4032

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 7, JULY 2013

Semisupervised Self-Learning for
Hyperspectral Image Classification

Inmaculada Dépido, Student Member, IEEE, Jun Li, Prashanth Reddy Marpu, Member, IEEE,
Antonio Plaza, Senior Member, IEEE, José M. Bioucas Dias, Member, IEEE, and
Jon Atli Benediktsson, Fellow, IEEE

Abstract—Remotely sensed hyperspectral imaging allows for
the detailed analysis of the surface of the Earth using advanced
imaging instruments which can produce high-dimensional images
with hundreds of spectral bands. Supervised hyperspectral image
classification is a difficult task due to the unbalance between
the high dimensionality of the data and the limited availability
of labeled training samples in real analysis scenarios. While the
collection of labeled samples is generally difficult, expensive, and
time-consuming, unlabeled samples can be generated in a much
easier way. This observation has fostered the idea of adopting
semisupervised learning techniques in hyperspectral image clas-
sification. The main assumption of such techniques is that the new
(unlabeled) training samples can be obtained from a (limited) set
of available labeled samples without significant effort/cost. In this
paper, we develop a new approach for semisupervised learning
which adapts available active learning methods (in which a trained
expert actively selects unlabeled samples) to a self-learning frame-
work in which the machine learning algorithm itself selects the
most useful and informative unlabeled samples for classification
purposes. In this way, the labels of the selected pixels are estimated
by the classifier itself, with the advantage that no extra cost is re-
quired for labeling the selected pixels using this machine-machine
framework when compared with traditional machine-human ac-
tive learning. The proposed approach is illustrated with two differ-
ent classifiers: multinomial logistic regression and a probabilistic
pixelwise support vector machine. Qur experimental results with
real hyperspectral images collected by the National Aeronautics
and Space Administration Jet Propulsion Laboratory’s Airborne
Visible-Infrared Imaging Spectrometer and the Reflective Optics
Spectrographic Imaging System indicate that the use of self-
learning represents an effective and promising strategy in the
context of hyperspectral image classification.
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I. INTRODUCTION

EMOTELY sensed hyperspectral image classification [1]

takes advantage of the detailed information contained
in each pixel (vector) of the hyperspectral image to generate
thematic maps from detailed spectral signatures. A relevant
challenge for supervised classification techniques (which as-
sume prior knowledge in the form of class labels for different
spectral signatures) is the limited availability of labeled training
samples, since their collection generally involves expensive
ground campaigns [2]. While the collection of labeled samples
is generally difficult, expensive, and time-consuming, unlabeled
samples can be generated in a much easier way. This observa-
tion has fostered the idea of adopting semisupervised learning
techniques in hyperspectral image classification. The main
assumption of such techniques is that new (unlabeled) training
samples can be obtained from a (limited) set of available labeled
samples without significant effort/cost [3].

The area of semisupervised learning has experienced a sig-
nificant evolution in terms of the adopted models, which com-
prise complex generative models [4]-[7], self-learning models
[8], [9], multiview learning models [10], [11], transductive
support vector machines (SVMs) (TSVMs) [12], [13], and
graph-based methods [14]. A survey of semisupervised learning
algorithms is available in [15]. Most of these algorithms use
some type of regularization which encourages the fact that
“similar” features are associated to the same class. The effect
of such regularization is to push the boundaries between classes
toward regions with low data density [16], where the usual
strategy adopted first associates the vertices of a graph to
the complete set of samples and then builds the regularizer
depending on variables defined on the vertices. This trend has
been successfully adopted in several recent remote sensing
image classification studies. For instance, in [17], TSVMs are
used to gradually search a reliable separating hyperplane (in the
kernel space) with a transductive process that incorporates both
labeled and unlabeled samples in the training phase. In [18],
a semisupervised method is presented that exploits the wealth
of unlabeled samples in the image and naturally gives relative
importance to the labeled ones through a graph-based method-
ology. In [19], kernels combining spectral-spatial information
are constructed by applying spatial smoothing over the original
hyperspectral data and then using composite kernels in graph-
based classifiers. In [20], a semisupervised SVM is presented
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that exploits the wealth of unlabeled samples for regularizing
the training kernel representation locally by means of cluster
kernels. In [21] and [22], a new semisupervised approach is
presented that exploits unlabeled training samples (selected by
means of an active selection strategy based on the entropy of the
samples). Here, unlabeled samples are used to improve the esti-
mation of the class distributions, and the obtained classification
is refined by using a spatial multilevel logistic prior. In [23], a
novel context-sensitive semisupervised SVM is presented that
exploits the contextual information of the pixels belonging to
the neighborhood system of each training sample in the learning
phase to improve the robustness to possible mislabeled training
patterns. In [24], two semisupervised one-class (SVM-based)
approaches are presented in which the information provided
by unlabeled samples present in the scene is used to im-
prove classification accuracy and alleviate the problem of free-
parameter selection. The first approach models data marginal
distribution with the graph Laplacian built with both labeled
and unlabeled samples. The second approach is a modification
of the SVM cost function that penalizes more the errors made
when classifying samples of the target class. In [25], a new
method to combine labeled and unlabeled pixels to increase
classification reliability and accuracy, and thus addressing the
sample selection bias problem, is presented and discussed. In
[26], an SVM is trained with the linear combination of two
kernels: a base kernel working only with labeled examples is
deformed by a likelihood kernel encoding similarities between
labeled and unlabeled examples and then applied in the context
of urban hyperspectral image classification. In [27], similar
concepts to those addressed before are adopted using a neural
network as the baseline classifier. In [28], a semiautomatic
procedure to generate land cover maps from remote sensing
images using active queries is presented and discussed.

In contrast to supervised classification, the aforementioned
semisupervised algorithms generally assume that a limited
number of labeled samples are available a priori and then
enlarge the training set using unlabeled samples, thus allowing
these approaches to address ill-posed problems. However, in
order for this strategy to work, several requirements need to be
met. First and foremost, the new (unlabeled) samples should be
generated without significant cost/effort. Second, the number
of unlabeled samples required in order for the semisupervised
classifier to perform properly should not be too high in order to
avoid increasing computational complexity in the classification
stage. In other words, as the number of unlabeled samples
increases, it may be unbearable for the classifier to properly
exploit all the available training samples due to computational
issues. Further, if the unlabeled samples are not properly se-
lected, these may confuse the classifier, thus introducing signif-
icant divergence or even reducing the classification accuracy
obtained with the initial set of labeled samples. In order to
address these issues, it is very important that the most highly
informative unlabeled samples are identified in computationally
efficient fashion, so that significant improvements in classifica-
tion performance can be observed without the need to use a very
high number of unlabeled samples.

In this paper, we evaluate the feasibility of adapting available
active learning techniques (in which a trained expert actively
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selects unlabeled samples) to a self-learning framework in
which the machine learning algorithm itself selects the most
useful unlabeled samples for classification purposes, with the
ultimate goal of systematically achieving noticeable improve-
ments in classification results with regard to those found by
randomly selected training sets of the same size. In the liter-
ature, active learning techniques have been mainly exploited in
a supervised context, i.e., a given supervised classifier is trained
with the most representative training samples selected after
a (machine—human) interaction process in which the samples
are actively selected according to some criteria based on the
considered classifier, and then the labels of those samples
are assigned by a trained expert in fully supervised fashion
[22], [29]-[33]. In this supervised context, samples with high
uncertainty are generally preferred as they are usually more
informative. At the same time, since the samples are labeled
by a human expert, high confidence can be expected in the
class label assignments. As a result, classic (supervised) active
learning generally focuses on samples with high confidence at
the human level and high uncertainty at the machine level.

In turn, in this work, we adopt standard active learning
methods into a self-learning scenario. The main idea is to
obtain new (unlabeled) samples using machine—machine in-
teraction instead of human supervision. Our first (machine)
level—similar to the human level in classic (supervised) active
learning—is used to infer a set of candidate unlabeled samples
with high confidence. In our second (machine) level—similar to
the machine level for supervised active learning—the machine
learning algorithm itself automatically selects the samples with
the highest uncertainty from the obtained candidate set. As
a result, in our proposed approach, the classifier replaces the
human expert. In other words, here, we propose a novel two-
step semisupervised self-learning approach.

1) The first step infers a candidate set using a self-learning
strategy based on the available (labeled and unlabeled)
training samples. Here, a spatial neighborhood criterion
is used to derive new candidate samples as those which
are spatially adjacent to the available (labeled) samples.

2) The second step automatically selects (and labels) new
samples from the candidate pool by assuming that those
pixels which are spatially adjacent to a given class can
be labeled with high confidence as belonging to the same
class.

As aresult, our proposed strategy relies on two main assump-
tions. The first assumption (global) is that training samples
having the same spectral structure likely belong to the same
class. The second assumption (local) is that spatially neighbor-
ing pixels likely belong to the same class. As a result, our pro-
posed approach naturally integrates the spatial and the spectral
information in the semisupervised classification process.

The remainder of this paper is organized as follows.
Section II describes proposed approach for semisupervised
self-learning. We illustrate the proposed approach with two
probabilistic classifiers: multinomial logistic regression (MLR)
and a probabilistic pixelwise SVM, which are both shown to
achieve significant improvements in classification accuracy re-
sulting from its combination with the proposed semisupervised
self-learning approach. Section III reports classification results
using two real hyperspectral images collected by the Airborne
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Visible-Infrared Imaging Spectrometer (AVIRIS) [34] and the
Reflective Optics Spectrographic Imaging System (ROSIS) [35]
imaging spectrometers. Finally, Section IV concludes this paper
with some remarks and hints at plausible future research lines.

II. PROPOSED APPROACH

First, we briefly define the notations used in this paper. Let
K ={1,...,K} denote asetof K class labels, S = {1,...,n}
a set of integers indexing the n pixels of an image, x= (x1, . . .,
Xp) € R*™ ap image of d-dimensional feature vectors, y =
(y1,-.-,yn) an image of labels, D;={(y;.xy),.--,
(y1,,x1,)} a set of labeled samples, [, the number of
labeled training samples, YV, = {y;,,...,y,} the set of
labels in D, A} ={xy,...,x;,} the set of feature
vectors in D;, D, = {X,, M} a set of unlabeled samples,
Xy = {Xuy,--.,Xq, } the set of unlabeled feature vectors in
Dy, YVu ={Yuys - - - Yu, } the set of labels associated with X,
and u,, the number of unlabeled samples. With this notation
in mind, the proposed semisupervised self-learning approach
consists of two main ingredients: semisupervised learning and
self-learning, which are described next.

A. Semisupervised Learning

For the semisupervised part of our approach, we use two dif-
ferent probabilistic classifiers to model the class posterior den-
sity. The first one is the MLR, which is formally given by [36]

exp (w(’“)Th(xi))
>k exp (@M Th(x;))

where h(x) = [hi(x),...,h(x)]T is a vector of [ fixed
functions of the input, often termed features; w denotes the
regressors and w = [wMT ... wUIT]T. Notice that, the
function h may be linear, i.e., h(x;) = [1,z;1,...,2;4]T,
where z;; is the jth component of x;, or nonlinear, i.e.,
h(x;) = [1, Kx, x;»- - - s Kx; x| Ts where Ky, x, = K(x4,%;)
and K(-,-) is some symmetric kernel function. Kernels have
been largely used because they tend to improve the data
separability in the transformed space. In this paper, we use a
Gaussian radial basis function (RBF) K (x;,x;) =exp(—||x; —
x;||?/20?) kernel, which is widely used in hyperspectral image
classification [37]. We selected this kernel (after extensive ex-
perimentation using other kernels, including linear and polyno-
mial kernels) because we empirically observed that it provided
the best results. From now on, d denotes the dimension of h(x).
Under the present setup, learning the class densities amounts
to estimating the logistic regressors. Following the work in
[38] and [39], we can compute w by obtaining the maximum
a posteriori (MAP) estimate

p(yi = klxi,w) = (D)

W = arg max (w) + log p(w) (2)
where p(w) o exp(—A|lw]|1) is a Laplacian prior to promote
sparsity and A is a regularization parameter controlling the
degree of sparseness of @ in [38] and [39]. In our previous
work [39], it was shown that parameter A is rather insensitive to
the use of different data sets and that there are many suboptimal
values for this parameter which lead to very accurate estimation
of parameter w. In our experiments, we set A = 0.001 as we
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have empirically found that this parameter setting provides
very good performance [40]. Finally, ¢(w) is the log-likelihood
function over the training samples D;,, = D; + D,,, given by

ln+uy

lw) = Z log p(y; = k|x;, w). 3)
i=1

As shown by (3), labeled and unlabeled samples are inte-
grated to learn the regressors w. The considered semisupervised
approach belongs to the family of self-learning approaches,
where the training set D;y, is incremented under the
following criterion. Let Dar;y = {(¥i,,Xi,)» - - > Wi, X, )
be the set of neighboring samples of (y;,x;) for i€
{li,...,ln,u1, ..., u,}, where i, is the number of samples in
Dyiy and ¥;; is the MAP estimate from the MLR classifier,
withi; € {i1,...,i,}. If J;, = y;, we increment the unlabeled
training set by adding (7;,,x;,), i.e., Dy = {Du, (Ui, Xi;)}-
This increment is reasonable due to the following consider-
ations. First, from a global viewpoint, samples which have
the same spectral structure likely belong to the same class.
Second, from a local viewpoint, it is very likely that two
neighboring pixels also belong to the same class. Therefore, the
newly included samples are reliable for learning the classifier.
In this paper, we run an iterative scheme to increment the
training set as this strategy can refine the estimates and enlarge
the neighborhood set such that the set of potential unlabeled
training samples is increased.

It is important to mention that problem (2), although convex,
is very difficult to compute because the term ¢(w) is non-
quadratic and the term log p(w) is nonsmooth. The sparse MLR
(SMLR) algorithm presented in [38] solves this problem with
O((d(K — 1))3) complexity. However, most hyperspectral data
sets are beyond the reach of this algorithm as their analysis
becomes unbearable when the number of classes increases. In
order to address this issue, we take advantage of the logistic
regression via variable splitting and augmented Lagrangian
(LORSAL) algorithm [41] which allows replacing a diffi-
cult nonsmooth convex problem with a sequence of quadratic
plus diagonal I, —[; problems with practical complexity of
O(d?*(K —1)). Compared with the figure O((d(K — 1))3) of
the SMLR algorithm, the complexity reduction of d(K — 1) is
quite significant [39], [41].

Finally, we have also used an alternative probabilistic clas-
sifier for the semisupervised learning part of our methodology.
This is the probabilistic SVM in [12] and [42]. Other proba-
bilistic classifiers could be used, but we have selected the SVM
as a possible alternative to MLR since this classifier is already
widely used to analyze hyperspectral data [17], [18], while the
MLR has only recently emerged as a feasible technique for
this purpose. It should be noted that the standard SVMs do not
provide probability estimates for the individual classes. In order
to get these estimates, pairwise coupling of binary probabilistic
estimates is applied [42], [43], which has been applied for
hyperspectral classifications [44].

B. Self-Learning

The proposed semisupervised self-learning approach is based
on two steps. In the first step, a candidate set (based on labeled
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and unlabeled samples) is inferred using a self-learning strategy
based on spatial information, so that high confidence can be
expected in the class labels of the obtained candidate set. This
is similar to human interaction in classic (supervised) active
learning, in which the class labels are known and given by
an expert. In a second step, we run standard active learning
algorithms on the previously derived candidate set, so that
they are adapted to a self-learning scenario to automatically
(and intelligently) select the most informative samples from the
candidate set. Here, the goal is to find the samples with higher
uncertainty.

As a result, in the proposed semisupervised self-learning
scheme, our aim is to select the most informative samples
without the need for human supervision. The class labels of
the newly selected unlabeled training samples are predicted
by the considered semisupervised algorithm as mentioned in
Section II-A. Let D, be the newly generated unlabeled training
set at each iteration, which meets the criteria of the considered
semisupervised algorithm. Notice that the self-learning step in
the proposed approach leads to high confidence in the class
labels of the newly generated set D.. Now, we can run standard
active learning algorithms over D.. to find the most informative
set D,,, i.e., samples with high uncertainty, such that D,, C D..

Due to the fact that we use discriminative classifiers and
a self-learning strategy for the semisupervised algorithm, al-
gorithms which focus on the boundaries between the classes
are preferred. In our study, we use four different techniques
to evaluate the proposed approach [26]: 1) margin sampling
(MS); 2) breaking ties (BTs); 3) modified BTs (MBTs) [39];
and 4) normalized entropy querying by bagging (nEQB) [30],
in addition to random selection (RS) in which the new samples
are randomly selected from the candidate set. In the following,
we briefly outline each method (for a more detailed description
of these approaches, we refer to [22] and [31]):

1) The MS technique [31] samples the candidates lying
within the margin by computing their distance to the
hyperplane separating the classes. In other words, the
MS minimizes the distance of the sample to the optimal
separating hyperplane defined for class in a one-against-
all setting for multiclass problems.

2) The BT algorithm [45] relies on the smallest difference of
the posterior probabilities for each sample. In a multiclass
setting, the algorithm can be applied (independent of the
number of classes available) by calculating the difference
between the two highest probabilities. As a result, the
algorithm finds the samples minimizing the distance be-
tween the first two most probable classes. In a previous
work [39], it has been shown that the BT criterion gener-
ally focuses on the boundaries comprising many samples,
possibly disregarding boundaries with fewer samples.

3) The MBT scheme [39] was originally proposed to include
more diversity in the sampling process as compared to
the BT approach. It finds the samples maximizing the
probability of the largest class for each individual class.
This method takes into account all the class boundaries by
conducting the sampling in cyclic fashion, making sure
that the MBT does not get trapped in any class whereas
BT could be trapped in a single (complex) boundary.
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4) The nEQB approach [30] is a form of committee-based
sampling algorithm that quantifies the uncertainty of
a pixel by considering a committee of learners. Each
member of the committee exploits different hypotheses
about the classification problem and consequently labels
the pixels in the pool of candidates. The algorithm then
selects the samples showing maximal disagreement be-
tween the different classification models in the commit-
tee. Specifically, the nEQB approach uses bagging [?]
to build the committee and entropy maximization as the
multiclass heuristic, which provides a measure that is
then normalized in order to bound it with respect to the
number of classes predicted by the committee and avoid
hot spots of the value of uncertainty in regions where
several classes overlap. The version of nEQB used in this
work is the one implemented.'

At this point, it is important to emphasize that the afore-
mentioned sampling algorithms have been used in this work
for intelligently selecting the most useful candidate samples
based on the available probabilistic information. As a result,
spatial information is not directly addressed by these methods
but by the strategy adopted to generate the pool of candidate
samples. Since spatial information is the main criterion adopted
in this stage, there is a risk that the initial pool of candidate
samples may smooth out broad areas in the scene. However, we
emphasize that our proposed method for generating the pool
of initial candidates is not exclusively spatial as we use the
probabilistic information provided by spectral-based classifiers
(such as MLR or probabilistic SVM) in order to assess the
similarity between the previously selected samples and the new
candidates. Hence, as we have experimentally observed, no
significant smoothing effects happen in broad areas, and good
initial candidates are generally selected. It is also worth noting
that, in this work, we use two classifiers with probabilistic
output that are well-suited for the aforementioned algorithms
(MLR and probabilistic SVM). However, the proposed ap-
proach can be adapted to any other probabilistic classifiers.

For illustrative purposes, Fig. 1 shows how spatial informa-
tion can be adopted as a reasonable criterion to select unlabeled
samples and prevent labeling errors in a semisupervised classi-
fication process using a probabilistic classifier. As Fig. 1 shows,
we use an iterative process to achieve the final classification
results. First, we use a probabilistic classifier (in this work, the
MLR or the probabilistic SVM) to produce a global classifica-
tion map which contains the probability of each pixel to belong
to each class in the considered hyperspectral image. Based on
a local similarity assumption, we identify the neighbors of the
labeled training samples (using first-order spatial connectivity)
and then compute the candidate set D, by analyzing the spectral
similarity of the spatial neighbors with regard to the original
labeled samples. This is done by analyzing the probabilistic
output associated to each neighboring sample. In this way, the
candidate set D, is obtained based on spectral and spatial infor-
mation, and its samples are highly reliable. At the same time,
it is expected that there may be redundant information in D,.

Thttp://code.google.com/p/altoolbox
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In other words, some of the samples in the candidate set may
not be useful for training the classifier as they may be too
similar to the original labeled samples. This could introduce
difficulties from the viewpoint of computational complexity.
Therefore, after D, is obtained, we run active learning algo-
rithms on the candidate set in order to automatically select the
most informative unlabeled training samples. Since the active
learning algorithms are based on the available probabilistic
information, they are adapted to a self-learning scenario and
used to intelligently reduce possibly existing redundancies in
the candidate set, thus obtaining a highly informative pool
of training samples which ultimately contain only the most
relevant samples for classification purposes. The newly ob-
tained labeled and unlabeled training samples are finally used
to retrain the classifier. The procedure is repeated in iterative
fashion until a convergence criterion is met, for example, until
a certain number of unlabeled training samples is obtained.

III. EXPERIMENTAL RESULTS

In this section, two real hyperspectral images are used
to evaluate the proposed approach for semisupervised self-
learning. In our experiments with the MLR and SVM classi-
fiers, we apply the Gaussian RBF kernel to a normalized version
of the considered hyperspectral data set.”> We reiterate that
the Gaussian RBF kernel was selected after extensive experi-
mentation with other kernels. In all cases, the reported figures
of overall accuracy (OA), average accuracy, k statistic, and
class individual accuracies are obtained by averaging the results
obtained after conducting ten independent Monte Carlo runs

2The normalization is simply given by x; 1= x;/(1/ >, [[x:|2), for i =

1,...,n, where x; is a spectral vector.

Labeled + unlabeled samples
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Classification map
(probabilistic classifier)

A comparison between the
original classification map
and the refined map
indicates that spatial
information can be used as
a criterion to select
unlabeled samples and
prevent labeling errors

Refined classification map
with updated probabilities

.

Graphical example illustrating how spatial information can be used as a criterion for semisupervised self-learning in hyperspectral image classification.

with respect to the labeled training set D; from the ground truth
image, where the remaining samples are used for validation
purposes. Finally, the optimal parameters C' (parameter that
controls the amount of penalty during the SVM optimization
[12]) and o (spread of the Gaussian RBF kernel) were chosen
by tenfold cross validation. These parameters are updated at
each iteration.

In order to illustrate the good performance of the proposed
approach, we use very small labeled training sets on purpose.
As a result, the main difficulties that our proposed approach
should circumvent can be summarized as follows. First and
foremost, it is very difficult for supervised algorithms to provide
good classification results as very little information is generally
available about the class distribution. Poor generalization is also
arisk when estimating class boundaries in scenarios dominated
by limited training samples. Since our approach is semisu-
pervised, we take advantage of unlabeled samples in order
to improve classification accuracy. However, if the number
of labeled samples [ is very small, increasing the number of
unlabeled samples u could bias the learning process.

In order to analyze the aforementioned issues and provide a
quantitative evaluation of our proposed approach with regard to
the optimal case in which true active learning methods (i.e.,
those relying on the knowledge of the true labels of the se-
lected samples) were used, we have implemented the following
validation framework. Let D,,. be a set of unlabeled samples
for which true labels are available. These samples are included
in the ground truth associated to the hyperspectral image but
are not used in the set of labeled samples used initially by the
classifier. In order to evaluate the effectiveness of the proposed
approach, we can effectively label these samples in D, using
their true (ground-truth) labels instead of estimating the labels
by our proposed approach. Clearly, these samples will be
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favored over those selected by our proposed method which
makes use of estimated labels. However, it is interesting to
quantify such an advantage (the lower it is, the better for our
method). Following this rationale, the optimal case is that most
samples in D,, have true labels available, which means that
D, contains most of the unlabeled samples in D,. In our
experiments, we denote by [,. the number of unlabeled samples
for which a true label is available in the ground truth associated
to the considered hyperspectral image. If /. = 0, this means
that the labels of all unlabeled samples are estimated by our
proposed approach. If [, = u,., this means that true labels are
available for all the samples in D,, . Using this strategy, we
can substantiate the deviation of our proposed approach with
regard to the optimal case in which true labels for the selected
samples are available. Typically, true labels will be only avail-
able for part of the samples as the considered hyperspectral data
sets do not contain ground-truth information for all pixels. In
this scenario, the optimal case comprises both true (whenever
available) and estimated labels (the value of [, is given in all
experiments).

The remainder of this section is organized as follows. In
Section III-A, we introduce the two data sets used for evaluation
purposes in this work. In Section III-B, we describe the experi-
ments conducted using the first data set: AVIRIS Indian Pines.
Finally, Section III-C conducts experiments using a second data
set: ROSIS Pavia University. In all cases, the results obtained
by the supervised versions of the considered classifiers are also
reported for comparative purposes.

A. Hpyperspectral Data Sets

Two hyperspectral data sets collected by different instru-

ments are used in our experiments.

1) The first hyperspectral image used in experiments was
collected by the AVIRIS sensor over the Indian Pines
region in Northwestern Indiana in 1992. This scene, with
a size of 145 lines by 145 samples, was acquired over
a mixed agricultural/forest area, early in the growing
season. The scene comprises 220 spectral channels in the
wavelength range from 0.4 to 2.5 pm, nominal spectral
resolution of 10 nm, moderate spatial resolution of 20 m
by pixel, and 16-b radiometric resolution. After an initial
screening, several spectral bands were removed from the

()

(a) False color composition of the AVIRIS Indian Pines scene. (b) (Right) Ground-truth map containing 16 mutually exclusive land-cover classes.

data set due to noise and water absorption phenomena,
leaving a total of 200 radiance channels to be used
in the experiments. For illustrative purposes, Fig. 2(a)
shows a false color composition of the AVIRIS Indian
Pines scene, while Fig. 2(b) shows the ground-truth map
available for the scene, displayed in the form of a class
assignment for each labeled pixel, with 16 mutually
exclusive ground-truth classes, in total, 10366 samples.
These data, including ground-truth information, are avail-
able online,’ a fact which has made this scene a widely
used benchmark for testing the accuracy of hyperspectral
data classification algorithms. This scene constitutes a
challenging classification problem due to the presence
of mixed pixels in all available classes and because
of the unbalanced number of available labeled pixels
per class.

2) The second hyperspectral data set was collected by the
ROSIS optical sensor over the urban area of the Uni-
versity of Pavia, Italy. The flight was operated by the
Deutschen Zentrum for Luftund Raumfahrt (the German
Aerospace Agency) in the framework of the HySens
project, managed and sponsored by the European Union.
The image size in pixels is 610 x 340, with very high
spatial resolution of 1.3 m/pixel. The number of data
channels in the acquired image is 103 (with spectral
range from 0.43 to 0.86 pm). Fig. 3(a) shows a false
color composite of the image, while Fig. 3(b) shows nine
ground-truth classes of interest, which comprise urban
features, as well as soil and vegetation features.

B. Experiments With AVIRIS Indian Pines Data Set

In the first experiment, we evaluated the impact of the
number of unlabeled samples on the classification performance
achieved by the two considered probabilistic classifiers using
the AVIRIS Indian Pines data set in Fig. 2(a). Fig. 4 shows
the OAs in classification accuracy as a function of the number
of unlabeled samples obtained by the MLR (top) and prob-
abilistic SVM (bottom) classifiers, respectively. The plots in
Fig. 4, which were generated using estimated labels only, reveal
clear advantages of using unlabeled samples for the proposed

3 Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Fig. 3. (a) False color composition of the ROSIS Pavia scene. (b) Ground-truth map containing nine mutually exclusive land-cover classes.
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Fig. 4. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the AVIRIS Indian Pines data set using the (top)
MLR and (bottom) probabilistic SVM classifiers, respectively. Estimated labels were used in all the experiments, i.e., [,, = 0. (a) Five labeled samples per class

(In, = 80). (b) Ten labeled samples per class (I, = 160). (c) Fifteen labeled samples per class (I, = 240).

semisupervised self-learning approach when compared with
the supervised algorithm alone. In all cases, the proposed
strategy outperforms the corresponding supervised algorithm
significantly, and the increase in performance is more relevant
as the number of unlabeled samples increases. These unlabeled
samples are automatically selected by the proposed approach
and represent no cost in terms of data collection or human
supervision which are key aspects for self-learning. In Fig. 4, it
can also be seen that using intelligent training sample selection
algorithms such as MS, BT, MBT, or nEQB greatly improved
the obtained accuracies in comparison with simple RS. The
results in Fig. 4 also reveal that BT outperformed other strate-

gies in most cases, with MBT providing lower classification
accuracies than BT. This is expected, as the candidate set D,
is more relevant when the samples are obtained from the class
boundaries. Finally, it can also be observed that the MLR
always performed better than the probabilistic SVM in terms
of classification accuracies.

In order to show the classification results in more detail,
Table I shows the overall average individual classification
accuracies (in percentage) and the  statistic obtained by
the supervised MLR and probabilistic SVM—trained using
only ten labeled samples per class—and by the proposed ap-
proach (based on the same classifier) using the four considered
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TABLE 1
OVERALL AVERAGE INDIVIDUAL CLASSIFICATION ACCURACIES (IN PERCENTAGE) AND k STATISTIC OBTAINED USING THE MLR AND PROBABILISTIC
CLASSIFIERS WHEN APPLIED TO THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET, WITH TEN LABELED SAMPLES PER CLASS (160 SAMPLES
IN TOTAL) AND uy,, = 750 UNLABELED TRAINING SAMPLES. [,, DENOTES THE NUMBER OF TRUE LABELS AVAILABLE IN D,, (USED TO IMPLEMENT
AN OPTIMAL VERSION OF EACH SAMPLING ALGORITHM). THE STANDARD DEVIATIONS ARE ALSO REPORTED FOR EACH TEST

MLR classifier

Supervised MS BT MBT nEQB RS
I =0 1, = 683 1l =0 1, = 668 Il =0 1, = 646 Il =0 1y = 603 Iy =0 Ly = 747
Alfalfa (54) 83.6445.12 84.55+6.10 86.82+5.00 85.00+6.43 84.774+5.87 87.2742.92 89.09+3.18 82.5043.40 81.144+4.92 79.55+448 80.234+5.87
Corn-Notill (1434) 48.38+6.54 71.646.05 75.23+6.07 72.88+4.58 74234432 72.234+3.86 72.161+5.00 77.964+4.56 73.6243.16 60.25+7.97 61.8449.02
Corn-Min (834) 47.65+£7.33 66.361+12.63 72.73+12.55 64.60£12.79 72.28+11.97 63.861+10.46 68.5018.56 64.82411.64 69.14410.11 5339847 53.18+6.63
Corn (234) 70.634+9.43 85.76+8.13 8549+5.74 87.54+5.86 88.04+4.53 92234245 90.67+6.48 86.384+6.30 80.40+13.18 66.29416.34 71.744+12.94
Grass-Pasture (497) 75424735 85.50£4.93 8737743 8548+5.32 88.674+5.57 87.0846.30 89.4545.96 79494835 83.784+7.28 81.79+5.15 83.594+6.71
Grass-Trees (747) 86.0144.61 96.54£1.17 96.65+1.21 95.97+2.02 97.06+1.17 96.534+1.23 97.08+1.77 91.3745.16 93314293 94.024+2.75 94.124+2.96
Grass-Pasture-Mowed (26) 88.1246.88 93.75£6.62 87.50£5.89 93754547 86.8818.56 89.384+7.25 90.6345.31 90.6344.42 88.1249.97 85.0046.72 86.25+5.74
Hay-Windrowed (489) 88.894541 97.45+0.82 97.43+0.89 98.27+0.55 98.1640.64 98.7740.39 98.6040.61 99.1940.33 96.43+1.75 96.7441.33 96.3541.38
Oats (20) 98.0044.22 96.00+11.35 95.00£10.80 97.00£11.35 96.0046.99 99.00+3.16 99.0043.16 97.00£6.75 96.0046.99 99.00+4.22 98.001+4.22
Soybeans-Notill (968) 58.6849.18 80.87£7.17 83.39+£7.99 83.36+7.39 86.031+5.47 79.844+7.40 83254537 82.0048.82 81.864+6.29 67471143 65.50+11.99
Soybeans-Min (2468) 44.85+10.85 72514470 74494729 70.144+5.28 72.76+5.72 62.58+8.20 65.364+5.96 68.0445.60 69.294543 50.814+12.98 54024823
Soybeans-Clean (614) 52504991 80.88410.40 85.02+7.99 82.04+9.54 86.6146.53 8545+48.62 85.1249.42 83.77410.90 87.284+6.05 61.79412.36 65.71411.30
Wheat (212) 98.7641.57 99.2140.33 99.26+0.42 99.16+0.41 99.3140.71 99.6040.31 99.3140.35 98.9640.28 97.774+0.85 99.5540.28 99.504-0.33
Woods (1294) 75.6349.38 92404341 93.23£3.76 942145.14 94.0742.80 94.8143.74 93.7843.95 86.454+10.15 82324740 88.86+6.18 89.55+6.78
Bldg-Grass-Tree-Drives (380) 50.8447.65 66.70+7.56 65.62+6.12 67.38+11.11 68.86+7.84 66.8947.02 67.5147.20 78.30412.87 72734775 55384820 54.1649.98
Stone-Steel-Towers (95) 79.884+8.22 82.94+791 84.12+10.90 80.94+7.75 83.2949.79 91.0643.19 90.8243.91 79.53+5.74 85.06410.23 71534855 78.00+7.73
OA 60.12+ 3.08 80.00+ 1.09 82.14+5.88 80.04+ 128 82.2846.12 7834+ 2.11 79.68+5.28 79.0241.53 79.644+4.88 68.01+ 3.04 69.2842.63
AA 71.74+ 1.54 84.57+ 1.03 85.58+3.60 84.86+ 1.53 86.0643.86 8541+ 1.12 86.27+43.84 84.15+1.24 83.64+3.05 76.09+ 1.76 76.9841.46
K 5543+ 320 7731+ 1.26 79.74+6.50 7139+ 145 79.9346.79 7559+ 2.29 77.08+5.85 76.3141.66 76.85+5.40 64.014 330 65394286
Probabilistic SVM classifier
Supervised MS BT MBT nEQB RS
I =0 Iy = 695 lyp =0 Ly = 717 Iy =0 Iy = 649 Iy =0 Iy = 701 Iy =0 Ly = 740
Alfalfa (54) 79.774+12.70 75.23+8.67 6523+11.19 84.32+3.78 84.774+3.72 89.77+43.08 85.9140.96 80.00412.21 55454774 82.0547.68 66.1447.98
Corn-Notill (1434) 323241421 63.90413.67 77.46+1.89 62.97+1549 76.54+3.16 513341949 59.7042.85 60.72417.53 75.6742.12 4456 +18.39 55324361
Corn-Min (834) 37.174+19.56 56.70425.76 80.24+3.09 58.12+24.62 76.58+4.23 55.98422.21 72344215 554242233 7797+ 1.64 43.28+2534 61.7746.22
Corn (234) 68.62410.32 87.95+3.29 89.24+1.73 82.10+13.80 86.3843.52 81.034+13.28 84.064+2.72 86.3844.02 86.344+4.26 72.504+13.19 85.4942.64
Grass-Pasture (497) 77194729 87.54+7.09 91.21+3.01 89.16+6.02 93.37+41.35 88.174+6.40 93244123 82.40+46.03 90.6042.99 85.734+5.77 89454247
C ees (747) 65.36414.50 93.96+2.75 91.90+2.82 95.29+2.62 94.0242.53 90.3944.96 88.6642.22 87724729 92294242 88.3645.99 82.634+4.95
Grass-Pasture-Mowed (26) 90.6346.75 90.00+7.34 93.75+2.95 92.50+4.93 95.0043.95 90.004+4.37 93.7542.95 89.3846.62 93.1341.98 87.50 +8.33 93.1341.98
Hay-Windrowed (489) 78.0648.12 95.80+1.75 97.70£0.60 97.89+0.89 98.1040.46 98.52+1.19 98274043 93.2643.95 97.93+1.38 93494439 97.2440.67
Oats (20) 97.0046.75 93.00+9.49 100.00 93.00+6.75 99.0043.16 95.00412.69 100.00 98.0044.22 97.004+4.83 95.0047.07 100.00
Soybeans-Notill (968) 494241823 80.96+£7.68 88.68+3.02 82.03+8.88 91.39+42.14 721342441 87.2142.60 71.34427.13 85754273 65.101+18.05 84.3843.66
Soybeans-Min (2468) 33.90+12.83 65.50412.51 65.98+2.15 63.36+15.50 68.6042.36 50.16412.02 53.5945.69 583342325 62.1242.40 50.44415.80 44.10413.02
Soybeans-Clean (614) 43314+12.88 77.90£10.32 90.79£2.09 81.42+£11.08 91424124 63.00£17.91 84.3947.02 76.71+13.10 92044171 52.9148.92 61.94+11.52
Wheat (212) 93.6143.96 98.37+£1.07 97.82+1.40 98.66+0.81 97.52+41.34 98.2242.40 99.0140.52 97.2840.91 97.48+1.00 97.38+1.51 97.624+045
Woods (1294) 72.39415.02 89.24+6.07 93.90£1.92 92.94+4.58 97.3440.40 92.10£6.25 97.81£0.55 71.734+10.45 90.734+2.72 89.3646.60 96.9440.74
Bldg-Grass-Tree-Drives (380) 47.844+14.90 68.11414.08 64.95+5.97 66.81+16.28 61.9743.04 654648.72 58514437 72.54412.16 64.864+5.76 423541344 40.00+7.62
Stone-Steel-Towers (95) 86.35410.26 96.35+4.72 93.53+3.65 93.18+£5.62 90.8243.79 88.3549.87 83.1842.29 94.4745.82 87414411 90.354+4.95 84354254
OA 50.6145.34 75.87+£3.44 81.82+£7.54 76.23+£5.40 82.91£0.75 68.66+5.35 75261139 70474524 79.6940.62 63.5915.59 68404285
AA 65.9342.99 82.53+2.03 86.40+4.47 83.36+2.15 87.68+ 0.67 79.3542.16 83.7340.79 80.1042.43 84.1740.65 73774218 77.5340.96
K 45.144535 72.7643.76 79494826 73.184+5.81 80.7140.83 64.9045.75 72394149 66.7945.65 77.1440.67 59.1345.68 64.7342.99
sample selection algorithms (executed using 30 iterations) in 90 ; ‘ : : ‘
comparison with the optimal case for the same algorithms, in
which true labels are used whenever available in the ground o :
truth. In all cases, we report the value of [, to provide an Y
indication of the number of true versus estimated labels used % .
in the experiments. It is noticeable that, by including unlabeled & L o
samples, the classification results are significantly improved T #
in all cases. Furthermore, it can be observed that the MLR g 60F ,f 1
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framework. For example, with wu,, = 750 and BT sampling, . . . .. e b "“&,cmmm = o ”'),
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only 2.24% difference in classification can be observed between
the implementation using only estimated labels and the optimal
case in which both true and estimated labels are considered.
However, for the probabilistic SVM classifier, the difference is
6.67%. Similar observation can be made for the other sampling
algorithms considered in our experiments.

For illustrative purposes, Fig. 5 analyzes the convergence of
our proposed approach by plotting the obtained classification
accuracies for the AVIRIS Indian Pines scene as a function

The number of unlabeled samples

Fig. 5. Overall classification accuracies (as a function of the number of
unlabeled samples) obtained for the AVIRIS Indian Pines data set using the
MLR classifier with BT sampling by using five labeled samples per class (in
total, 80 samples). Two cases are displayed: The one in which all unlabeled
samples are estimated by the proposed approach (i.e., [,, = 0) and the optimal
case, in which true labels are used whenever possible (i.e., I, = u,.).

of the number of unlabeled samples, using only five labeled
samples per class (in total, 80 labeled samples) for the MLR
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Fig. 6. Classification maps and overall classification accuracies (in parentheses) obtained after applying the (top) MLR and (bottom) probabilistic SVM classifiers
to the AVIRIS Indian Pines data set by using ten labeled training samples and 750 unlabeled samples, i.e., [, = 160, u, = 750, and [, = 0.
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Fig. 7. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the ROSIS Pavia University data set using the (top) MLR
and (bottom) probabilistic SVM classifiers, respectively. Estimated labels were used in all the experiments, i.e., [, = 0. (a) I, = 45. (b) [, = 90. (¢) l,, = 135.

classifier with BT sampling approach. In the figure, we report
the case in which all unlabeled samples are estimated by the
proposed approach (i.e., [, = 0) and also the optimal case in
which true labels are used whenever possible (i.e., [, = u,.). As
can be seen in Fig. 5, the proposed approach achieved good
performance when compared with the optimal case, with a
difference of about 5% in classification accuracy when 3500
training samples were used.

Finally, Fig. 6 shows some of the classification maps ob-
tained by the MLR and probabilistic SVM classifiers for the
AVIRIS Indian Pines scene. These classification maps corre-
spond to one of the ten Monte Carlo runs that were averaged
in order to generate the classification scores reported in Table I.
The advantages obtained by adopting a semisupervised learning
approach with regard to the corresponding supervised case
can be clearly appreciated in the classification maps shown in
Fig. 6, which also report the classification OAs obtained for
each method in parentheses.

C. Experiments With ROSIS Pavia University Data Set

In this subsection, we perform a set of experiments to
evaluate the proposed approach using the ROSIS University
of Pavia data set. This problem represents a very challenging
classification scenario dominated by complex urban classes and
nested regions. First, Fig. 7 shows how the OA results increase
as the number of unlabeled samples increases, indicating again
clear advantages of using unlabeled samples for the proposed
semisupervised self-learning approach in comparison with the
supervised case. In this experiment, the four considered sample
selection approaches (MS, BT, MBT, and nEQB) perform
similarly and slightly better than simple RS. For instance,
when [,, = 45 labeled samples were used, the performance
increase observed after including u,, = 700 unlabeled samples
with regard to the supervised case was 13.93% (for the MS),
13.86% (for the BT), 10.27% (for the MBT), and 9.56% (for
the nEQB). These results confirm our introspection that the
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TABLE II
OVERALL AVERAGE INDIVIDUAL CLASSIFICATION ACCURACIES (IN PERCENTAGE) AND K STATISTIC OBTAINED USING THE MLR AND PROBABILISTIC
SVM CLASSIFIERS WHEN APPLIED TO THE ROSIS UNIVERSITY OF PAVIA HYPERSPECTRAL DATA SET BY USING TEN LABELED SAMPLES PER CLASS
(IN TOTAL, 90 SAMPLES) AND 4, = 700 UNLABELED TRAINING SAMPLES. [, DENOTES THE NUMBER OF TRUE LABELS AVAILABLE IN D,, (USED TO
IMPLEMENT AN OPTIMAL VERSION OF EACH SAMPLING ALGORITHM). THE STANDARD DEVIATIONS ARE ALSO REPORTED FOR EACH TEST

MLR classifier

MS BT MBT nEQB RS
Supervised
lrp =0 1y = 443 lp =0 Iy = 356 lp =0 Iy = 412 lp =0 Iy = 365 lp =0 Iy = 558
Asphalt (6631) 64.0517.34 74571748 75.411+6.01 7262497 74724614 71.43+475 71.54£4.57 7291737 7240£7.63 66.40£7.55 68.85+6.03
Meadows (18649) 63.1547.27 80.71£5.71 83.9242.84 83331449 84.624224 77.354+3.56 80.57+£4.67 74.08+6.95 81.18£4.75 76.234+6.93 81.0144.62
Gravel (2099) 66.284+9.21 80.05£9.35 80.3318.86 82.07£9.31 81.09£9.00 79.2419.19 81.55£7.65 81.8617.50 82284759 73.44£7.55 772141077
Trees (3064) 8474 11.11 84.88+9.97 85.471+8.66 88.07+8.87 83324945 94.41+3.58 88.45+6.82 91.461+4.05 85.6418.83 82.9749.16 85.0445.01
Metal Sheets (1345) 98.6440.60 99.491+0.44 98.68+1.24 99.2940.36 99.3240.47 99.7740.21 99.70+0.29 98.7910.82 98.851+0.82 99.031+0.48 98.8740.54
Bare Soil (5029) 69.5448.79 89.61£3.22 89.741+4.15 89.59+3.86 88.93+4.62 82.451+6.58 86.31£4.13 71.294+6.26 82994529 76.84411.58 82574873
Bitumen (1330) 87.70£3.31 95.2941.66 93.931+2.18 96.17+0.99 95.3942.02 96.53+1.18 96.5241.17 85.394+7.60 90.2645.56 92074352 93.2743.79
Self-Blocking Bricks (3682) 73.2247.57 82.19£7.02 81.381+5.06 80.99£7.09 80481446 82.871+6.76 77.83£7.48 79.2949.17 80.1618.40 76.08+7.85 757441034
Shadow (947) 98444191 98.9042.56 97.88+3.33 99.124+1.79 98.6041.86 98.98+1.88 99.304+0.49 99.88+0.15 99.5540.72 98.8542.28 99.5240.32
OA 69.2543.75 82.63£2.55 84.08+0.98 83.73£1.86 84.07£1.52 80.59+1.38 81724196 77.331+3.80 81.5£51.54 76.811+3.38 80.3042.54
AA 78424175 87.30+1.28 87.414+0.76 87.92+1.13 87.39+1.25 87.0040.77 86.86£0.73 83.8842.30 85.9240.96 82.4341.60 84.68+1.39
K 61.6944.01 77.784+3.08 79.504+1.14 79.124223 79.4541.90 75.4441.61 76.7042.27 71274453 76.36+1.74 70.45+43.86 74.75+3.03
Probabilistic SVM classifier
MS BT MBT nEQB RS
Supervised
Ip =0 1y = 454 Ip=0 1y, = 382 Ip =0 1, = 324 Ip =0 1y = 337 Iy =0 Iy = 557
Asphalt (6631) 6043+ 8.23 75714 12.63 76.254+9.46 74384 7.89 72.8248.00 72274 313 70.684-3.72 70.16+8.34 70.0149.05 61.14+ 7.06 61524537
Meadows (18649) 5436+ 9.43 68.351 7.10 69.951+6.72 79.57+ 8.28 78.96+9.21 63.531 11.57 64.61112.56 66.16413.17 66.621+7.29 62354 12,01 65.95+12.93
Gravel (2099) 62234 1033 7572+ 1403 75301118 80.01% 9.72 80251833 7258+ 1290 75.14£9.40 80.8249.35 80.0549.60 7097+ 1239 70.614£10.49
Trees (3064) 90.75+ 7.19 88.77+ 9.31 88944597 85.14+ 841 87.80+£7.00 92314 743 92014525 89.5247.01 89.43+7.24 89.90+ 5.20 85.15+£7.60
Metal Sheets (1345) 96.68+ 5.68 99914 0.08 99.9040.11 99.844 0.10 99.8340.12 99.554+ 0.33 99.6440.34 99.8640.10 99.8610.10 99.71+ 0.12 99.6940.19
Bare Soil (5029) 62.74% 19.59 8747+ 4.81 88.08+5.22 88.60E 3.92 90.2612.66 7789+ 12.67 78.95+£9.39 73.03£1042 76964793 75.01% 14.21 73.054:23.65
Bitumen (1330) 89.90+ 5.14 92474 412 93214322 94.384 3.55 95.6741.97 94.84+ 139 95.564-1.67 90.334+3.92 90.7943.22 9293+ 4.66 92.9743.67
Self-Blocking Bricks (3682) 66.50+ 844 71.64E 1883 75.52+9.44 80.89+ 8.04 80.39£8.07 7495+ 2457 81.00£7.17 72.01£571 71.82+7.16 70.04+ 1233 722341342
Shadow (947) 99.26+ 1.62 99.77% 0.19 99.731+0.52 97984 2.74 98.541+143 97.564 2.68 99.1142.16 99.9040.01 99.880.14 99.31+ 147 99.7740.26
OA 63.68+ 4.97 7627+ 4.68 77474326 81.85+ 4.44 81.95+4.68 72904 542 73934495 73.6143.89 77.0245.87 69.634 5.25 70.88+£5.20
AA 7576+ 3.74 8442+ 222 85214147 86.75+ 1.55 87.17+£145 82.83+ 243 84.08-+1.46 82424198 82.8242.03 80.154 2.92 80.11+£3.46
K 55484+ 5.55 7040E 5.26 71794371 76.89% 5.19 7694542 66.60+ 5.85 67.8615.40 66.4446.26 67.084.40 6246+ 5.57 63.7045.70

proposed semisupervised self-learning approach can greatly
assist in improving the results obtained by different supervised
classifiers based on limited training samples.

Furthermore, Table II shows the overall average individual
classification accuracies (in percentage) and the « statistic using
only ten labeled samples per class, in total, /,, = 90 samples
and u,, = 700 unlabeled samples for the semisupervised cases
in comparison with the optimal case, in which true labels are
used whenever available in the ground truth. In all cases, we
provide the value of [,. to provide an indication of the number
of true versus estimated labels used in the experiments. It
can be observed from Table II that the proposed approach
is quite robust as it achieved classification results which are
very similar to those found by the optimal case. For example,
by using the BT sampling algorithm, the proposed approach
obtained an OA of 83.73% which is almost the same as the one
obtained by the optimal case, which achieved an OA of 84.07%
by using true labels whenever possible. This observation is
confirmed by Fig. 8, which plots the classification accuracy
obtained (as a function of the number of unlabeled samples)
for a case in which 100 labeled training samples per class were
used (a total of 900 samples) for the MLR classifier with BT
sampling approach. In the figure, we report the case in which
all unlabeled samples are estimated by the proposed approach
(i.e., I, = 0) and also the optimal case in which true labels

93 ‘ ‘ T T : ‘

92+

Overall Accuracy (%)

87| = W = Estimated labels only ( case in which /=0

Optimal case: true & estimated labels (2= #,)

100 200 300 400 500 600 700
The number of unlabeled samples

Fig. 8. Overall classification accuracies (as a function of the number of
unlabeled samples) obtained for the ROSIS Pavia University data set using the
MLR classifier with BT sampling by using 100 labeled samples per class (in
total, 900 samples). Two cases are displayed: The one in which all unlabeled
samples are estimated by the proposed approach (i.e., [, = 0) and the optimal
case, in which true labels are used whenever possible (i.e., [, = ur).

are used whenever possible (i.e., [, = u,). Although, in this
experiment, the number of initial labeled samples is significant,
it is remarkable that the results obtained by the proposed
approach using only estimated labels are almost the same as
those obtained with the optimal version using true labels, which
means that the unlabeled training samples estimated by the
proposed approach are highly reliable in this experiment.
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Fig.9. Classification maps and overall classification accuracies (in parentheses) obtained after applying the (top) MLR and (bottom) probabilistic SVM classifiers

to the ROSIS Pavia University data set (in all cases, [, = 90 and [, = 0).

For illustrative purposes, Fig. 9 shows some of the classifi-
cation maps obtained by the MLR (top) and probabilistic SVM
(bottom) classifiers for the ROSIS Pavia University data set,
which corresponds to one of the ten Monte Carlo runs that were
averaged in order to generate the classification scores reported
in Table II.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have developed a new approach for semisu-
pervised classification of hyperspectral images in which unla-
beled samples are intelligently selected using a self-learning
approach. Specifically, we automatically select the most in-
formative unlabeled training samples with the ultimate goal
of improving classification results obtained using randomly
selected training samples. In our semisupervised context, the
labels of the selected training samples are estimated by the
classifier itself, with the advantage that no extra cost is required
for labeling the selected samples when compared to classic
(supervised) active learning. Our experimental results, con-
ducted using two different classifiers, SMLR and probabilistic
SVM, indicate that the proposed approach can greatly increase
the classification accuracies obtained in the supervised case
through the incorporation of unlabeled samples which can be
obtained with very little cost and effort. The obtained results
have been compared to the optimal case in which true labels
are used and the differences observed when using estimated
samples by our proposed approach were always quite small.
This is a good quantitative indicator of the good performance
achieved by our proposed approach, which has been illus-
trated using two hyperspectral scenes collected by different
instruments. In future work, we are planning on combining the
proposed approach with other probabilistic classifiers. We are
also considering the use of expectation—-maximization as a form
of self-learning [15]. Although, in this manuscript, we focused

our experiments on hyperspectral data, the proposed approach
can also be applied to other types of remote sensing data,
such as multispectral data sets. In fact, since the dimensionality
of the considered hyperspectral data sets is quite high, the
proposed approach could greatly benefit from the use of feature
extraction/selection methods prior to classification in order to
make the proposed method less sensitive to the Hughes effect
[46] and to the possibly very limited initial availability of train-
ing samples. This research topic also deserves future attention.
Another interesting future research line is to adopt our proposed
sample selection strategy (which is based on the selection
of individual pixels) to the selection and labeling of spatial
subregions or boxes within the image, which could be beneficial
in certain applications. Finally, another important research topic
deserving future attention is the inclusion of a cost associated to
the labels generated by the proposed algorithm. This may allow
a better evaluation of the training samples actively selected by
our proposed approach.
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