666 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 3, MARCH 2014

Parallel Hyperspectral Unmixing on GPUs

José M. P. Nascimento, José M. Bioucas-Dias, Member, IEEE, José M. Rodriguez Alves,
Vitor Silva, and Antonio Plaza, Senior Member, IEEE

Abstract—This letter presents a new parallel method for hy-
perspectral unmixing composed by the efficient combination of
two popular methods: vertex component analysis (VCA) and
sparse unmixing by variable splitting and augmented Lagrangian
(SUNSAL). First, VCA extracts the endmember signatures, and
then, SUNSAL is used to estimate the abundance fractions. Both
techniques are highly parallelizable, which significantly reduces
the computing time. A design for the commodity graphics pro-
cessing units of the two methods is presented and evaluated. Ex-
perimental results obtained for simulated and real hyperspectral
data sets reveal speedups up to 100 times, which grants real-
time response required by many remotely sensed hyperspectral
applications.

Index Terms—Graphics processing unit (GPU), parallel meth-
ods, sparse unmixing by variable splitting and augmented
Lagrangian (SUNSAL), unsupervised hyperspectral unmixing,
vertex component analysis (VCA).

I. INTRODUCTION

EMOTE hyperspectral sensors collect hundreds of images

within their ground instantaneous field of view corre-
sponding to nearly contiguous spectral channels of high spec-
tral resolution [1]. This technology provides enough spectral
resolution for material identification, facilitating an enormous
number of applications in the fields of military surveillance,
target detection, environmental monitoring, detection of oil
spills and other types of chemical contamination, biological
hazards prevention, and food safety [1], many of which require
real-time or near-real-time response [2].

Due to the generally low spatial resolution provided by
these devices and the natural composition of the terrestrial
surface, each pixel is generally a mixture of several spectrally
distinct materials (also called endmembers) [1], [3]. Hyperspec-
tral unmixing is a source separation problem which amounts
to estimating the number of endmembers, their spectral

Manuscript received February 25, 2013; revised June 24, 2013; accepted
July 14, 2013. This work was supported in part by the Instituto de Telecomuni-
cagdes and in part by the Fundacédo para a Ciéncia e Tecnologia under Project
PEst-OE/EEI/LA0008/2013.

J. M. P. Nascimento is with the Instituto de Telecomunicagdes, 1049-001
Lisbon, Portugal and also with the Instituto Superior de Engenharia de Lisboa,
1959-007 Lisbon, Portugal (e-mail: zen @isel.pt).

J. M. Bioucas-Dias is with the Instituto de Telecomunicacdes, 1049-001
Lisbon, Portugal and also with the Instituto Superior Técnico, Technical
University of Lisbon, 2744-016 Lisbon, Portugal (e-mail: bioucas @Ix.it.pt).

J. M. Rodriguez Alves is with the Instituto de Telecomunicagdes, 1049-001
Lisbon, Portugal (e-mail: josdumper @gmail.com).

V. Silva is with the Institute of Telecommunications, Departamento
de Engenharia Electrotécnica e de Computadores, Universidade de Coimbra
3030-290 Coimbra, Portugal (e-mail: vitor@co.it.pt).

A. Plaza is with the Hyperspectral Computing Laboratory, University of
Extremadura, 06006 Céceres, Spain (e-mail: aplaza@unex.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2013.2274328

signatures, and their abundance fractions (i.e., the percentage
of each endmember) [1].

Considering the linear mixture model, each pixel denoted by
y € R (L is the number of bands) is given by y = Ms + w,
where M = [m;, my,...,m,] is a full-rank L x p mixing
matrix (m; denotes the jth endmember signature), p is the
number of endmembers present in the covered area (with p <
L),s = [s1, 82,...,5,| T is the abundance vector containing the
fractions of each endmember, and w is the additive noise vector
(notation ()" stands for vector transposed).

To fix the notation, let Y = [y1,...,yxn]| € REXY denote
a matrix holding the observed spectral vectors, S = [sy, ...,
sn| € RPN a matrix holding the respective abundance frac-
tions, and W = [wy, ..., wy]| € RV a matrix accounting
for additive noise. Therefore, the observed data set is given by

Y = MS +W. 1

Due to the nature of the acquisition process, at a given pixel,
abundance fractions sum to 1 and are nonnegative (the so-
called abundance sum constraint and abundance nonnegativity
constraint). This abundance fraction dependency prohibits the
use of canonical source separation methods for hyperspectral
unmixing [3]. However, considering these constraints, abun-
dance fractions are in the following p — 1 probability simplex:

{SerRN:8-0,1,8=1,})

where S = Omeans s;; > Ofori=1,...,pandj =1,..., N,
and 1, and 1 respectively denoteal x pandal x NN column
vector filled with ones.

Considering that the columns of M are affinely independent,
the observed spectral vectors for a given scene belong to a
p — 1 simplex in R whose vertices correspond to the endmem-
bers. This property has been used in recent years by several
approaches to perform hyperspectral unmixing [1]. Among
these methods, also called geometrical-based approaches, there
are some efficient algorithms, from the computational point
of view, that assume the presence of pure pixels in the data
set, meaning there is at least one spectral vector on each
vertex of the data simplex [1], [4]. Some popular algorithms
taking this assumption are the following: the vertex component
analysis (VCA), [5], the automated morphological endmember
extraction [6], the pixel purity index, [7], the N-FINDR [8],
the alternating volume maximization, the successive volume
maximization (SVMAX) [9], and the robust and recursive
nonnegative matrix factorization (RRNMF) [10]. Usually, these
methods are followed by a fully constrained least square
(FCLS) estimation or by a maximum likelihood estimation of
the abundance fractions to complete the unmixing procedure
[11]. Recently, a method called spectral unmixing by splitting
and augmented Lagrangian (SUNSAL) [12] has been proposed
to cope with the abundance fraction estimation. SUNSAL is

1545-598X © 2013 IEEE

NASCIMENTO et al.: PARALLEL HYPERSPECTRAL UNMIXING ON GPUs

CPU GPU
; Block Block
anfo_l ___ | o
Ty —| [1Block, 1 Block IBI°°E| ARk dosfon bttt -4 TSR
T 100 1 10 ;1 20, |I | 1 |I | :
el paa e I Shared Memory 1 Shared Memory
|B10cl\(: Block | |Block| i | :
101 n L1 g1 21 | 1| Local Memory | | Local Memory | | 1| Local Memory | Local Memory l
=== 1
N . 1 1
S :- [Registers | , !
= 1
emel #D|—| [iBlock; ;Block < n I I : !
100 11 Lo ¢ [N« : r==—====- | f—=—==-=== 0
F= =1 r= = N 1 | !
|B10€k: |Block: N B %Thread ! \ ;Thread : !
ol & 11 | N T o) i
e e ~ ST AR |
{Block; {Block [
102 112
| Constant Memory
| Texture Memory
Global Memory

Fig. 1.

an instance on the alternating direction method of multipliers
(ADMM) [13], which decomposes a difficult problem into a
sequence of simpler ones, resulting in a very fast method when
compared with algorithm FCLS [11].

However, due to the amount of hyperspectral data together
with the real-time requirements of several applications, high-
performance computing is needed to accelerate hyperspectral
imaging algorithms [2]. In recent years, parallel computing
techniques have been widely used to accelerate hyperspec-
tral unmixing methods, namely, on graphics processing units
(GPUs), due to their extremely high floating-point processing
performance, huge memory bandwidth, compact size, and com-
paratively low cost [14], [15].

This letter proposes a combination of VCA and SUNSAL
algorithms to build a very efficient parallel hyperspectral un-
mixing method. VCA extracts the endmember signatures, and
SUNSAL estimates the abundance fractions. Both, VCA and
SUNSAL are highly parallelizable. Herein, a parallel solution,
using the multicore and multiplatform portable OpenCL pro-
gramming language, for GPUs is presented. The remainder of
this letter is organized as follows. Section II briefly describes
the VCA and SUNSAL methods. Section III describes their
GPU implementation. Section IV evaluates the proposed paral-
lel implementations in terms of computational complexity and
speedup. Section V outlines the main conclusions of the letter
with some remarks and future research lines.

II. UNMIXING METHOD
A. VCA Method

VCA is an unsupervised method for unmixing hyperspectral
linear mixtures and is based on the geometry of convex sets.
It exploits the fact that the endmembers are the vertices of
the simplex. The VCA algorithm iteratively projects data onto
a direction orthogonal to the subspace spanned by the end-
members already determined. The new endmember signature
corresponds to the extreme of the projection. The algorithm
iterates until all endmembers are exhausted. A similar structure
to VCA can be found in the SVMAX and RRNMF methods.

Typical NVidia GPU architecture, computation, and data transfer flow from/to CPU.

Algorithm 1 shows the main steps of the VCA, where symbol
M denotes the estimated mixing matrix and [M]. ; stands

for the jth column of M. The red and yellow lines denote
operations to be computed in CPU and GPU, respectively.

B. SUNSAL Method

The endmember’s abundance estimation problem can be
posed in the framework of convex optimization. Under this
context, the ADMM [13] is a powerful algorithm that can be
parallelized. The SUNSAL method is an ADMM-based ap-
proach to estimating the abundance fractions under sum one and
nonnegativity constraints. Assuming that matrix M is obtained
by the VCA algorithm, the abundance fraction estimation can
be defined as

1
min ~||Y — MS||%
s 2

subjectto: S = 0,1;S =1, 3)

where notation ||(-)|| stands for the Frobenius norm. The
aforementioned formulation is a particular case of the con-
strained {2 — ¢; problems solved by SUNSAL corresponding
to the absence of the ¢; term. The pseudocode is presented in
Algorithm 2.

III. GPU IMPLEMENTATIONS

The typical GPU architecture is organized into an array of
highly threaded streaming multiprocessors (SMs), where each
multiprocessor is characterized by a single instruction multiple
data architecture, i.e., in each clock cycle, each processor
executes the same instruction while operating on multiple data
streams. Each SM has a number of streaming processors that
share a control logic and instruction cache and have access
to a local shared memory and to local cache memories in the
multiprocessor, while the multiprocessors have access to the
global GPU (device) memory. GPUs can be abstracted in terms
of a stream model, under which all data sets are represented as
streams. Fig. 1 presents a typical architecture and the data flow
communication between CPU and GPU.

668 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 3, MARCH 2014

TABLE 1
VCA AND SUNSAL PROCESSING TIME (1073 s) FOR AN INTEL CORE
i7-2600 CPU AS A FUNCTION OF THE NUMBER OF ENDMEMBERS
(p) AND OF THE NUMBER OF PIXELS(N)

N=1x10° N =5x10°
operation p =10 p =20 p =10 p =20
< | f (lines 3-5) 0.09 0.57 0.09 0.57
O | v (line 6) 535.16 445.68 2 677.62 | 2193.38
> | k (lines 7) 2.36 4.72 12.40 24.82
A (line 2) 2 394.23 4 868.62 || 10 509.91 | 21 160.15
B (line 3) 0.01 0.08 0.01 0.08
= | ¢ (line 4) ~ 0.00 ~ 0.00 =~ 0.00 ~ 0.00
< | G (line 5) ~ 0.00 0.02 ~ 0.00 0.02
» | R (line 8) 476.00 1 601.21 2 903.37 | 9 040.34
Z | S (line 9) 2 400.48 | 15560.41 || 14 486.93 | 88 144.44
2 | V (lines 10) 169.72 572.17 103420 | 3210.11
»r | U (lines 11) 794.46 2 689.25 4 741.11 | 15 580.76
D (lines 12) 337.27 1127.14 2 044.35 | 6 414.02

The algorithms are constructed by chaining the so-called
kernels which operate on entire streams and are executed by
a multiprocessor, taking one or more streams as inputs and
producing one or more streams as outputs.

The GPU architecture is organized to form a grid of blocks,
where each block is composed by a group of threads that share
data efficiently through the shared local memory and synchro-
nize their execution for coordinating accesses to memory. There
are different levels of memory in the GPU for the thread, block,
and grid concepts. While the number of threads that can run
in a single block is limited, the number of threads that can be
concurrently executed is much larger since several blocks can
be executed in parallel [16].

To implement VCA and SUNSAL on GPU, these methods
were analyzed in order to determine the most consuming parts
that can be parallelized. Table I presents the processing time of
each step of both algorithms for a CPU (Intel core i7-2600) as
a function of the number of endmembers (p = {10,20}) and
the number of pixels (N = {10°,5 x 10°}). It should be noted
that these processing times only depend on the number of pixels
(N) and the number of endmembers (p); hence, these can be
generalized for any hyperspectral data set. It is clear that the
projection of all pixels onto direction f inside the VCA loop
(line 6), the calculation of A in SUNSAL (line 2), and the
operations inside the SUNSAL loop (lines 8—12) are the most
consuming parts of the method and they grow with p and N.

Assuming that VCA is applied after the projection of the data
set onto the signal subspace [17], the computational complexity
of VCA is 2p? N floating-point operations, where the projection
of each pixel of Y onto direction f}, can be done independently
from the remaining pixels; thus, it can be parallelized. After
the data set is transferred to the global memory of the GPU,
using 4pN B on each iteration, the generation of the direction
f. is performed on the CPU and transferred to the constant
memory of the device (4p B). Then, a first kernel initially puts
into execution as many threads as the number of pixel vectors
of the image (V) divided into blocks of 32 threads, so that each
thread is responsible for computing the dot product of f,;r by the
pixel vector Y, i.e., one element of vector v. Then, the second
kernel determines the index of the maximum absolute value of
vector v, indicating the position of the endmember signature on
the data set. This task is performed using a binary reduction op-
eration. These kernels correspond to the instructions in lines 6
and 7 of Algorithm 1 (yellow lines; Fig. 2). Fig. 4 presents an

I: 1/\\/1 =0p;
2: for i :==1to p do
3 V := orth (ﬁ) {Orthogonal vectors that spans M

range }
4: P=(1-VvVvh
5 f := generate a vector from span(P)

6: v = fTY;

7: k := argmax;—1 N |V
s (Ml = Y]
9: end for
Fig. 2. Algorithm 1: VCA. Red and yellow lines denote operations to be

computed in CPU and GPU, respectively.

1: choose > 0, Ug, and Dy.
2 A =MTY
3 Bi= (MTM+4ul) "

e

c:=B1,(17BL,) "
G:=B-c1lB
k=0
repeat
R = A+ (U + Dg)
Sk+1 = GR+c1%
10 V= Sps — Dy
11: Uy = max{0, V3}
12: Dit1 := Di — (Sg41 — Ugya)
13 k=k+1

14: until stopping criterion is satisfied
15: S = Sk

% g

0

Fig. 3. Algorithm 2: SUNSAL. Red and yellow lines denote operations to be
computed in CPU and GPU, respectively.

illustrative example of a single thread functioning. It is worth
noting that to fully optimize the parallel algorithm, the size of
v must be of the power of two (with zero padding if necessary).

The proposed implementation of SUNSAL follows the same
rule, i.e., the most time-consuming operations are developed in
a parallel fashion to be processed in the GPU. The operations
outside the loop, namely, the inversion of the p X p matrix in
line 3 of Algorithm 2 (see Fig. 3) are implemented in the CPU
since it has a low computational cost (red lines in Algorithm 2).
Inside the SUNSAL loop, the first kernel computes matrix R
(see line 8 of Algorithm 2). This kernel launches as many
threads as the number of elements present in R, where each
thread computes an element of A + (U, 4+ Dy,). The result is
stored in the global memory. The second kernel computes the
abundance estimates S on each iteration (line 9 of Algorithm 2)
by first computing the product of matrices G and R and then
adding matrix c1%. In order to minimize the number of global
memory accesses, matrix R is partitioned into subblocks of
32 x 32 elements, which is the size of the block, and transferred
to the shared memory. Each block uses a total of 8 KB of the

NASCIMENTO et al.: PARALLEL HYPERSPECTRAL UNMIXING ON GPUs

Global Matrix Y
Memory [p x N]
Constant Shared Biock:0 % Block{N/33]
Memory Memory 2™ __ 1t __ - B
Vector £ [I:I b x5l
[1 = p] | -
2o - AET DGR DO s
Vector:/\~ /
[1 XN] [TI1T
each thread compute
v=fTxy
(@)
index: 1 2 3 4 N1 N
Vector v 6121910 215
[1xN] L
index 3 is returned
(b)
Fig. 4. Tllustration of parallel VCA in the GPU. (a) Thread for computing v =

fTY and (b) thread for finding the index of the maximum absolute value of v.

Global
Memory

Block{N/32]

Fig. 5. [Illustration of parallel SUNSAL in the GPU. Thread for computing
one element of RG.

shared memory. Fig. 5 illustrates this procedure, where one
can see that each thread is responsible for computing each
element of S. The kernels for updating V and D follow the
same strategy used on the first kernel, whereas U is updated
by a kernel which analyzes if each element of V is negative. It
should be noted that the matrices are stored in global memory
which occupies around 28pN B.

IV. PERFORMANCE EVALUATION

In this section, we apply the sequential and parallel versions
of the unmixing method based on VCA and SUNSAL for both
the simulated data and the real data set of Cuprite collected by
the AVIRIS sensor.

669

TABLE II
CHARACTERISTICS OF NVIDIA GPU CARDS USED IN THE TESTS
GTX 590 | GTX 680 | C2050
Cores 1024 1536 448
Clock (GHz) 1215 1006 1150
Memory (GB) 3.0 2.0 3.0
Bandwidth (GB/s) 327.7 192.2 144
TABLE III

PROCESSING TIME AND DATA TRANSFER (IN SECONDS) FOR AN INTEL
CORE i7-2600 CPU AND FOR A GTX590 GPU CARD
(p =30 AND N = 10°)

CPU GTX 590
RAM — Global Mem. - 0.014
VCA: f (lines 3 - 5) 0.002

VCA loop (line 6 - 7) 1.479 0.008
RAM < Global Mem. - 0.001
SUNSAL: compute A (line 2) 7.230 0.423

SUNSAL (lines 3 - 5) 0.036

RAM — Global Mem. - 0.221
SUNSAL loop (lines 8 - 12) 57.39 0.624
RAM < Global Mem. - 0.028
Total Time 65.389 1.607
Speedup (CPU time / GTX590 time) - 48.12

In order to evaluate the performance of the proposed method
in terms of processing time, the sequential version was im-
plemented in C programming language running on a com-
puter platform equipped with a quad-core Intel i7-2600 CPU,
3.4-GHz clock speed, 16-GB memory, and 1 and 8 MB of L2
and L3 cache memory, respectively. The parallel version was
implemented in OpenCL programming language for three dif-
ferent GPU cards from NVidia. Table II presents a summary of
the characteristics of the three cards. The following subsections
will present the performance results in terms of acceleration
factors or speedups.

A. Evaluation With Simulated Data

Several synthetic scenes are created with different numbers
of pixels and endmembers. Each pixel is generated according
to (1), where spectral signatures are selected from the USGS
digital spectral library containing 224 spectral bands covering
wavelengths from 0.38 to 2.5 ym with a spectral resolution
of 10 nm. The abundance fractions are generated according
to a Dirichlet distribution which enforces positivity and full
additivity constraints (see [18] for details).

Table III illustrates the data transfer from/to device time,
processing time, and speedup factors for a data set composed
of 105 pixels with 30 endmembers (p = 30). The processing
time on the GPU is lower than the CPU time due to the parallel
processing implementation.

Fig. 6 shows the speedup of the parallel version (with regard
to the sequential version) for three different GPU cards as a
function of the number of endmembers and for N =5 x 105,
For illustration purposes, we also present the results for the
method running on all CPU cores. Herein, the method im-
plemented in OpenCL is compiled for the quad-core Intel
processor. The speedup of GTX680 is higher than 100, for
p = 30, which is quite remarkable taking into account the fact
that the sequential version has been carefully optimized. As
expected, the speedup grows with the number of endmembers.

670 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 3, MARCH 2014

120 JL
100 t =8~ CPU 4 cores -
A GTX590 o
80} |- GTX680 o d
=§= C2050 >

Speedup

5 10 15 20 25 30
Number of endmembers

Fig. 6. Speedup of parallel version as a function of the number of endmembers
(p) for N = 5 x 10°.

TABLE 1V
PROCESSING TIME (IN SECONDS) FOR THE CUPRITE DATA SET

Total time | VCA | SUNSAL | Speedup
CPU 98.270 | 0.400 97.870 -
CPU (4 cores) 19.537 | 0.296 19.241 5.029
GTX590 1.169 | 0.021 1.148 84.06
GTX680 0.975 | 0.021 0.954 100.79
Tesla C2050 1.367 | 0.022 1.345 71.88

Note that the GTX680 GPU card, which has more cores, has
the best performance, and the quad-core CPU has a speedup
smaller than 8, achieving always the worst result.

B. Evaluation With Real Data

In this section, the proposed method is applied to real hyper-
spectral data collected by the AVIRIS sensor. A subset of the
Cuprite data set containing 350 x 350 pixels with 187 spectral
bands (noisy and water absorption bands were removed) is con-
sidered. This site has been extensively used for the evaluation of
spectral unmixing applications, where the presence of 14 pure
materials has been determined. The geological properties of this
site have been extensively reported [19].

Table IV shows the processing times (in seconds) for the
CPU sequential versions of VCA and SUNSAL and also for
the parallel versions using three different GPUs. One can note
that the best speedup is higher than 100 times, achieved on the
GTX680 card. These results are in agreement with the ones for
the simulated scenarios.

Finally, it is worth mentioning that as the AVIRIS sensor
is able to collect 512 hyperspectral pixels in 8.3 ms [20],
a 350 x 350 subimage takes nearly 2 s. Consequently, the
proposed parallel method using GPUs is suitable for real-time
hyperspectral unmixing systems.

V. CONCLUSION

In this letter, a new parallel implementation of VCA and
SUNSAL on GPUs has been proposed. The significant speedup
reported in the experiments will bridge the gap toward real-
time spectral unmixing of hyperspectral data sets, which is
a highly sought-after requirement for many remote sensing
applications. The developed methods were designed using the
multicore/multiplatform OpenCL programming language in
order to easily migrate the application to new and powerful
hardware platforms, such as multi-GPU systems, clusters of
GPUs, and field-programmable gate array board systems.

ACKNOWLEDGMENT

Part of this work was conducted within the Labex Centre In-
ternational de Mathématiques et Informatique de Toulouse dur-
ing the visits of J. Bioucas-Dias at the University of Toulouse.

REFERENCES

[1] J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and

J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical,

and sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth

Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.

A. Plaza, J. Plaza, A. Paz, and S. Sanchez, “Parallel hyperspectral im-

age and signal processing,” IEEE Signal Process. Mag., vol. 28, no. 3,

pp- 119-126, May 2011.

[3] J. M. P. Nascimento and J. M. Bioucas-Dias, “Does independent compo-
nent analysis play a role in unmixing hyperspectral data?” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.

[4] N. Keshava, J. Kerekes, D. Manolakis, and G. Shaw, “An algo-
rithm taxonomy for hyperspectral unmixing,” in Proc. SPIE AeroSense
Conf. Algorithms Multispectr. Hyperspectr. Imagery VI, 2000, vol. 4049,
pp. 42-63.

[5] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analy-

sis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.

Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.

A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral endmember

extraction by multidimensional morphological operations,” IEEE Trans.

Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002.

[7] J. Boardman, “Automating spectral unmixing of AVIRIS data using con-
vex geometry concepts,” in Summaries 4th Annu. JPL Airborne Geosci.
Workshop, JPL Pub. 93-26, AVIRIS Workshop., 1993, vol. 1, pp. 11-14.

[8] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” in Proc. SPIE Conf.
Imaging Spectr. V, 1999, vol. 3753, pp. 266-275.

[9] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex
volume maximization framework for hyperspectral endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177-4193,
Nov. 2011.

[10] N. Gillis and S. Vavasis, Fast and Robust Recursive Algorithms
for Separable Nonnegative Matrix Factorization 2012, arXiv preprint
arXiv:1208.1237.

[11] D. Heinz and C.-1. Chang, “Fully constrained least squares linear spectral
mixture analysis method for material quantification in hyperspectral im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545,
Mar. 2001.

[12] J. Bioucas-Dias and M. Figueiredo, “Alternating direction algorithms for
constrained sparse regression: Application to hyperspectral unmixing,” in
Proc. 2nd WHISPERS, 2010, pp. 1-4.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
Jan. 2011.

[14] A. Barberis, G. Danese, F. Leporati, A. Plaza, and E. Torti, “Real-
time implementation of the vertex component analysis algorithm on
GPUs,” IEEE Geosci. Remote Sensing Lett., vol. 10, no. 2, pp. 251-255,
Mar. 2013.

[15] S. Sanchez, G. Martin, A. Plaza, and C.-I. Chang, “GPU implementation
of fully constrained linear spectral unmixing for remotely sensed hyper-
spectral data exploitation,” in Proc. SPIE 7810, Satellite Data Compres-
sion, Commun. Process. VI, 2010, vol. 7810, pp. 78100G-11-78100G-11.

[16] T. Han and T. Abdelrahman, “hICUDA: High-level GPGPU program-
ming,” [EEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 78-90,
Jan. 2011.

[17] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral sub-
space identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8,
pp. 2435-2445, Aug. 2008.

[18] J. M. P. Nascimento and J. M. Bioucas-Dias, “Hyperspectral unmixing
based on mixtures of Dirichlet components,” IEEE Trans. Geosci. Remote
Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012.

[19] G. Swayze, R. Clark, S. Sutley, and A. Gallagher, “Ground-truthing
AVIRIS mineral mapping at Cuprite, Nevada,” in Summaries 3rd Annu.
JPL Airborne Geosci. Workshop, 1992, pp. 47-49.

[20] S. Lopez, P. Horstrand, G. Callico, J. Lopez, and R. Sarmiento, “A novel
architecture for hyperspectral endmember extraction by means of the
Modified Vertex Component Analysis (MVCA) algorithm,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 6, pp. 1837-1848,
Dec. 2012.

[2

—

[6

=

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

