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Abstract—Over the last few years, several new strategies
have been proposed for spectral–spatial classification of remotely
sensed image data, for cases when high spatial and spectral
resolutions are available. In this letter, we focus on the possibility
of performing advanced spectral–spatial classification of remote
sensing images with limited spectral resolution (often called
multispectral). A new strategy is proposed, where the spectral
dimensionality of the multispectral data is first expanded by using
nonlinear feature extraction with kernel methods such as kernel
principal component analysis. Then, extended multiattribute
profiles (EMAPs), built on the expanded set of spectral features,
are used to include spatial information. This strategy allows
us to first decompose different spectral clusters into different
spectral features and further improve the spatial discrimination.
The resulting EMAPs are used for classification using advanced
classifiers such as support vector machines and random forests.
We test our proposed methodology with different multispectral
data sets obtaining state-of-the-art classification results.

Index Terms—Extended multiattribute profiles (EMAPs), ker-
nel principal component analysis (KPCA), random forests (RFs),
spectral–spatial classification, support vector machines (SVMs).

I. Introduction

OVER the last few years, many efforts have been di-
rected toward the use of spatial information to refine

spectral-based classifiers, assuming high spectral resolution
in the remotely sensed data to be processed. For instance,
morphological profiles [1] have been widely used for spatial
characterization of hyperspectral imagery [2], [3]. Markov
random fields (MRFs) have also been employed for spatial
characterization in hyperspectral classification, as described
in [4] and [5] or as a postprocessing step as in [6]. Despite
of the success of these approaches, fewer efforts have been
directed toward exploiting spatial and spectral information in
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remotely sensed data with limited spectral resolution [7]. In
this context, attribute profiles (APs) [8], and their extension to
multiattribute profiles (EMAPs) [9], have been successfully
used for classification of remotely sensed data with more
limited spectral resolution [10].

In this letter, we develop a new strategy to perform spectral–
spatial classification of images with low spectral resolution
(often called multispectral images), which constitute a very
important source of remotely sensed data. Our proposed strat-
egy first expands the spectral dimensionality of the data by
using nonlinear feature extraction with kernel methods, such
as kernel principal component analysis (KPCA) [11]. While
feature extraction is often performed with hyperspectral data
to reduce dimensionality and select relevant features for classi-
fication, it is seldom used with lower spectral resolution data,
where the multispectral bands (along with the panchromatic
band) are generally used to extract spatial features. Here, we
propose to use kernel feature extraction as a mechanism to
expand spectral dimensionality and then extract the spatial
information based on the extracted spectral features. The
motivation behind this is to first decompose the multispectral
data into features representing the inherent spectral clusters,
which would increase the contrast between different classes
after the kernel transformation. This is because this trans-
formation brings the data to a higher dimensional space, in
which the data may be easier to separate. Then, EMAPs built
on the expanded set of spectral features are used to extract
spatial information more optimally prior to classification using
advanced techniques such as support vector machines (SVMs)
[12] or random forests (RFs) [13]. The proposed strategy is a
simple but effective extension of the regular processing chain
with EMAPs presented in [9].

The remainder of the letter is organized as follows.
Section II describes the proposed methodology, which is based
on two main ingredients: KPCA and EMAPs. Section III
describes our experimental results. Concluding remarks are
given in Section IV.

II. Proposed Methodology

A. Kernel-Based Feature Extraction Using KPCA

PCA has been widely used for feature extraction in remote
sensing image analysis [14]. The principal components (PCs)
of a stochastic multivariate data are calculated based on a
linear transformation, which produces uncorrelated bands of
decreasing variance using the covariance matrix as a dispersion
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matrix. The PCs are calculated so as to maximize the variance
in every component. PC components are obtained as the linear
combination of the original bands with maximum variance
subject to the constraint that it is uncorrelated with all the other
components. For an image of n spectral bands represented as
a random vector G with zero mean, the covariance matrix can
be simply calculated as

� =
〈
GGT

〉
. (1)

Normally, only the first few principal components account for
most of the variance in the data. This fact is used to reduce
the dimensionality of the data by considering only the first few
principal components, which account for most of the variance.

In turn, the kernel formulation of PCA [11] is obtained
by replacing the inner products in the Gram matrix

〈
GGT

〉

with the kernel functions K(xi, xj), where xi and xj represent
data observations. The kernel functions represent the inner
products of vectors �(xi) and �(xj), which are the nonlinear
mappings of xi and xj into a higher dimensional feature space.
When there is a large number of observations, as is the case
for remote sensing images, these observations are generally
subsampled to perform KPCA. Even that will lead to a high
number of features, so only the top few features that account
for most of the variance are considered, as mentioned above.
Since the data are projected onto a higher dimensional feature
space, the clusters may now be easier to discriminate in the
kernel feature space [10]. This is the reason why KPCA is
chosen as a preprocessing step to decompose the spectral
information in the kernel feature space, so that the spectral
clusters will have less variance in the obtained features, and
may be easier to separate in the kernel feature space.

B. Spatial Characterization Using EMAPs

EMAPs [9] are an extension of APs [8] obtained using
different types of attributes and stacked together. The filtering
operation implemented in APs is based on the evaluation of
how a generic attribute A, computed for every connected
components of a scalar image, compares to a given reference
value λ in a binary predicate P (e.g., P := A(Ci) > λ, with Ci

being the ith connected component of the image). If P holds
true then the region is kept unaltered, otherwise it is set to
the grayscale value of the adjacent region with closer value,
thereby merging the connected components. When the region
is merged to the adjacent region of a lower (or greater) gray
level, the operation performed is a thinning (or thickening).
Given a sequence of ordered threshold values {λ1, λ2, . . . , λn},
an AP is obtained by applying a sequence of attribute thinning
and attribute thickening operations as indicated in (2), where
φi and γi, respectively, denote the thickening and thinning
transformations, and fj(xi) denotes a feature extracted from
the original observation xi.

In [2], it was suggested to use several PCs of original data
to address this issue. In this way, APs are built on each of
the first q PCs. This leads to the following definition of the
extended attribute profile (EAP) for the observation xi

AP(fj(xi)) :=
{
φn(fj(xi)), . . . , φ1(fj(xi)), fj(xi),

γ1(fj(xi)), . . ., γn(fj(xi))
}

(2)

EAP(xi):=
{

AP(f1(xi)), AP(f2(xi)), . . . , AP(fq(xi))
}

(3)

Fig. 1. Proposed framework for multispectral image classification.

where q is the number of retained features. From the EAP
definition in (3), the consideration of multiple attributes leads
to the concept of EMAP, which improves the capability to
extract the spatial characteristics of the structures in the
scene. An increase in the dimensionality of the data is also
obtained. In this letter, we use only two attributes: area and
standard deviation of the pixel values. This specific choice was
supported by previous works [10] in which these attributes
were proved to effectively extract the spatial characteristics
of the regions. However, it is important to note that any
measure computed on image regions may be considered as
an attribute and can be used depending on the application.
We refer to [8] and [9] (and references therein) for additional
details on APs and EMAPs, their implementation details and
their computational complexity.

C. Multispectral Image Classification Framework

The proposed framework for multispectral image classifica-
tion is summarized by the flowchart in Fig. 1. First, we use
KPCA to extract the features and to expand the dimensionality
of the original multispectral image with n bands. In this way,
the contrast between different spectral clusters increases, but
the variance within the cluster decreases in the corresponding
KPCA component representative of the cluster. The second
step is to build EMAPs based on the features derived using
KPCA, exploiting the spatial information. This strategy will
increase the dimensionality of the data. However, it embeds
an intelligent combination of spatial and spectral information.
Classification is finally performed on the obtained EMAPs by
using a nonlinear classifier such as the SVM or RF. It has
been observed in [10] and [15] that SVMs are more sensitive
than RFs to the Hughes phenomenon [14] when dealing with
high dimensional data such as EMAPs, whereas RFs provide
consistent and better performance. This is because RFs usually
do not consider all the input features in the final model, which
implicitly makes them, and thus the final ensemble, more
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Fig. 2. (a) RGB composite of the hyperspectral ROSIS Pavia scene.
(b) Reference map for the ROSIS Pavia University data with nine reference
classes. (c) Classification result with EMAP (KPCA) using 5% training and
the RF classifier: 98.81% accuracy. The numbers in the parentheses represent
the number of (training/test) pixels available for each class.

robust to high dimensional input data. Both SVMs and RFs
are used in this letter for comparative purposes.

III. Experimental Results

In this section, we present a quantitative and comparative
assessment of the proposed methodology using multispectral
data. The main goal is to incorporate spectral and spatial
information in an effective way to improve the multispectral
image classification results. The combination of feature extrac-
tion using KPCA and spatial characterization using EMAPs
provides a processing approach that has not been explored in
previous contributions focused on multispectral data. Before
describing the results obtained in our experiments, we first
describe the data sets and experimental setup considered in
our experiments. Then, we continue with the discussion of
the classification results obtained for the different approaches
compared in this letter.

A. Data Set Description

The experimental analysis was carried using three multi-
spectral images, two of them are obtained by extracting the
red, green, and blue (RGB) bands from two well known
hyperspectral images. The reasons for choosing the RGB
images from hyperspectral images are twofold. First, this
allows us to use the highly reliable reference data available for
these scenes. Second, this also allows us to compare the results
obtained with the original hyperspectral data with much higher
spectral resolution. The third image considered in experiments
is a multispectral image acquired using the IKONOS instru-
ment. This scene is used to validate the presented methodology
with real multispectral data.

1) The first image used in experiments was derived from a
hyperspectral image acquired using the reflective optics
system imaging spectrometer (ROSIS) sensor over the
University of Pavia, Italy. For this scene, with 610×340
pixels and spatial resolution of 1.3 m/pixel, we have
selected three spectral bands (12, 26, and 51) corre-
sponding to the RGB channels, out of the 103 spectral
channels (covering the wavelength range from 0.4 to

Fig. 3. (a) RGB composite of the hyperspectral AVIRIS Indian Pines scene.
(b) Reference map for the AVIRIS Indian Pines data with sixteen reference
classes. (c) Classification result with EMAP (KPCA) using 5% training and
the RF classifier: 88.74% accuracy.

Fig. 4. (a) RGB composite of the Multispectral IKONOS Reykjavik scene.
(b) Reference map for the IKONOS Reykjavik data with six reference classes.
(c) Classification result with EMAP (KPCA) using the fixed training and the
SVM classifier: 72.02% accuracy.

0.9 μm available in the original image. Fig. 2(b) shows
the reference map available for the scene, which com-
prises urban features as well as soil and vegetation
features.

2) The second image used in experiments was derived from
a hyperspectral image acquired using the airborne visible
infrared imaging spectrometer (AVIRIS) sensor over the
Indian Pines region in Northwestern Indiana in 1992.
This scene, with a size of 145 × 145 pixels and 202
spectral bands in the range from 0.4 to 2.5 μm, was
acquired over a mixed agricultural/forest area, early in
the growing season. In this scene, we have selected three
spectral bands (5, 12, and 24) corresponding to the RGB
data channels, to form a multispectral (color) image. The
spatial resolution of the scene is 20 m/pixel. Fig. 3(b)
shows the reference map available for this scene.1

3) The third image used in experiments was derived from
a multispectral image acquired by the IKONOS satellite
on August 9, 2001, over a urban area of Reykjavik,
Iceland. This scene is made up of 975 × 637 pixels
and four spectral bands and the spatial resolution is
1 m/pixel. Fig. 4(b) shows the reference map available
for the scene. This data set is used to evaluate the

1http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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TABLE I

Overall Accuracy (%) and Standard Deviation (After 10 Monte Carlo Runs) Obtained After Applying the SVM Classifier to the

ROSIS Pavia University, the AVIRIS Indian Pines, and the IKONOS Reykjavik Data Sets Using Different Types of Features

Overall Accuracy ROSIS Pavia University AVIRIS Indian Pines IKONOS Reykjavik
Features Standard training set Subset of 50 pixels 5% Training 5% Training 10% Training 15% Training Standard training set

Hyperspectral 80.64% ± 0.00 84.09% ± 2.06 93.38% ± 0.21 75.60% ± 1.15 81.95% ± 0.54 84.46% ± 0.45 –
Multispectral 65.81% ± 0.00 62.67% ± 5.62 78.87% ± 0.40 48.33% ± 0.71 49.63% ± 0.29 49.86% ± 0.38 58.73% ± 0.00

EMAP 76.85% ± 0.00 91.87% ± 0.63 96.89% ± 0.23 79.63% ± 0.73 83.71% ± 0.47 85.89% ± 0.44 65.40% ± 0.00
KPCAσ=1.0 66.13% ± 0.00 65.60% ± 4.26 78.92% ± 0.26 47.97% ± 1.20 49.50% ± 0.46 49.89% ± 0.17 59.31% ± 0.00
KPCAσ=1.5 66.01% ± 0.00 63.93% ± 4.61 78.62% ± 0.38 48.83% ± 0.38 49.59% ± 0.38 49.95% ± 0.38 61.33% ± 0.00
KPCAσ=2.0 67.94% ± 0.00 62.86% ± 3.71 78.61% ± 0.32 48.25% ± 0.62 49.25% ± 0.46 49.70% ± 0.30 61.01% ± 0.00

EMAP (KPCAσ=1.0) 93.41% ± 0.00 93.22% ± 0.71 97.18% ± 0.64 62.75% ± 3.72 74.45% ± 0.63 77.32% ± 2.90 70.55% ± 0.00
EMAP (KPCAσ=1.5) 94.09% ± 0.00 90.61% ± 2.38 97.18% ± 0.62 63.86% ± 2.74 73.91% ± 2.16 77.34% ± 3.14 71.88% ± 0.00
EMAP (KPCAσ=2.0) 91.87% ± 0.00 91.61% ± 1.36 97.25% ± 0.63 61.40% ± 3.14 71.62% ± 3.68 77.86% ± 2.30 72.02% ± 0.00

TABLE II

Overall Accuracy (%) and Standard Deviation (After 10 Monte Carlo Runs) Obtained After Applying the RF Classifier to the

ROSIS Pavia University, the AVIRIS Indian Pines, and the IKONOS Reykjavik Data Sets Using Different Types of Features

Overall Accuracy ROSIS Pavia University AVIRIS Indian Pines IKONOS Reykjavik
Features Standard training set Subset of 50 pixels 5% Training 5% Training 10% Training 15% Training Standard training set

Hyperspectral 71.42% ± 0.13 72.63% ± 2.66 87.66% ± 0.28 69.84% ± 1.30 75.38% ± 0.56 77.70% ± 0.51 –
Multispectral 64.87% ± 0.11 61.68% ± 2.62 77.08% ± 0.27 44.27% ± 0.54 46.17% ± 0.43 47.05% ± 0.28 61.38% ± 0.09

EMAP 80.81% ± 0.30 88.61% ± 1.38 96.76% ± 0.23 80.93% ± 1.07 84.78% ± 0.49 86.46% ± 0.37 62.07% ± 0.42

KPCAσ=1.0 65.26% ± 0.11 65.32% ± 2.83 78.06% ± 0.22 44.62% ± 0.62 45.95% ± 0.52 46.30% ± 0.37 60.91% ± 0.07
KPCAσ=1.5 65.44% ± 0.18 65.64% ± 2.39 78.48% ± 0.26 44.36% ± 0.62 45.83% ± 0.47 46.24% ± 0.53 61.67% ± 0.09
KPCAσ=2.0 65.97% ± 0.14 65.50% ± 2.59 78.46% ± 0.24 44.95% ± 0.73 46.45% ± 0.47 46.81% ± 0.36 61.69% ± 0.08

EMAP (KPCAσ=1.0) 92.45% ± 0.15 94.72% ± 0.88 98.61% ± 0.13 88.65% ± 0.63 92.67% ± 0.59 94.25% ± 0.42 67.83% ± 0.33
EMAP (KPCAσ=1.5) 94.23% ± 0.35 94.92% ± 1.15 98.81% ± 0.14 88.74% ± 0.64 92.65% ± 0.40 93.96% ± 0.28 67.29% ± 0.62
EMAP (KPCAσ=2.0) 93.96% ± 0.57 95.05% ± 1.09 98.67% ± 0.14 88.25% ± 0.53 92.26% ± 0.61 93.90% ± 0.33 67.76% ± 0.73

proposed methodology using a real multispectral data
set with standard broad bands (as opposed to the other
two data sets, which are obtained from hyperspectral
scenes with narrow spectral bands).

B. Experimental Setup

For the KPCA stage, we used the Gaussian radial basis
function (RBF) kernel: K(xi, xj):= exp(−‖xi − xj‖2/2σ2) ker-
nel, which is widely used in hyperspectral image classification.
Three different values were chosen for parameter σ in order to
study the impact of this parameter on the results. The values
chosen were σ = {1.0, 1.5, 2.0} times the mean value of the
mutual distances between 2000 randomly chosen pixels. The
corresponding KPCA features are referred to as KPCAσ=1.0,
KPCAσ=1.5, and KPCAσ=2.0, respectively.

The EMAPs are built using the area (related to the size
of the regions) and standard deviation (which measures the
homogeneity of the pixels enclosed by the regions) attributes.
The threshold values λ were chosen in the range {50, 500}
with a stepwise increment of 50 for the area attribute. For the
standard deviation, attribute values ranging from 2.5% to 20%
of the mean of the feature with a stepwise increment of 2.5%
were chosen [15]. These values are selected to accommodate
the possible characterization of connected components of the
classes of interest.

Then, a supervised classification process was performed
using both the SVM classifier (with the RBF kernel) and
the RF classifier. The parameters of the SVM were tuned by
using fivefold cross-validation, while RF does not require any
parameter tuning. This is because every individual decision
tree is built to over-fit, which means that no parameters are

required to facilitate the pruning of the trees. Classification was
performed using three different configurations of the training
process in each dataset.

1) For the ROSIS Pavia University data set, we considered:
1) A standard training set widely used in the state-of-
the-art (referred to hereinafter as standard training set);
2) a subset of the entire reference set in Fig. 2(b), where
50 pixels are randomly sampled for each reference class;
and 3) a subset of the entire reference set, where 5% of
the pixels in each class are randomly sampled.

2) For the AVIRIS Indian Pines data, we randomly sampled
5%, 10%, and 15% of the reference data in Fig. 3(b).

3) For the IKONOS Reykjavik data, a subset of the entire
reference set shown in Fig. 4(b) was considered.

KPCA was used to expand the dimensionality of the mul-
tispectral data prior to the construction of the EMAPs. Then,
only the top 20 features resulting from KPCA (which in all
cases comprise more than 99% of the data variance) were used,
and the final obtained EMAPs consisted of 740 features [10
levels of filtering using area attribute resulting in 20 features
and eight levels of filtering for standard deviation attribute
resulting in 16 features for each KPCA component, so 20
KPCA components × (20 area attribute features + 16 standard
deviation attribute features + 1 KPCA component) = 740 total
features].

C. Analysis and Discussion of Results

Table I shows the overall accuracy (in percentage) and
the standard deviations (each reported value of accuracy is
an average of 10 Monte Carlo runs) obtained by the SVM
classifier applied to different feature extraction methods for
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the two considered scenes. Here, we compare the SVM
classification results using the multispectral (or RGB) scenes,
the features resulting from dimensionality expansion of the
multispectral/RGB scenes using KPCA (with different values
for parameter σ in the RBF kernel), and the features resulting
from applying EMAPs to the first 20 features resulting from
KPCA dimensionality expansion of the multispectral data.
Similarly, Table II shows the classification results obtained
by the RF classifier. These results can be compared to those
obtained after applying EMAPs to the original hyperspectral
data in [10], or after applying a composite kernel-based
approach in [16].

An interesting observation from Tables I and II is that
the EMAP built on the multispectral/RGB data generally
provides good results in terms of classification accuracy (even
higher than with the original hyperspectral data in the ROSIS
Pavia and AVIRIS Indian Pines scenes). This indicates the
importance of including spatial information in the analysis. In
turn, as expected the classification accuracies obtained using
the multispectral/RGB data alone are always sensibly lower.
On the other hand, from Tables I and II it can also be seen
that, when the KPCA is applied to the multispectral/RGB
data, the obtained classification accuracies are not significantly
improved. However, the combination of EMAPs and KPCA
produces results that are generally better than those obtained
by the EMAPs alone (with the exception of the SVM classifier
in the AVIRIS Indian Pines data). This indicates that the
extraction of spatial information using EMAPs is better suited
when the contrast between spectral clusters is high. The
combination of EMAPs and KPCA produced better results
(particularly for the RF classifier).

Our experiments generally confirm the observations in [10]
that SVMs may be more sensitive to the Hughes phenomenon
than RFs. While both the SVM and RF classifiers provide
similar results for the ROSIS Pavia University data and for
the IKONOS Reykjavik data, Table I shows that the SVM
provides inferior results in the case of AVIRIS Indian Pines
with limited training samples (particularly when the high di-
mensional combination of EMAPs built on KPCA, resulting in
740 features, is used). In this case, the performance gradually
increases as the size of the training set increases from 5%
to 15%. However, this effect was not observed in the results
of the RF classifier for the AVIRIS Indian Pines dataset, as
shown in Table II.

IV. Conclusion and Future Research

In this letter, we developed a new methodology for spectral–
spatial classification of remotely sensed multispectral images
with limited spectral resolution. Our proposed method first
expanded the dimensionality of multispectral data using kernel
feature extraction, and then included spatial information by
means of morphological characterization of the expanded
set of features. Our experimental results indicated that the
proposed approach is attractive for advanced classification of
data sets with limited spectral resolution. Here, three-band
RGB images were derived from the available hyperspectral
data sets to create multispectral data sets. The classification
accuracies obtained on such data sets were superior to those

provided by EMAPs (built on the multispectral data), and
even to those obtained using the full hyperspectral information
with hundreds of spectral bands. This revealed the importance
of spatial information and indicated that the combination of
KPCA and EMAPs provides a simple yet powerful strategy
to perform spectral–spatial classification of data sets with
limited spectral resolution (in this letter, we considered both
multispectral scenes and also RGB scenes derived from real
hyperspectral data sets). In our future work, we plan to use
higher level strategies to derive spatial features such as object-
based image analysis and knowledge-based methods.
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