2 K
(e ()

+ oK (xS j))). (12)

Notice that, in (12), the logistic weights 1/ and v* iy, for the
spectral and spatial kernels are 1ndependent from each other.
This linear combination of multiple kernels is more flexible
than the convex combination used in MKL, where the relative
kernel weights are fixed. Therefore, our approach provides
more freedom to balance the spectral and spatial information.
The kernels introduced in (10) can be conveniently modified
to account for the cross-information between the spatial and the
spectral information as follows:
K(xi,x;) == [K (x¢

x7) s K7 (s x5) K92 (%7 x5)

7,7] 7,7_] )
]T

K (x3,xY) (13)

where K“%(x¥,x3) := ($(x¥), d(x3)) and K (x,x¥) :=

i J i)
(p(x3), p(x¥)) are the spectral-spatial and spatial-spectral

(3

cross—inforn{ation kernels, respectively. Notice that, in most
cases, the spectral vectors and the EMAPs have different
dimensions, which brings difficulty for building the cross-
information kernels. In order to build such kernels, we apply
a two-step procedure. Let d; and ds denote the dimensional-
ities of the spectral- and spatial-based features, respectively.
If d; > ds, we obtain the first do PCs of the spectral features
[31]. If do > d;, we obtain the first d; components of the
spatial features. In this way, spectral information and spatial
information are always equally balanced, and we can obtain
a cross-information kernel. We are aware that this procedure
may be suboptimal. Nevertheless, as shown in Section IV, this
strategy is shown to provide good results. By including the
cross-information, the input function h(x;) becomes

T
h(x ):[1 K (xi,xl),...,KT(xi,xL)]
=L K2 () s K2 () K (%)
Ks(xia L)7Kws(xtiuaxi)7~~‘,KwS(X$aXSL)7

K5 (x5,x9), .. K% (x5, x9)] " (14)

In this context, problem (5) changes to

L L L
= arg mlz}xZZ/(yl) + logp(v) + ZZ

i=1 j=

(yz) w w yl
( Vit (x7,x5) + Vi K7 (x5

=

x)

+ ’/(Jr2L+1KW‘S (x',x5)

(yi) Sw s
TV s K

— log Z exp

4819

(k) Kw (X ) (k)

i KO (x5 x5)

( (k) 4

+ ’/(i)zLHKwS (x5, 5)
+ V(i)gLHKS‘” (x5, x¥ ))) :

Optimization problems (12) and (15) have the same struc-
ture as problem (5). Therefore, we also adopt the LORSAL
algorithm [9] to compute the logistic regressors v. The over-
all complexity of the LORSAL algorithm is O(L?K), which
depends on the number of training samples and classes. In
our framework, the overall complexity depends on the stacked-
kernel size, where the overall complexities are O((2L)?K) and
O((4L)?K) for problems (12) and (15), respectively. In the
following section, we provide an experimental evaluation of
the proposed generalized composite kernel framework using
two well-known hyperspectral data sets that have been widely
used to evaluate the classification accuracy of techniques for
remotely sensed hyperspectral data interpretation.

15)

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach using
two real hyperspectral data sets. In our experiments, K°
refers to the kernel-based classification obtained using only
the spatial information provided by the EMAPs, ie., x{ is
obtained by applying an EMAP-based approach to the orig-
inal hyperspectral image. On the other hand, K“ refers to
the classification obtained using the full spectral information
contained in the hyperspectral image, i.e., x7 = x;. Simi-
larly, K“»° refers to the stacked-feature approach, i.e., the
input feature vector is stacked as [xfT,xfT]T. K@ts) .=
K% + K refers to the direct summation kernel, K (wts) . —
uwK*® + (1 — p)K* refers to the weighted summation kernel,
and K (whstwstsw) .— w4 5 4 K9S 4 K59 refers to the
cross-information kernel, all defined in the original compos-
ite kernel framework described in [17]. Finally, K [ws] .=
(K, K5]" and Kl@swssel .= (K@ K5 K% K57 refer to
the stacked and cross-information kernels defined in our pro-
posed generalized composite framework (see (10) and (13),
respectively). It should be noted that the parameters used for
building the EMAPs were not optimized but selected empiri-
cally based on previous experiences [23]. Regarding the param-
eters involved in the MLR (LORSAL) method, we performed a
parameter search between minima and maxima values accord-
ing to our experiments with the same hyperspectral scenes in
previous contributions [11], [14], [33] and selected the optimal
parameter values in those ranges. We would like to emphasize
that it has been found empirically that the proposed framework
is not very sensitive to parameter settings. Concerning the SVM
classifier, we optimized the related parameters using tenfold
cross-validation. The reported figures of overall accuracy (OA),
average accuracy (AA), « statistic, and individual classification
accuracies are obtained by averaging the results obtained after
conducting ten independent Monte Carlo runs with respect
to the training set Dy. In our experiments, we will report
both the average and the standard deviation obtained after ten
Monte Carlo runs. The remainder of this section is organized
as follows. In Section IV-A, we introduce the data sets used
for evaluation, which comprise the AVIRIS Indian Pines and
ROSIS Pavia University data sets (two widely used benchmarks
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Fig. 2.
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(a) False-color composition of the ROSIS University of Pavia scene. (b) Reference map containing nine mutually exclusive land-cover classes.
(c) Training set used in experiments.

for hyperspectral image classification). Section I'V-B describes
the experiments with the AVIRIS Indian Pines data set. Finally,
Section IV-C conducts experiments using the ROSIS Pavia
University data set.

A. Hyperspectral Data Sets

Two hyperspectral data sets collected by two different instru-
ments are used in our experiments.

1) The first hyperspectral image used in experiments was

collected by the AVIRIS sensor over the Indian Pines
region in Northwestern Indiana in 1992. This scene, with
a size of 145 lines by 145 samples, was acquired over
a mixed agricultural/forest area, early in the growing
season. The scene comprises 202 spectral channels in the
wavelength range from 0.4 to 2.5 pum, with a nominal
spectral resolution of 10 nm, a moderate spatial resolution
of 20 m by pixel, and a 16-b radiometric resolution. After
an initial screening, several spectral bands were removed
from the data set due to noise and water absorption
phenomena, leaving a total of 164 radiance channels to
be used in the experiments. For illustrative purposes,

2)

Fig. 2(a) shows a false-color composition of the AVIRIS
Indian Pines scene, while Fig. 2(b) shows the reference
map available for the scene, displayed in the form of a
class assignment for each labeled pixel, with 16 mutually
exclusive reference classes, i.e., 10 366 samples in total.
These data, including reference information, are avail-
able online,' a fact which has made this scene a widely
used benchmark for testing the accuracy of hyperspectral
data classification algorithms. This scene constitutes a
challenging classification problem due to the presence of
mixed pixels in all available classes and because of the
unbalanced number of available labeled pixels per class.

The second hyperspectral data set was collected by the
ROSIS optical sensor over the urban area of the Uni-
versity of Pavia, Italy. The flight was operated by the
Deutschen Zentrum fiir Luft- und Raumfahrt (German
Aerospace Center) in the framework of the HySens
project, managed and sponsored by the European Union.
The image size in pixels is 610 x 340, with a very high
spatial resolution of 1.3 m per pixel. The number of

! Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec.
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TABLE 1
OVERALL CLASSIFICATION ACCURACIES (IN PERCENT) AND Kk STATISTIC (IN THE PARENTHESES) OBTAINED FOR DIFFERENT CLASSIFICATION
METHODS WHEN APPLIED TO THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET USING DIFFERENT NUMBERS OF TRAINING
SAMPLES PER CLASS. THE STANDARD DEVIATION OF THE TEN CONDUCTED MONTE CARLO RUNS IS ALSO REPORTED IN EACH CASE

Classification methods

# Samples P Pr Composite kernels Generalized composite kernels

per class KW»s K{wts) ‘,,K(UJ‘FS) Kk Wwtstwstsw) Klw,s] Klw,s.ws,sw]
5 56.05+1.87 (50.87) 67.16£2.19 (63.28) 66.5312.92 (62.49) 67.8012.55 (63.93) 68.681+2.84 (64.90) 66.53+3.02 (62.49) 69.1543.30 (65.39) 69.63£3.22 (65.93)
10 64.1242.94 (59.69) 77.95+2.62 (75.18) 76.68+2.24 (73.72) 78.97£2.27 (76.29) 79.7442.19 (77.14) 76.682.44 (73.72) 80.4341.79 (77.89) 80.79£1.69 (78.29)
15 68.551+2.58 (64.63) 82.7042.15 (80.44) 81.8742.65 (79.51) 83.651+2.22 (81.50) 84.2142.16 (82.13) 81.8742.01 (79.51) 85.1411.98 (83.16) 85.32+£1.88 (83.36)
20 71671159 (68.13) 85.4611.42 (83.55) 85.1940.59 (83.22) 86.301+1.14 (84.48) 86.8011.06 (85.05) 85.1941.43 (83.22) 87.981+1.06 (86.36) 88.19+£0.93 (86.59)
25 73.14+1.87 (69.73) 87.26+1.26 (85.55) 86.5141.42 (84.69) 87.771+1.33 (86.11) 87.9911.41 (86.36) 86.51£1.79 (84.69) 89.1741.53 (87.69) 89.21£1.46 (87.73)
30 75.5041.22 (72.30) 89.5940.89 (88.16) 88.811.05(87.26) 89.9810.89 (88.60) 90.21£0.95 (88.86) 83.81+£1.03 (87.26) 91.292£0.83 (90.07) 91.35£1.00 (90.14)
35 76.4610.99 (73.41) 90.6410.68 (89.33) 89.581+0.97 (88.13) 91.05+£0.78 (89.79) 91.0410.97 (89.78) 89.5841.12 (88.13) 92.04£0.85 (90.91) 92.41+£0.93 (91.33)
40 76.3611.41 (73.28) 91.3141.11 (90.10) 90.95+1.08 (89.67) 91.89+£1.20 (90.75) 92.0811.19 (90.96) 90.9541.35 (89.67) 92.71£0.92 (91.67) 92.90+£0.97 (91.89)
45 77.4441.12 (74.45) 91.7340.98 (90.56) 91.25+1.02 (90.00) 92.11£0.94 (90.98) 92.1540.95 (91.03) 91.2540.91 (90.00) 93.13£0.86 (92.14) 93.18£0.90 (92.19)
50 77.7110.68 (74.74) 92554092 (91.49) 91.96£0.71 (90.81) 92.93+1.03 (91.92) 92.9941.03 (91.98) 91.9611.07 (90.81) 93.66£0.81 (92.75) 94.08+£0.80 (93.23)

K“>% (91.19%) K@+ (91.81%)

pK@13) (92.11%) K(wtstwstsw) 91 639)

Fig. 4. Classification maps and overall classification accuracies (in the parentheses) obtained for the AVIRIS Indian Pines data set.

data channels in the acquired image is 103 (with spectral
range from 0.43 to 0.86 pum). Fig. 3(a) shows a false-
color composite of the image, while Fig. 3(b) shows
nine reference classes of interest, which comprise urban
features, as well as soil and vegetation features. Finally,
Fig. 3(c) shows a fixed training set available for the scene
which comprises 3921 training samples (the remaining
42 776 samples were used for testing in our experiments).

B. Experiments With AVIRIS Indian Pines Data Set

In this set of experiments, we first evaluated the classification
accuracy of the proposed approach using the AVIRIS Indian
Pines data set in Fig. 2(a). This set of experiments is designed

to analyze the impact of the type of kernel used for classification
(as a function of the number of training samples used per
class). The EMAPs in this particular scene were built using
threshold values in the range of 2.5%-10% with respect to
the mean of the individual features, with a step of 2.5%, were
chosen for the standard deviation attribute and thresholds of
200, 500, and 1000, and were selected for the area attribute.
Let Ly be the total number of labeled samples in the refer-
ence map for a single class &, and let l;, be the number of
selected training samples per class. Table I shows the overall
classification accuracies (in percent) and the  statistic obtained
for different kernel-based classification methods for different
values of [, which are kept very small on purpose. Here, if
li, < Ly (i.e., the number of labeled samples per class is very
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TABLE 1I
OAS, AAS, AND INDIVIDUAL CLASSIFICATION ACCURACIES (IN PERCENT) OBTAINED FOR DIFFERENT CLASSIFICATION METHODS WHEN APPLIED
TO THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET WITH A BALANCED TRAINING SET (5% OF THE LABELED SAMPLES PER
CLASS USED FOR TRAINING (A TOTAL OF 515 SAMPLES) AND THE REMAINING LABELED SAMPLES USED FOR TESTING)

Classification methods
Class # Samples KW s Composite kernels Generalized composite kernels
Train Test KW,S K (w+s) MKv(w«!»s) K(wtstwstsw) Klw,s] Klw,s,ws,sw]|
MIR classifier

Alfalfa 3 51 47.06£15.41 80.7846.52 66.67113.27 81.3746.42 84.1243.63 84.3143.58 86.084-0.62 86.0840.62
Corn-no till 71 1363 78.244£3.01 87.7742.11 86.98+2.13 88.124£2.11 90.0742.11 90.374£2.09 91.78+1.76 91.80£1.74
Corn-min till 41 793 64.17£3.01 88.02+2.42 88.0842.06 88.1242.41 89.2742.69 89.534£2.72 92.04£2.19 92024224
Corn 11 223 48.21£11.76 69.24412.53 64.26111.88 69.821+12.07 77.44411.74 77.04412.31 84.0818.99 84.934-8.69
Grass/pasture 24 473 87.761+2.27 90.47+3.29 91.14£2.35 90.30£3.43 90.53+3.80 90.66£3.69 93.04£2.43 93.04£2.54
Grass/tree 37 710 95.13£1.40 97.21+1.41 97.3441.14 97.24£1.39 97.58£1.29 97.5841.31 98.35£1.07 98.41£1.15
Grass/pasture-mowed 3 23 53.04411.74 84.7847.17 75.2248.71 85.2247.16 90.0046.17 90.0046.17 94354293 94354293
Hay-windrowed 24 465 98.844-0.61 99.0140.25 99.2940.10 99.0140.27 99.2740.11 99.2540.15 99.334-0.12 99.3340.12
Oats 3 17 68.824+17.33 81.76+18.64 81.181+17.49 82.94417.69 87.65410.80 88.24411.19 94.124+4.52 95.294+3.61
Soybeans-no till 48 920 68.4245.22 86.5044.69 85.60+5.17 86.531+4.86 88.961+4.14 89.094+4.15 90.00+4.57 89.9144.60
Soybeans-min till 123 2245 82.56+1.26 94.5540.85 94.01£1.20 94.624£0.95 94.70%1.15 94.83+1.24 96.65£0.62 96.70£0.69
Soybeans-clean till 30 584 74.5245.35 81.64£5.43 84.95+4.71 82.28£5.50 83.05+5.42 83.544554 89.33+5.71 89.61£5.80
Wheat 10 202 99.3640.52 98.6110.45 99.2140.48 98.61£0.45 98.8610.52 99.014+0.57 99.01£0.49 99.06+0.47
Woods 64 1230 95.4641.53 96.6242.49 95.634+2.50 96.614+2.57 97.3142.34 97324237 97.764+1.99 97.804+2.03
Bldg-grass-tree-drives 19 361 50.75+3.49 81.58+5.31 80.80£5.74 81.94£537 83.43+4.86 83.96+£4.72 89.14+4.18 89.22+4.15
Stone-steel towers 4 91 62.09£6.95 92.53+£5.07 77.91£5.09 87.6946.81 70.88£8.26 76.2647.37 62.314£9.90 62.53410.27

Overall accuracy 80.1640.73 90.9340.62 90.384+0.53 91.0340.69 91.9340.71 92.134+0.67 93.8740.52 93.934+0.57

Average accuracy 73.4041.26 88.19+1.41 85.52+£1.35 88.15+1.45 88.9441.57 89.4441.40 91.09£1.34 91.26£1.42

K statistic 77.2640.84 89.6940.70 89.034+0.61 89.8040.76 90.824-0.80 91.05+0.76 93.0140.59 93.0740.65
Time (Seconds) 5.88 6.82 8.33 7.06 8.25 6.11 9.19 32.50
SVM classifier
Overall accuracy 76.954+0.85 90.5240.75 90.36+0.86 90.61£0.62 90.8540.79 91.17£0.65
Average accuracy 73.1841.63 86.4441.27 85.8241.47 87.28+1.27 87.3741.22 88.55+1.07 - -
K statistic 73.65£0.96 89.180.86 88.9940.98 89.2940.71 89.56£0.90 89.9340.74
Time (Seconds) 9.12 8.66 18.94 13.03 13.18 19.13

small), we take I, = Lj/2. For the classes which are very
small, i.e., Alfalfa, Grass/pasture-mowed, and Oats, the number
of training samples was set to [, = 10. As shown by Table I, the
proposed generalized composite kernel framework exhibits the
potential to improve the classification results provided by using
the spectral and the spatial information alone and also by the
different kernels introduced in [17] for the composite kernel
approach. It can be observed that the proposed generalized
framework can improve the obtained classification results in
terms of accuracies in all cases, with the cross-information
kernel providing better results than the stacked-kernel approach
as the number of training samples per class increases. For
illustrative purposes, Fig. 4 shows some of the classification
maps obtained for the experiment with [, = 50 training samples
in Table I. These classification maps correspond to one of the
ten Monte Carlo runs that were averaged in order to generate
the classification scores reported in Table I, which also reports
the standard deviation of the ten conducted Monte Carlo runs in
each case. The advantages obtained by adopting the proposed
generalized composite kernel approach with regards to other
considered methods can be visually appreciated in the maps

displayed in Fig. 4, which also reports the overall classification
accuracies obtained for each considered kernel-based classifier
in the parentheses.

In order to show the performance of our proposed approach
under different training conditions and scenarios, in the second
experiment, we evaluated the classification accuracy of the
proposed approach using a balanced training set per class in
which around 5% of the labeled samples per class have been
used for training (a total of 515 samples) and the remaining
labeled samples are used for testing. For very small classes, we
take a minimum of three training samples per class. Table II
shows the OAs, AAs, and individual classification accuracies
(in percent) and the r statistic obtained for different kernel-
based classification methods when applied to this scene. In the
table, we also include the results obtained by the SVM classifier
with the same kernels and inputs as our proposed approach
based on the MLR. The processing times in seconds, measured
in a desktop PC equipped with an Intel Core 2 Duo CPU (at
2.33 GHz) and 2 GB of RAM, are also included for reference.

Several conclusions can be obtained from Table II. First of
all, the proposed approach obtained the best results in terms
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(a) Graphical representation of the sparsity (in percent) and the overall classification accuracy (OA) (in percent) obtained by the proposed method as

functions of parameter ) in the classification experiment using the AVIRIS Indian Pines scene, reported in Table II. (b) and (c) Regressors for a specific class in

the AVIRIS Indian Pines scene (Oats) with different values of .

of accuracies in this scenario with balanced training sample
selection per class. In fact, the proposed approach is more
accurate with a balanced training set as the large classes can
be better modeled using the additional training information
available. These results indicate that our proposed approach
performs very accurately under different training conditions
and scenarios. Furthermore, it is noticeable that the other type
of kernels defined in the generalized approach (stacked and
cross-information) produced very competitive results. Finally,
it is observed that the obtained results involving the spatial
information are much better in terms of accuracies than those
obtained only with the spectral information. The experiment
demonstrates that the EMAP method can accurately model
spatial-contextual information in all cases.

Finally, in order to show that the proposed solution is effec-
tively sparse and investigate the relationships with parameter A,
we simply define the sparsity as ng/n x 100%, where n is
the number of parameters in the regressors v and ng is the
number of small values, i.e., |v;| < le—3 for any 7 in v.
Fig. 5(a) represents both the overall classification accuracy and
the sparsity as functions of parameter A\ in the experiment
reported in Table II with the AVIRIS Indian Pines scene. We
recall that, in this experiment, 5% of the reference data are used
for training purposes. From Fig. 5(a), it can be observed that,
without using the sparse prior (i.e., A = 0), the obtained OA
is below 90%. In turn, by enforcing sparsity, we can increase

the OA to more than 93% (with above 50% sparsity), which
corresponds to the best generalization capacity. For illustrative
purposes, Fig. 5(b) and (c) shows the regressors for a specific
class in the AVIRIS Indian Pines scene (Oats) with different
values of A.

C. Experiments With ROSIS University of Pavia Data Set

In this experiment, we evaluate the classification accuracy
of the proposed approach using the ROSIS University of Pavia
data set in Fig. 3(a). The EMAPs for this particular scene were
built using threshold values in the range of 2.5%—-10% with
respect to the mean of the individual features, with a step of
2.5%, and were chosen for the definition of the criteria based
on the standard deviation attribute. Values of 100, 200, 500,
and 1000 were selected as references for the area attribute. The
threshold values considered for the area attribute were chosen
according to the resolution of the data and, thus, the size of the
objects present in the scene. For illustrative purposes, Fig. 6
shows some of the filtered images obtained after using the area
attribute (top row) and the standard deviation attribute (bottom
row) using different thresholds.

Table III shows the OAs, AAs, and individual classification
accuracies (in percent) and the s statistic obtained for different
kernel-based classification methods when applied to this scene,
using the fixed training set in Fig. 3(c). In addition, Table III
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Fig. 6. Filtered images obtained after using (top row) the area attribute and (bottom row) the standard deviation attribute using different thresholds for the ROSIS

University of Pavia data set.

includes the results obtained by using the SVM instead of the
MLR classifier, with the same set of considered kernels. The
table also includes the processing times in seconds, measured
for the different methods in a desktop PC equipped with an
Intel Core 2 Duo CPU (at 2.33 GHz) and 2 GB of RAM. As
shown by Table III, the classification accuracies obtained by the
different kernel-based methods are very high for all the consid-
ered classes. The higher classification accuracies were always
obtained by using the proposed generalized-composite-kernel-
based framework, which provides state-of-the-art performance
for this scene. For illustrative purposes, Fig. 7 shows some of
the classification maps obtained for the ROSIS Pavia University
scene using the fixed training set depicted in Fig. 3(c). A very
good delineation of complex urban structures can be clearly
observed in the obtained results.

In a second experiment, we analyze the relative weight
of spatial and spectral information in the proposed spectral
and spatial kernels. Let (v*)"K* and (v*)" K* denote the
spectral and spatial numerators of the MLR in (1). From this
expression, we can readily conclude that, for a given pixel x;,
if (w*)"K“ > (v*)TK*, then the classification is dominated
by the spectral information. Otherwise, the spatial information
has more impact in the final classification result. In order to

analyze this relevant issue in more detail, Table IV shows an
experimental assessment (conducted using the ROSIS Pavia
University scene) of the number of samples dominated by spec-
tral and spatial information in the proposed spatial and spectral
kernels. In this experiment, we use 20% of the original set of
labeled samples (the original set is formed by a total of 3291
samples, and we are using a total of 784 samples for training).
Here, we performed ten Monte Carlo runs on the Pavia data set
by merging/splitting the testing set. From Table IV, it can be
observed that classes Asphalt, Bare soil, Bitumen, and Meadows
are dominated by the spatial information whereas classes Bricks
and Shadows are dominated by the spectral information. In
the classes Gravel and Metal sheet, the spectral and spatial
information had similar impact. A qualitative interpretation for
these results is that neither type of information is dominant.
Furthermore, the joint use of the two types of information
leads to better classification results than that obtained with the
spectral or the spatial information alone.

To conclude this section, Table V analyzes the statistical sig-
nificance of the obtained MLR-based classification results, ob-
tained using different kernels for the Pavia University data set,
using McNemar’s test [34]. From Table V, we can conclude that
the kernels combining the spatial and the spectral information



LI et al.: GENERALIZED COMPOSITE KERNEL FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

TABLE

4825

1II

OAS, AAsS, AND INDIVIDUAL CLASS ACCURACIES (IN PERCENT) OBTAINED FOR DIFFERENT CLASSIFICATION METHODS
WHEN APPLIED TO THE ROSIS PAVIA UNIVERSITY HYPERSPECTRAL DATA SET

Classification methods
Class # Samples " . Composite kernels Generalized composite kernels
Train Test K K Kws K(wts) pK(@ts) K(wtstwstsw) Klwss] Klwss ws,sw]
MLR classifier
Asphalt 548 6631 82.64 98.36 97.86 98.48 98.91 98.48 98.88 98.88
Bare soil 540 18649 68.62 97.83 97.45 98.51 98.26 98.52 98.44 98.47
Bitumen 392 2099 75.04 90.85 91.14 89.57 90.23 89.61 90.09 90.23
Bricks 524 3064 97.00 98.79 98.66 98.30 98.69 98.30 98.76 98.76
Gravel 265 1345 99.41 99.85 99.70 99.70 99.93 99.70 99.93 99.93
Meadows 532 5029 93.88 86.88 96.66 94.87 96.20 94.95 96.34 96.46
Metal sheets 375 1330 90.08 99.92 99.70 99.85 99.92 99.85 99.85 99.85
Shadows 514 3682 91.36 99.43 99.54 99.62 99.59 99.62 99.70 99.67
Trees 231 947 97.57 98.52 99.16 97.68 97.99 97.68 97.57 97.57
Overall accuracy 80.34 96.63 97.56 97.78 97.97 97.80 98.05 98.09
Average accuracy 88.40 96.71 97.76 97.40 97.75 97.41 97.73 97.76
K 7541 95.52 96.77 97.06 97.31 97.08 97.42 97.46
Time (Seconds) 166.95 175.65 184.58 188.29 187.01 208.93 944.78 3532
SVM classifier

Overall accuracy 80.89 90.80 93.07 92.87 92.97 92.44 - -

Average accuracy 89.09 94.08 94.95 94.92 94.92 90.19 - -

K statistic 76.12 88.13 90.99 90.74 90.86 94.63 - -

Time (Seconds) 121.89 | 148.80 | 157.59 277.25 283.22 307.85 - -

bring significant differences with regards to those only con-
sidering either the spatial or the spectral information. Also,
Table V reveals that the cross-information kernel cannot sig-
nificantly improve the results provided by the stacked kernels
which are less complex in computational terms. Hence, if users
have time restrictions, we recommend building our proposed
generalized composite kernel framework with stacked kernels
to integrate the spectral and the spatial information.

V. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, we have developed a new framework for
generalized-composite-kernel-based classification of remotely
sensed hyperspectral data. Compared with the original devel-
opments in [17], which set the basis for the development of
this kind of classifiers, we have introduced several distinctive
features. First and foremost, we rely on an SMLR classifier
and in the LORSAL algorithm [9] instead of the SVM adopted
in [17] to produce the final classification results. Second, our
proposed approach equally balances the spectral and the spatial

information contained in the hyperspectral data without any
weight parameters. Finally, the proposed approach models the
spatial information using EMAPs, thus addressing one of the
main future directions identified in [17]. The aforementioned
features are used to define a new framework for kernel-based
classification that provides state-of-the-art results with two
widely used hyperspectral images representing very challeng-
ing classification scenarios. Although the results obtained are
very encouraging, further experiments with additional scenes
and comparison methods should be conducted. Based on our
previous work [10], [11], [33], we also envisage the following
future perspectives.

1) As the MLR classifier provides a probabilistic output,
in future work, we will consider including a Markov
random field multilevel logistic prior in order to achieve
even smoother classification results by modeling spa-
tial information, following our previous developments
in [10] and [11]. It is expected that such framework
could address the somewhat noisy classification output in
Figs. 4 and 7.
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Fig. 7. Classification maps and overall classification accuracies (in the parentheses) obtained for the ROSIS University of Pavia data set.

TABLE 1V
NUMBER OF SAMPLES DOMINATED BY THE SPECTRAL AND THE SPATIAL INFORMATION IN THE PROPOSED GENERALIZED COMPOSITE KERNEL
METHOD (K[“vs]) USING 20% OF THE ORIGINAL SET OF LABELED SAMPLES IN THE ROSIS PAVIA UNIVERSITY SCENE (THE ORIGINAL SET
Is FORMED BY A TOTAL OF 3291 SAMPLES, AND WE ARE USING A TOTAL OF 784 SAMPLES FOR TRAINING). ALL THE RESULTS AND
ACCURACIES (IN PERCENT) ARE OBTAINED BASED ON TEN MONTE CARLO RUNS PERFORMED BY MERGING/SPLITTING THE
TESTING SET. THE OA IN THIS EXPERIMENT IS 95.55%, THE AA IS 96.21%, AND THE Kk STATISTIC IS 94.63%

Number of samples

Class Asphalt | Bare soil | Bitumen | Bricks | Gravel | Meadows | Metal sheets | Shadows | Trees

WHTKY > (w)TK® 0 1860 372 3143 799 1478 604 3989 -

w)TKY < @)TK® | 6508 15995 1527 0 544 4254 724 2 -

Total number of samples 6508 17855 1899 3143 1343 5732 1328 4011 957

Class accuracy 96.60 94.73 85.40 98.17 99.81 95.92 99.80 97.09 98.34

2) Since the proposed framework explicitly includes the approach only considers the labeled information for the

spatial information, we could adopt this framework to learning stage, thus reducing computational complexity.
perform spectral-spatial active learning. In comparison 3) The proposed method is computationally expensive in
with our previous work in [33] which addresses spectral— comparison with a single kernel-based approach. In order
spatial active learning by estimating the conditional to address this issue, we are planning on developing com-

marginals depending on the whole image, the proposed putationally efficient implementations of the proposed



LI et al.: GENERALIZED COMPOSITE KERNEL FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

4827

TABLE V
STATISTICAL SIGNIFICANCE OF THE MLR CLASSIFICATION RESULTS, OBTAINED USING DIFFERENT KERNELS FOR THE
PAVIA UNIVERSITY DATA SET USING 3921 SAMPLES FOR TRAINING, USING MCNEMAR’S TEST

KY K Kes | K@) | prets) | gletstostse) | gelws] | plo,sws,swl
K% - 7476 | -82.44 | -81.83 -82.83 -81.93 -83.05 -83.20
K*® 74.76 - -11.86 | -15.76 -18.74 -15.97 -19.21 -19.57
K@ 82.44 | 11.86 - -3.50 673 373 -7.81 833
Kwts) 81.83 | 15.76 3.50 - -4.92 -1.28 11.33 -8.29
pkK (@ts) 82.83 | 1874 | 6.73 4.92 - 459 276 -3.64
K@hstwstsw) | g193 | 1597 3.73 1.28 -4.59 - -7.01 -8.00
Klw»sl 83.05 | 19.21 7.81 7.33 2.76 7.01 - 22.08
Klw:sws,sw] 83.20 | 19.57 8.33 8.29 3.64 8.00 2.08 -

approaches by resorting to shared memory parallel ma-
chines such as multicores or graphical processing units,
as the feasibility of parallelizing the EMAP framework in
this kind of architectures has already been proven in the
literature [35].

4) Last but not the least, we are planning to extend our pro-
posed generalized composite kernel framework to include
MKL, as described in [20]. Here, the use of multiple
kernels may introduce the advantage of removing convex
constraints. It is expected that the proposed framework
may provide more flexibility for MKL, where the simple
MKL method in [20] can be formulated as a special case
of generalized MKL. We are also planning on exploring
the impact of reducing the dimensionality of the original
data set prior to applying the proposed approach.
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