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Abstract—Anomaly detection is an active topic in hyperspectral
imaging, with many practical applications. Reed-Xiaoli detector
(RXD), a widely used method for anomaly detection, uses the
covariance matrix and mean vector to represent background
signals, assuming that the background information adjusts to a
multivariate normal distribution. However, in general, real images
present very complex backgrounds. As a result, in many situations,
the background information cannot be properly modeled. An
important reason is that that background samples often contain
also anomalous pixels and noise, which lead to a high false alarm
rate. Therefore, the characterization of the background is essential
for successful anomaly detection. In this paper, we develop two
novel approaches: weighted-RXD (W-RXD) and linear filter-
based RXD (LF-RXD) aimed at improving background in
RXD-based anomaly detection. By reducing the weight of the
anomalous pixels or noise signals and increasing the weight of
the background samples, W-RXD can provide better estimations
of the background information. In turn, LF-RXD uses the proba-
bility of each pixel as background to filter wrong anomalous or
noisy instances. Our experimental results, intended to analyze the
performance of the newly developed anomaly detectors, indicate
that the proposed approaches achieve good performance when
compared with other classic approaches for anomaly detection in
the literature.

Index Terms—Anomaly detection, covariance matrix estimation,
hyperspectral imagery, linear filter (LF), linear filter-based RXD
(LF-RXD), RXD, weighted-RXD (W-RXD).

I. INTRODUCTION

T ARGET and anomaly detection play a significant role in
hyperspectral imaging applications. Unlike conventional

detection methods, which obtain information from high spatial
resolution images, hyperspectral imaging allows uncovering
targets from the background by taking advantage of the very
fine spectral resolution provided by this kind of data. Based on
the availability of a priori target information, we can roughly
categorize hyperspectral target detectionmethods into threemain
classes: 1) anomaly detectionwithout any prior information (e.g.,
known target spectra [1], [2]); 2) signature matching-based
detection for problems in which the target is defined by a single
reference spectrum [3], [4]; and 3) subspace-matched detection
for problems in which a target is represented by a set of basis
vectors which account for target signal variation [5], [6]. In this
work, we specifically focus on the problemof anomaly detection.

Anomalies are targets or features of interest that have twomain
characteristics [1]. First and foremost, their spectral signatures
are different to those associated to local background pixels.
Furthermore, anomalous targets occur with low probabilities.
Since anomaly detection has many practical applications,
various algorithms have been developed for this purpose. One
of the most widely used methods is the Reed-Xiaoli detector
(RXD) [7]. This method assumes that the background follows a
multivariate normal distribution. Based on this assumption,
RXD uses the probability density function of a multivariate
normal distribution in order to measure the probability of a pixel
under test (PUT) to be part of the background. Inmany scenarios,
however, this assumption does not hold. One reason is that the
local background may be too complicated to be described by a
multivariate normal distribution. Besides, RXD may not be
efficient for removing anomalous signatures when estimating
background information using the covariance matrix and the
mean vector as a form of background representation. Hence, the
background information may be contaminated by other anoma-
lous and noisy signals. This causes the fact that some noise pixels
or background pixels may be wrongly detected as anomalies.
Other anomaly detection algorithms such as the random-
selection-based anomaly detector (RSAD) and the blocked
adaptive computationally efficient outlier nominator (BACON)
method can prevent the contamination of anomalous signatures
[8], [9] by removing anomalous signatures when estimating
background information.
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In this paper, we address this issue and further develop two
variants of RXD, called weighted-RXD (W-RXD) and linear
filter-based RXD (LF-RXD), intended to provide a more accu-
rate estimation of the covariance matrix and mean vector of the
background. The main goal of these methods is to remove the
anomalous and noisy signals from the background information.
Specifically, W-RXD assigns low weights to the samples with
high probability to be declared as anomalies, and high weights to
the samples with high probability to be declared as part of the
background. Resulting from this process, we obtain a better
balance between the anomalies and background signals. On the
other hand, LF-RXD performs filtering of anomalies and noise
in order to refine the estimation of the covariance matrix of the
background, thus providing a more realistic characterization of
the anomalies.

The remainder of paper is organized as follows. Section II
presents an overview of the classic RXD algorithm and some
of its variations. Section III introduces the newly developed
methods for improving background statistics estimation.
Section IV conducts a detailed evaluation of the discussed
methods using synthetic data. Section V performs experiments
using real hyperspectral data sets. Section VI draws some
conclusions and provides hints at plausible future research
lines.

II. THE RXD ALGORITHM AND ITS VARIATIONS

RXD is one of the most popular methods for hyperspectral
anomaly detection. Let be the target signal and be the
background signal. We intend to solve the following detection
problem:

where is a sample pixel vector, is the target signal, and is the
background clutter, which follows a normal distribution with
mean vector μ, and covariance matrix , i.e., μ .
Therefore, we have μ and μ .
With these definitions in mind, we obtain

μ μ

where is the number of bands in the original hyperspectral
image. Since an anomalous pixel is expected to be signifi-
cantly different from the background, should be very
small for an anomalous pixel. Therefore, for a certain back-

ground set, as is fixed, μ μ should

be larger for an anomalous pixel than for a background pixel.
Based on this observation, RXD identifies anomalies using the
following expression:

μ μ

There are several ways to obtain background samples for
estimating andμ. The global RXD (GRXD) and the local RXD

(LRXD) use different strategies. Specifically, GRXD uses the
following expression:

μ μ

where μ and are the mean vector and the covariance matrix
of all pixels in the image. The LRXD, in turn, uses a local
neighborhood around the PUT in order to perform the detection.
Let us assume that μ denotes the mean value of the eight-pixel
neighborhood around the PUT. In this case, the LRXD performs
the detection using the following expression:

μ μ

Here, it should be noted that LRXD generally uses as the
covariancematrix instead of . This is because in hyperspectral
data, the number of spectral bands is higher than 8 and, in this
case, is a singular matrix and cannot be inverted [10].

The RXD, as a constant false-alarm rate (CFAR) adaptive
anomaly detector, is derived from the generalized-likelihood
ratio test [13]. However, RXD has two main limitations. First
and foremost, while using local or global information to estimate
background information, the samplesmight contain anomalies or
noise. On the one hand, if the background statistics are estimated
with anomalous samples, these are supposed to be far away from
background samples on spectral space. These anomalies may be
missed as they have a small RXD value. On the other hand, if the
background statistics are estimated with noise samples (which
can be considered outliers), the RXD value of the background
will be higher. In both cases, the difference (in terms of RXD
value) between anomalies and background is reduced [8].
Another problem is related to the normal distribution assumption
as, in most cases, the normal distribution does not hold in real
hyperspectral data [11].

Recently, several methods have been proposed to improve the
estimation of background statistics for enhanced anomaly detec-
tion. In [12], an iterativemethod called locally adaptable iterative
RX (LAIRX) is developed. It refines and μ by removing
anomalous pixels from the background in order to improve the
performance of the detector. However, the empirical threshold
value needed for this purpose is very crucial for the performance
and it is defined using a manual procedure. In [13], a kernel RX
(KRX) method is presented, which maps the data into a higher
dimensional feature space. It is shown that, in such kernel space,
the data tend to follow a multivariate normal distribution.
However, KRX has high computational complexity and can be
affected by target interference. In [14], a dual-window approach
was explored in order tomodel the local background around each
PUT and reduce interference. However, this approach generally
requires prior knowledge about the size of anomalies, whichmay
not be available. In [15], an orthogonal subspace projection
(OSP) approach for anomaly detection was proposed. After the
OSP projection, the data were shown to be closer to a normal
distribution. However, OSP can be quite sensitive to noise.More
recently, a segment-based RXD (SRXD) has been developed
which models the background using the mean vector and the
covariance matrix of the cluster to which a given pixel belongs
to [16]. A general observation is that a better estimation of
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the covariance matrix generally improves the performance.
However, in order to successfully apply the SRXD, it is required
that the number of pixels in the cluster is greater or equal than the
number of spectral bands in the hyperspectral data, so that the
inverse of the covariance matrix can be calculated. This assump-
tion may not hold in certain scenarios, particularly for small
clusters. In the following section, we describe two new strategies
to improve the characterization of background statistics for
enhanced anomaly detection in hyperspectral data.

III. W-RXD AND LF-RXD

A. W-RXD

In order to reduce the impact of anomalous/noisy background
pixels and improve the estimation of covariancematrix,W-RXD
assigns different weights to the background samples. In the
conventional RXD, when we calculate and μ, the weight of
each pixel is the same, i.e., , where is the number of
considered samples. In order to retain background signal and
reduce non-background signal, the W-RXD assigns those
pixels that are close to the background a higher weight than
the weight assigned to pixels that are far away from the
background. As shown in (3), is the probability of
the PUT being part of the background. Because the spectral
signatures of anomalies that can be detected by RXD are
supposed to be different to the spectral signatures of back-
ground samples [1], the anomaly has a small probability to be
labeled as a background sample. This means that the weights
assigned to anomalies are lower than the weights assigned to
background samples. On the other hand, noisy pixels can be
detected by RXD as outliers because they are similar to
anomalies, with spectral signature which are very different
with regards to the spectral signatures of background samples.
As a result, the value of (3) for noisy pixels is small, which
also indicates that noisy pixels have a small weight. Therefore,
the background statistics estimation will contain few anoma-
lous or noisy signatures when is used to properly
weight the background covariance matrix and mean vector. In
order to validate the use of as a group of probabilities,
we first normalize as follows:

After normalization, can be used to weight the mean
vector μ and the covariance matrix as follows:

μ

and

μ μ

where denotes the th pixel. After obtaining the new andμ,
the W-RXD can be simply defined as follows:

μ μ

Fig. 1 illustrates the difference between the weights assigned
by the conventional RXD and the ones considered by the
proposed W-RXD. As it can be observed from Fig. 1, the
proposedW-RXD assigns different weights to pixels according
to their spectral distance from the background cluster. In the
spectral domain, if the pixel is far away from the background, it
will receive a small weight in the background estimation. In
turn, RXD assigns the same weight to all pixels. With different
weights, the anomalous signals and noise are reduced in the
process of estimating the background, and the background is
closer to a multivariate normal distribution.

B. LF-RXD

LFs have been widely used in signal processing and achieved
good performance in many practical applications [17]. Based on
linear filtering concepts, LF-RXD uses as a filter to
retain background signals as follows:

Notice that this step is intended to make sure that has the
same scale as the original data, such that the result of LF-RXD

Fig. 1. (a) Weight assignment to samples by RXD and (b) weight assignment to
samples by W-RXD.
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is chi-square distributed based on the Gaussian assumption. As
a result, the mean vector and the covariance matrix of the
background can be simply estimated as follows:

μ

μ μ

μ μ

Our introspection is that, after the linear filtering process,
and μ represent more accurately the background information.
This is because LF-RXD assigns the sample a scale value, which
is decided by its probability of being part of the background. If
the sample is far away from the background, a small scale value
will be used to compress its signal in and μ. On the contrary, a
large scale value is used to magnify its signal as the sample
contains abundant background information. The background
samples estimated by LF-RXD are more different with regards
to anomalies; therefore the anomalies are more likely to be
actually outlier pixels in the original hyperspectral image. An
experimental evaluation of the two aforementioned algorithms
using synthetic data follows.

IV. SYNTHETIC DATA EXPERIMENTS

In this section, we use synthetic data to evaluate the newly
developed methods. For this purpose, we use a target implanta-
tion strategy that has been successfully used for performance
evaluation in previous developments [19]–[21]. The results are
evaluated using receiver operating characteristic (ROC) curves
[22] and the area under such curves (AUC) [20], which are
common metrics for detection evaluation. In the following, we
describe the procedure adopted for the generation of the synthetic
data used in our experiments, as well as the evaluation results
obtained.

A. Synthetic Data

The synthetic data were generated using the target detection
blind-test scenes provided by Rochester Institute of Technology
(RIT) [18]. These data were collected by a HyMap instrument
over Cook City in Montana, on July 2006. The selected portion
(illustrated in Fig. 2) has pixels in size and 126
spectral bands. The spatial resolution of the data is quite fine,
with a pixel size of approximately 3 m.

In this work, we have decided to use a target implantation
method to simulate a set of anomalous targets in the considered
hyperspectral data set over Cook City in Montana. The advan-
tage of using a target implantationmethod is that we can evaluate
the performance of the detectors in a totally controlled environ-
ment [19]. Our method generates the anomalous targets using a
synthetic spectral signature with a specified abundance fraction
from a desired target , contaminated by a background signa-

ture , in the spatial position in which the target of interest is
simulated [20], [21]. This means that the implanted targets are all

sub-pixel in nature. For the simulations, we use a simple linear
mixture model as follows:

Fig. 3 shows the spectral signatures of the six targets (corre-
sponding to different man-made materials present in different
locations of the scene, as provided by the target detection blind-
test scenes provided by RIT) that have been implanted in the
hyperspectral scene, together with two considered background
signatures. The image portion where the targets have been
implanted is denoted as ROI-1 (see Fig. 2), which is an open
vegetation region with dimensions and con-
tains few anomalous pixels. Vegetation can be considered as the

Fig. 2. Hymaphyperspectral image overCookCity.Montana,with 20 embedded
targets in a region called ROI-1.

Fig. 3. Spectral signatures of the six targets implanted in the image and two types
of backgrounds.

TABLE I
CHARACTERISTICS OF THE IMPLANTED TARGET SPECTRA IN OUR SYNTHETIC

DATA EXPERIMENTS
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main homogeneous background in this region. In order to
evaluate the presented method, we use six kinds of targets
that have been implanted into ROI-1 using (16), where the
characteristics of the targets are summarized on Table I. We
have synthetically generated six different test images, where
each image contains only one type of target with different
fractions. In each test image, targets have been implanted,
where the abundance fractions follow an arithmetic progres-
sion with difference of 0.02 from left to right and top to bottom,
and where the maximum value is 0.4 on the top-left target, and
the minimum value is 0.02 on the bottom-right target. The main

reason why we set 0.4 as the maximum value of is that, when
is higher than 0.4, there are no false alarms when the target is
detected. We decided to set the common difference as 0.02 since
we would like to make a complete evaluation of the capability of
the detectors with a sufficiently small difference of the target
abundance .

B. Preliminary Evaluation

This section presents the experimental results obtained by the
discussed approaches, implemented using global (W-GRXD,
LF-GRXD) and local (LF-LRXD, W-LRXD). W-GRXD uses

Fig. 4. Detection results provided by different algorithms on the synthetic data with implanted anomalous targets: (a) V1, (b) V2, (c), V3 (d) F5, (e) F6,
and (f) F7.
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all pixels with different weights to estimate the statistics of the
background, while W-LRXD uses local pixels to perform such
estimation. LF-GRXD and LF-LRXD are similar to GRXD and
LRXD, except by the fact that these methods preprocess the
image by using LF. For comparative purposes, we also included
the methodology described in [15] which first performs OSP
processing to adapt the hyperspectral data to a normal distribu-
tion, and then applies all the aforementioned RXD variants. The
window size of the local methods was empirically set to
since it was observed experimentally that this parameter setting
leads to the best results in our experiments. For illustrative
purposes, Fig. 4 presents the detection results of the 12

considered algorithms, while Fig. 5 shows the binary images
obtained after applying an empirical threshold to the obtained
detection results.

As Fig. 4 shows, the implanted targets can be better detected
by W-RXD and LF-RXD (independently of the application of
OSP preprocessing). This observation is confirmed by the results
presented in Fig. 5, which have been obtained by setting a
constant ratio of anomaly, obtaining a set of binary images that
can be used as an indication to evaluate the performance of the
different compared algorithms.

Several conclusions can be obtained from Fig. 5. First and
foremost, OSP-W-GRXD and OSP-LF-GRXD can detect on

Fig. 4. (Continued)
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average more targets (about 18 out of the total 20 implanted
ones), whereas OSP-GRXD can only detect 12 of them. More-
over, without OSP, W-GRXD and LF-GRXD can detect about
16 implanted targets, whereas GRXD can only detect 12, the
same as OSP-GRXD. For instance, for V2 both OSP-W-GRXD
and OSP-LF-GRXD can detect the targets with equal or higher
than 0.04. W-GRXD and LF-GRXD can detect the targets with
equal or higher than 0.06. However, both OSP-GRXD and

GRXD can only detect the targets with equal or higher than
0.18. This indicates that W-RXD and LF-RXD can detect the

anomalous targets with less abundance in the pixel, regardless
of the OSP preprocessing. Furthermore, it is noticeable that
W-RXD and LF-RXD lead to qualitatively less false alarms as
the other testedmethods. As can be observed in Fig. 5, the results
of the classic RXD reveal several isolated points as false alarms,
which are mainly caused by noise, illumination variation on the
background, etc. As a result, it can be concluded that the
proposed methods reduce such false alarms significantly. It can
also be observed that the presented methods generally provide
false alarm regions rather than isolated pixels. This kind of false

Fig. 5. Binary images obtained after thresholding the detection results provided of different anomaly detection algorithms: (a) V1, (b) V2, (c), V3 (d) F5, (e) F6,
and (f) F7.
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alarm can be more easily rejected than individual pixels, for
instance using shape characteristics.

C. ROC Analysis

ROC curves provide an essential metric for quantitative
evaluation of detection performance. This type of curves estab-
lishes a one-to-one correspondence between the true positive
rate and the false alarm rate (FAR) in the detection process,
using different thresholds. As a result, the ROC curves allow
for a detailed quantitative evaluation of the detector indepen-
dently of subjective thresholds. Fig. 6 shows the ROC curves

corresponding to the detection results reported in Fig. 4. The
more the AUC, the better the detection results. It is remarkable
that, in comparison with the conventional RXD, our proposed
methods W-RXD and LF-RXD improve the true positive detec-
tion rate while reducing the FAR. In other words, both W-RXD
and LF-RXD resulted in lower FAR when compared with the
RXD for a similar true positive rate. On the other hand, OSP-
W-RXD and OSP-LF-RXD achieve better performance than
W-RXD and LF-RXD, while OSP-RXD and RXD have the
almost same detection capability on all test images. Since OSP
implements a linear transformation to the data and linear

Fig. 5. (Continued)
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transformation has no influence on the RXD value, the ROC
curves of RXD and OSP-RXD are very similar. However, as
W-RXD uses different weight to calculate the covariance matrix
and LF-RXD filters the data by a LF, the linear transformation
impacts the final results and all ROC curves indicate that
OSP-W-RXD is most effective among the considered detectors.
Furthermore, Table II indicates that the local-based methods
LRXD, W-LRXD, and LF-LRXD generally provide noticeably
higher AUC than global methods (GRXD, W-GRXD, and LF-
GRXD). This is mainly because all the targets that we implanted
are sub-pixel in size, hence local pixels tend to represent the
background better. This scenario is quite common in practice,
since in many cases the spatial resolution of the hyperspectral
sensor is not enough to totally separate the targets from the

background and many targets (especially anomalous ones) are
sub-pixel in nature.

V. REAL IMAGE EXPERIMENTS

In this section, two real hyperspectral data collected by
different instruments have been used for experimental evaluation
of the newly proposed detectors in different real scenarios. In
these experiments with real data, we also included LAIRX in
order to provide a more detailed comparison of the proposed
algorithms with regards to other established methods. The two
considered scenes contain ground-truth information, which has
been used for the evaluation. In the following, we provide a
description of the considered data sets.

Fig. 6. ROC curves corresponding to the detection results reported in Fig. 4.
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A. Real Data Description

1) World Trade Center: This data set was collected by the
airborne visible Infra-Red Imaging Spectrometer (AVIRIS),
operated by NASA’s Jet Propulsion Laboratory, over the
World Trade Center (WTC) area in New York, on September
16, 2001 (just 5 days after the terrorist attacks that collapsed the
two main towers in the WTC complex) [23]. A portion of

pixels (with 224 spectral bands between 0.4 and
µ ) was selected for the experiments. This area covered

the hot spots corresponding to latent fires at theWTC, which can
be considered as anomalies. Fig. 7(a) shows a false color
representation of the portion selected for experiments, while
Fig. 7(b) displays a ground-truth data, which comprises the
spatial location of the hot spots provided by the United States
Geological Survey (USGS).

2) SpecTIR Data: This image was obtained from a data
collection campaign called SpecTIR hyperspectral airborne
Rochester experiment (SHARE) [24]. The data set was
collected on July 29, 2010 by the ProSpecTIR-VS2 sensor and
comprises 360 bands from 390 to 2450 nm with 5 nm spectral
resolution. The pixel size is approximately 1 m. In the considered
hyperspectral scene, road and vegetation are the main
backgrounds and the targets are several red and blue fabrics
with size of 9, 4, and , respectively. In our
experiments, we selected an area of pixels which
contains several targets as indicated in Fig. 8(a). The ground-
truth location of the targets is also available and displayed in
Fig. 8(b). Since the data is quite noisy, we decided to downsize it
to 120 spectral bands by averaging each three neighboring spectral
bands into one single band.

TABLE II
AUC FOR THE DETECTORS REPORTED IN FIGS. 4–6

Fig. 7. (a) AVIRIS image over the World Trade Center in New York City and
(b) ground-truth map indicating the spatial location of hot spot fires, available
from the USGS.

Fig. 8. (a) SpecTIR hyperspectral image with the targets highlighted by black
ellipses and (b) ground-truth information.
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Fig. 9. Detection results obtained by different algorithms for the AVIRIS World Trade Center data.

Fig. 10. ROC curves corresponding to the detection results described in Fig. 9: (a) global methods and (b) local methods.
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TABLE III
AUC FOR THE DETECTORS REPORTED IN FIGS. 9 AND 10

Fig. 11. Detection results obtained by different algorithms for the SpecTIR data.
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B. Experimental Results

As the size of the targets in these two images is usually more
than one pixel, the local methods in the experiments have been
implemented using a dual window approach [14] to better
estimate the background information. The inner and the outer
window sizes of the dual window are set to and ,
respectively, considering the size of the targets.

1) World Trade Center: The detection results obtained after
applying the proposed methods to the WTC hyperspectral data
set are reported in Fig. 9. We provide a comparison between our

methods and LAIRX for further comparison. Considering that
both W-RXD and LF-RXD calculate RX value twice, we use
LAIRX2 that only does 2 RX-type iterations [12]. We also use
two models (global and local) in LAIRX2 for the estimation of
background. The threshold in LAIRX2 is set as ( is the
number of bands), considering the proportion of targets in the
image. In general, we can observe that the proposedmethods and
LAIRX2 algorithms detected the targets with less false alarms
than GRXD and LRXD. The proposed methods improved
after the data was processed by OSP, while OSP could not

Fig. 12. Binary images obtained from the detection results in Fig. 11.
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make an improvement with regards to the standard RXD and
LAIRX2.

OSP-W-RXD and OSP-LF-RXD can detect more real targets
than LAIRX2 in this particular experiment. The corresponding
ROC curves are reported on Fig. 10. Here, it can be seen that the
proposed methods (either local or global) are significantly better
than the original RXD. This is quantitatively confirmed by
the AUC results reported on Table III, which indicate that the
OSP-LF-LRXD outperforms all other detectors for this
particular scene.

2) SpecTIR Data: Fig. 11 presents the detection results
obtained for the SpecTIR data, with thresholded images (using
empirical thresholds) reported inFig. 12 for clarity. FromFigs. 11
and 12, it is remarkable that the proposed methods can properly
detect small anomalies that cannot be identified by the classic
methods GRXD and LRXD. As it can be observed from Fig. 12,
all methods can easily detect targets with sizes ranging between 9
and . However, for the anomalous targets (of sub-
pixel nature), W-RXD and LF-RXD are able to detect four sub-
pixel targets out of six, while GRXD and LRXD could not detect
any of them. This is an important observation, as it reveals that
the presented methods exhibit better capacity to detect sub-pixel
anomalies. Finally, it is also remarkable that the proposed
methods always provided less isolated pixels as false alarms
than both GRXD and LRXD. This indicates the W-RXD and
LF-RXD have a better performance to suppress noise and reduce
FAR in the considered data set.

For illustrative purposes, Fig. 13 presents the ROC curves
corresponding to the detection results reported in Fig. 11.
These curves, together with the AUC scores provided in

Table IV, reveal that W-GRXD, W-LRXD, LF-GRXD, and
LF-LRXD have similar performance that is always superior to
conventional RXD-based algorithms for all considered targets.
As shown in Table IV, OSP preprocessing can enhance the
performance of the proposed methods. The table also indicates
that LAIRX2 algorithms (either global or local, OSP-based or
not) exhibit the best overall performance among the considered
methods.

Summarizing, the experiments conducted using both synthetic
and real data sets indicate satisfactory performance of all the
(local and global) methods presented in this contribution.
Although LAIRX methods obtain very good performance with
the SpecTIR data, the issue of how to decide the threshold value
adaptively still needs to be addressed in future work. In fact,
instead of using a rigid threshold value to separate anomalies
from background as LAIRX does, W-RXD, and LF-RXD use
a probability-based technique to estimate whether the sample
pixel belongs to the background or not. As a result, we believe
that W-RXD and LF-RXD can be more adaptive in the task of
refining the background statistics information than LAIRX. On
the other hand, the OSP preprocessing can adapt the hyperspec-
tral data to a normal distribution. However, OSP did not work
well when combinedwith the original RXDandLAIRXmethods
as the value of RXD was not changed when OSP performs a
linear transformation to the data. On the contrary, OSP can im-
prove the detection performance when combined with W-RXD
and LF-RXD, as they use various weights or scales on different
samples. All in all, the simple (yet powerful) algorithms devel-
oped in this work provide improved performance with regards
to the original RXD-based counterparts (particularly, in terms of

Fig. 13. ROC curves corresponding to the detection results reported in Fig. 11: (a) global methods and (b) local methods.

TABLE IV
AUC FOR THE DETECTORS REPORTED IN FIGS. 11–13
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reducing FAR) without significantly increasing computational
complexity.

VI. CONCLUSION AND FUTURE RESEARCH LINES

The RXD has been widely used in the literature to perform
anomaly detection in hyperspectral images. However, a crucial
issue for the RXD is how to accurately characterize the back-
ground. In this paper, we have focused on this issue and further
developed two simple (yet effective) variations of RXD, called
W-RXD and LF-RXD. The main innovation of these two new
algorithms with regards to the original RXD is the fact that they
perform a more accurate estimation of the background statistics.
Unlike the RXD, which uses a constant weight to model the
statistics of background, W-RXD provides different weights for
the pixels according to their background characteristics, so as to
obtain a better balance between anomalies and background
pixels in the detection process. In turn, the LF-RXD performs
linear filtering prior to anomaly/noise characterization, with the
ultimate goal of obtaining a better representation of background
signals. Both methods aim at bringing the background distribu-
tion closer to a multivariate normal distribution, which is a main
assumption of RXD. Our experimental results, conducted using
both synthetic and real hyperspectral data sets, indicate that both
W-RXD and LF-RXD (either in local and global versions)
provide better performance than RXD, particularly for the
detection of sub-pixel targets, particularly when combined with
OSP preprocessing. Future work will be focused on the devel-
opment of additional comparisons with other more sophisticated
anomaly detection methods and also on developing more com-
putationally efficient implementations of the newly developed
methods, although the new methods presented in this contribu-
tion exhibit very similar computational complexity when com-
pared with available methods.
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