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B
lind hyperspectral unmixing (HU), also known as 
unsupervised HU, is one of the most prominent 
research topics in signal processing (SP) for hyper-
spectral remote sensing [1], [2]. Blind HU aims at 
identifying materials present in a captured scene, as 

well as their compositions, by using high spectral resolution 
of hyperspectral images. It is a blind source separation (BSS) 
problem from a SP viewpoint. Research on this topic started in 
the 1990s in geoscience and remote sensing [3]–[7], enabled 
by technological advances in hyperspectral sensing at the 

time. In recent years, blind HU has attracted much interest 
from other fields such as SP, machine learning, and optimiza-
tion, and the subsequent cross-disciplinary research activities 
have made blind HU a vibrant topic. The resulting impact is 
not just on remote sensing—blind HU has provided a unique 
problem scenario that inspired researchers from different 
fields to devise novel blind SP methods. In fact, one may say 
that blind HU has established a new branch of BSS approaches 
not seen in classical BSS studies. In particular, the convex 
geometry concepts—discovered by early remote sensing 
researchers through empirical observations [3]–[7] and 
refined by later research—are elegant and very different from 
statistical independence-based BSS approaches established in 
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the SP field. Moreover, the latest research on blind HU is rap-
idly adopting advanced techniques, such as those in sparse SP 
and optimization. The present development of blind HU seems 
to be converging to a point where the lines between remote 
sensing-originated ideas and advanced SP and optimization 
concepts are no longer clear, and insights from both sides 
would be used to establish better methods. 

This article uses an SP researcher’s perspective to review 
blind HU. We will consider several key developments, which 
include pure pixel search, convex geometry, dictionary-based 
sparse regression and nonnegative matrix factorization. We 
will not cover Bayesian techniques [8], although readers 
should note that they also represent key developments in blind 
HU. Our emphasis will be on insights, where we will showcase 
how each approach fundamentally works, and highlight signif-
icant results from a viewpoint of SP theory and methods. 
Some forefront advances will also be discussed. Note that this 
article does not aim at survey; please see a recent overview 
paper [2] that provides a comprehensive coverage of numerous 
blind HU methods and many other aspects. 

Our notations are standard in SP. In addition, given a 
matrix ,X  ,xi  and xi  denote its ith column and ith row, respec-
tively; “$ ” represents elementwise inequality; 1 is an all-one 
vector of appropriate length; A@  is the pseudoinverse of A;  

( )I A A A APA
T T= -= @  is the orthogonal complement projector 

of ;A  ( )Aminv  and ( )Amaxv  denote the minimum and maxi-
mum singular values of ,A  respectively; · p  denotes the p,  
norm; and  · F  denotes the Frobenius norm. 

Signal Model
Modeling hyperspectral signals is a difficult problem. It depends 
on numerous factors; some crucial ones include: the types of 
materials encountered in the acquired scene, the ways the materi-
als are physically mixed and constitute the scene topologically, the 
way light interacts with the materials, gets reflected and measured 
by the hyperspectral instrument, and the measurement environ-
ment. Over decades, the geoscience and remote sensing commu-
nity has devoted tremendous efforts to various modeling aspects, 

from which we have now significantly improved our understand-
ing of the true problem nature. Nevertheless, modeling can be an 
overwhelmingly complex process if one wants to treat every aspect 
very precisely. In particular, while radiative transfer theory (RTT) 
is well known to be able to provide accurate characterizations of 
photons’ interactions with the materials (see [2] and the refer-
ences therein), the resulting models are generally too difficult to 
use for signal analysis and processing. There is a compromise to 
make between model accuracy and tractability. 

We focus on a relatively simplistic but very representative 
model, specifically, the linear mixing model (LMM). The LMM lies 
at the center of interest of many important developments in blind 
HU. Despite the fact that the LMM is not always true, especially 
under certain scenarios that exhibit strong nonlinearity, it is gen-
erally recognized as an acceptable model for many real-world sce-
narios. The LMM is described as follows. We assume a 
macroscopic mixing scale in which the incident light interacts 
with only one material before reflecting off. Let [ ]y nm  denote the 
hyperspectral camera’s measurement at spectral band m  and  
at pixel .n  Letting [ ] [ [ ], [ ], , [ ]]y n y n y n y n RM

T M
1 2 f !=  

where M  is the number of spectral bands, the LMM is given by 

	 [ ] [ ] [ ] [ ] [ ]y a Asn s n n n ni
i

N

i
1

o o= + = +
=

/ 	 (1)

for , , ,n L1 f=  where each ,a Ri
M!  , , ,i N1 f=  is called an 

endmember signature vector, which contains the spectral com-
ponents of a specific material (indexed by )i  in the scene; N  is 
the number of endmembers, or materials, in the scene; A =
[ , , ]a a  RN

M N
1 f ! #  is called the endmember matrix; [ ]s ni  

describes the contribution of material i  at pixel ;n  
[ ] [ [ ], ,s n s n1 f= [ ]]s n RN

N!  is called the abundance vector at 
pixel ;n  L  is the number of pixels; and [ ]n RM!o  is noise. Fig-
ure 1 illustrates the mixing process under the LMM. 

There are several important aspects concerning the LMM for-
mulation. First, since hyperspectral cameras have wide spectral 
ranges and fine spectral resolution, M  is often large— typically 
more than 200. Such large spectral degrees of freedom allow us to 
distinguish an endmember signature from another, as well as 

y [n ]

M
a1 a2 a3

s3 [n ]

s2 [n ]

s1 [n ]
x=

[Fig1]  The linear mixing model.
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mixtures of endmember signatures, provided that the materials 
are sufficiently different from one another. Hence, it is reasonable 
to assume that { , , }a aN1 f  is linearly independent, and we will 
assume that this condition holds throughout the article. Second, 
the mixing process in (1) is a consequence of limited spatial reso-
lution of hyperspectral cameras. Specifically, one pixel may not be 
spatially fine enough to contain one material only. For example, 
each pixel is about 4 m #  4 m to 20 m #  20 m for airborne visi-
ble/infrared imaging spectrometer, depending on the altitude of 
the flight. Third, while the noise vector [ ]no  is commonly used to 
represent background and instrument noise, one may also use it 
to incorporate errors arising from modeling inaccuracies. From 
such a perspective, (1) can serve as a reasonable approximate 
model when nonlinear effects are not too strong. Fourth, by 
nature, the abundance vectors [ ]s n  should satisfy 

	 [ ] ,  , , , [ ] ,s n i N s n0 1 1andi i
i

N

1
f$ = =

=

/ 	 (2)

for every , , , .n L1 2 f=  The second constraint above, com-
monly referred to as the abundance sum constraint or the sum-
to-one constraint, means that abundances give the fractional 
proportions, or percentages, of the different materials in a pixel. 
For convenience, we will write 

	 [ ] { |  , },s s s sn 10 1  RS N T! ! $= = 	 (3)

where S  denotes the feasible set of abundance vectors. Note 
that S  is a unit simplex. 

The LMM introduced above is considered standard. That said, 
there are some hidden complications. Here we briefly mention 
them; interested readers can find further clarifications in [2]. 
First, in the model (1), [ ]y n s are actually processed measure-
ments. Raw measurements from the hyperspectral camera usu-
ally undergo a series of processing steps, such as radiometric 
calibration, geometric correction, and atmospheric compensation 
[9], before arriving at the simple LMM. Second, for simplicity we 
have associated an endmember with a material, presumably pure. 
However, an endmember could also be a composition of several 
materials; i.e., a material made of several materials. The definition 
of an endmember can be subjective, and is dependent on applica-
tions. Third, we have assumed that the sum-to-one constraint in 
(3) holds. In practice, the sum-to-one constraint may be violated 
under the so-called endmember variability (EV) effects. Besides 
modeling issues, it is worth noting that recently there has been 
growing interest in considering specific but more treatable non-
linear mixture models for HU; the same applies to EV. In these 
scenarios, insights learned from LMM-based HU remain vital and 
provide building blocks for non-LMM HU problems there. We 
refer readers to [10] and [11] in this issue of IEEE Signal Process-
ing Magazine for a coverage of nonlinear HU and EV, respectively. 

Problem Statement
We are concerned with the HU problem, under the model setting 
in (1)–(3). Specifically, HU aims at recovering [ ]s n  from [ ],y n  
thereby retrieving every material’s abundance map { [ ]}s ni n

L
1=  

from the hyperspectral measurements. Assuming full knowledge 

of the endmember matrix A,  we can carry out unmixing by solv-
ing constrained linear least squares (LS) problems: 

	 [ ] [ ] [ ] ,arg mins y Asn n n
[ ]s n 2

2

S
= -

!
t 	 (4)

for , , .n L1 f=  Fundamentally, the above problem is considered 
an “easy” problem—it is a convex optimization problem, and a 
simple way to obtain a solution is to call some general-purpose 
convex optimization software, such as the widely used CVX [12]. 
Alternatively, one can design dedicated algorithms for (4) to have 
more efficient implementations; this is a more popular option in 
the field [13]–[15]. What makes HU fundamentally challenging is 
not (4) (or other variants), but the fact that we often do not have 
full knowledge of A—for if we do, it means that we know exactly 
all the materials in the scene, which is unlikely in reality. 

Blind HU amounts to recovering { [ ]}s n n
L

1=  from { [ ]}y n n
L

1=  
without knowledge of .A  The problem can also be stated as that 
of identifying A  from { [ ]}y n n

L
1=  without knowledge of 

{ [ ]} .s n n
L

1=  At this point, readers who are familiar with BSS may 
have realized that the problem formulation of blind HU is the 
same as that of BSS: The endmember matrix A  and abundance 
vectors [ ]s n  are the mixing matrix and true source vectors in 
BSS, respectively. While this observation is true, and in fact has 
been noticed for a while [16], classical BSS methods established 
in the SP field usually do not fall in any of the mainstream blind 
HU approaches. The key reason is that under the unit simplex 
constraint (3), the sources { [ ]}s n n

L
1=  do not satisfy the statisti-

cal independence assumption, which is a very essential assump-
tion in many BSS methods, particularly the well-known 
independent component analysis (ICA). The violation of source 
independence makes many existing BSS methods an inappro-
priate choice for blind HU from the outset. 

Before delving into blind HU, we should point out that we 
will generally assume ,N  the number of endmembers, to be 
known. As in BSS and sensor array processing in the SP field, 
where the same aspect has been extensively studied under the 
name of model order selection (see, e.g., [17]), the problem of 
identifying the number of endmembers can be seen as a sepa-
rate problem; see [2, Sec. III] for a description. One may also 
build on an existing blind HU approach to provide joint blind 
HU and endmember number identification. 

Pure Pixels Pursuit
Our review begins with a very simple class of methods that 
hinges on a special model assumption called pure pixels. 

Definition of Pure Pixels
We say that endmember i  (or material )i  has a pure pixel if for 
some index denoted by ,i,  we have 

	 [ ] ,s ei i, = 	 (5)

where e Ri
N!  is a unit vector with the nonzero element at the 

ith entry (that is, [ ]e 0i j =  for all ,j i!  and [ ] ) .e 1i i =  More-
over, we say that the pure pixel assumption holds if every end-
member has a pure pixel. 
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Physically, the existence of pure pixels means that while 
hyperspectral pixels are generally mixtures of several materials, 
there are certain pixels that are constituted by one material 
only. This can be seen from the model (1). Assuming pure pixels 
and no noise, the observed vector at pixel i,  is 

	 [ ] ,y ai i, = 	 (6)

for , , ,i N1 f=  which are the endmembers. In practice, there 
are scenarios where the pure pixel assumption holds. For exam-
ple, imagine a scene that consists of water and soil. If there exist 
some local pixel regions that contain either water or soil only, 
then those regions contain pure pixels. Note that since more 
than one pure pixel may exist for a particular endmember, i,  
may not be unique. However, we should also note that the pure 
pixel assumption does not always hold, e.g., in a scene consist-
ing of highly mixed minerals, or if the spatial resolution of the 
hyperspectral camera is too low. 

Pure pixels provide a unique opportunity for blind HU. In 
essence, if we know the pure pixel indices , , ,N1 f, ,  then 
[ [ ], , [ ]] [ , , ]y y a aN N1 1f f, , =  is the endmember matrix 
itself—and the problem is solved—in the noiseless case. How-
ever, the pure pixel indices are not known a priori, and the 
problem is to find them. 

Successive Projections Algorithm
We introduce a simple algorithm for finding the pure pixels of 
all endmembers. The prerequisite required to understand the 
algorithm is just basic knowledge of linear algebra. 

Again, consider the noiseless case and assume that the pure 
pixel assumption holds. We notice that for any ,n

	 [ ] [ ] [ ]y a an s n s ni
i

N

i i i
i

N

2
1 2

2
1

#=
= =

/ / 	 (7a)

	 [ ] as ni
i

N

i
1

2=
=

/ 	 (7b)

	 ,max a
, ,i N

i
1 2#
f=

	 (7c)

where (7a) is due to the LMM and the triangle inequality,  
and (7b) and (7c) to the unit simplex constraint (3). It can  
be seen that equality in (7) holds when [ ] ,s en j=  where 

;arg max aj , ,i N i1 2= f=  which holds at ,n j,=  i.e., [ ]y n  is a 
pure pixel corresponding to the jth endmember [cf. (6)]. Also, 
equality in (7) cannot be attained by nonpure pixels, by the 
equality condition of the triangle inequality and the linear 
independence of { , , } .a aN1 f  Assuming without loss of gener-
ality (w.l.o.g.) that ,j 1=  we can identify the first endmember 
signature by 

	 [ ], [ ] .arg maxy ya n
, ,n L

1 1 1
1 2

2, ,= =
f=

t t t 	 (8)

Note that a1t  is a perfect estimate of a1  under the aforemen-
tioned settings. 

The next question is to identify pure pixels corresponding to 
other endmembers. Suppose that we have previously identified 

k 1-  endmember signatures, denoted by , , ,a ak1 1f -t t  and that 
the identification is perfect, i.e., a ai i=t  for , , .i k1 1f= -  The 
idea to identify the next endmember is to perform nulling—a 
standard SP trick that has appeared many times (e.g., [17]), but 
proves very useful in various fields. Let [ , , ],A a a:k k1 1 1 1f=- -

t t t  
and construct its orthogonal complement projector .PA : k1 1

=
-

t  
Since P a 0A i: k1 1 =

=
-

t  holds for any ,i k1  we have that 

	 [ ] [ ]P y P an s nA Ai
i k

N

i2
2

: :k k1 1 1 1=
= =

=
- -

t t/ 	 (9a)

	 ,max P a
, ,

A
i k N

i 2: k1 1#
f

=

=
-

t 	 (9b)

where (9b) is obtained in the same way as (7). And like (7), it 
can be shown that equality in (9) holds only for a pure pixel cor-
responding to a previously unidentified endmember, which we 
can assume w.l.o.g. to be that at .n k,=  The kth endmember 
signature can therefore be identified via 

	 [ ], [ ] .arg maxa y P y n
, ,

Ak k k
n L1 2

2
: k1 1, ,= =

f

=

=
-

t t t t 	 (10)

Hence, by induction, we can identify all the endmembers. 
The algorithm presented on the next page is called the suc-

cessive projections algorithm (SPA). Algorithm 1 gives the 
pseudocode of SPA, which is very simple. From the above alge-
braic development, we conclude that in the noiseless case and 
under the pure pixel assumption, SPA perfectly identifies all 
the endmember signatures { , , } .a aN1 f

We should provide a brief historical note on SPA, since it has 
been repeatedly rediscovered. To our best knowledge, SPA first 
appeared in chemometrics in 2001 by Araújo et al. [18]. Later, a 
very similar algorithm, called the automatic target generation 
process (ATGP), was proposed by Ren and Chang in 2003 in 
remote sensing [19]. Curiously, the development we just dis-
played, which shows why SPA works from an algebraic SP view-
point and pins down its endmember identifiability, was not seen 
until recently; see [20, Appendix F]. There are other ways to 
derive SPA, which will be described later. It is worth pointing 
out that SPA has been used successfully for rather different pur-
poses. In numerical linear algebra, SPA is closely related to the 
so-called modified Gram–Schmidt algorithm with column piv-
oting, used for example to solve linear LS problems [21]. In 
machine learning, SPA has been used for document classifica-
tion where the pure pixel assumption is referred to as the sepa-
rability assumption and requires that, for each topic, there 
exists at least one word used only by that topic; see [22] and the 
references therein. 

The above SPA development is based on the noiseless argu-
ment. An interesting question is therefore on sensitivity against 
noise. A provable performance bound characterizing noise sensitiv-
ity has been proposed very recently in [23], and is briefly described 
here. Let us denote ( ),Aminv v=  which is positive since 
{ , , }a aN1 f  is linearly independent, and | | | | .max aK i N i1 2= # #  
Let us also denote the noise level .| | [ ] | |max nn L1 2oe = # #  Then, 
under the pure pixel assumption and assuming that the noise 
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level satisfies / ( ) ,NKO 3 2#e v^ h  SPA identifies all the end-
member signatures { , , }a aN1 f  up to error /( ) ;KO 2 2e v^ h  
more precisely, we have 

	 | | | | .max min a a KO
i N j N

i j
1 1

2 2

2
#

v
e-

# # # #
t c m 	 (11)

The above analysis result provides significant practical implica-
tions. We see in (11) that the noise robustness of SPA depends 
on the ratio / .K v  It can be shown that [23] 

	 | | | |
| | | |

( )
( ) .min

max
a
a

A
AK

min

max

i N i

i N i

1 2

1 2
# #
v v

v

# #

# #

Thus, the noise robustness of SPA depends on 1) how different 
the magnitudes of the endmember signatures are and 2) how 
well the true endmember signatures are spectrally distributed. 
In particular, the latter implies that challenging scenarios lie in 
highly similar endmembers. 

Let us further point out two notable facts. First, one can 
generalize SPA by replacing the 2,  norm in (9)–(10) by any con-
tinuously differentiable and locally strongly convex function 
whose minimizer is zero, e.g., any p,  norm with .p1 31 1+  
The corresponding algorithm not only works in the noiseless 
case, it is also shown to possess a similar error bound as in (11) 
[23]. According to the analysis, the variant using the 2,  norm 
has the best robustness against noise among all locally strongly 
convex functions; see also [24] for numerical evidence. Second, 
it is possible to improve the error bound above to ( / )KO e v^ h  
by using the following postprocessing strategy [22]: Let 
{ , , }a aN1 ft t  be the N  endmembers extracted by SPA. Then, for 

, , ,i N1 f=

1)	Project the original data { [ ]}y n n
L

1=  onto the orthogonal 
complement of { } .a ,k k k i

N
1 !=t

2)	Replace ait  with the column of { [ ]}y n n
L

1=  whose 2,  norm 
of the projection is maximum.

This iterative refinement strategy is identical to a previously 
proposed blind HU algorithm (but without a robustness analy-
sis); it will be further discussed in the section “Simplex Volume 
Maximization.” 

Other Algorithms and Discussion
There are many other pure pixels search algorithms; see [2, Sec.  
VI.A] for a review. A representative algorithm in this family is 
vertex component analysis (VCA), proposed in 2003 [25], [26]. 

VCA is similar to SPA—it also employs successive nulling, but 
differs in the way it picks pure pixels. Specifically, in VCA, the 
right-hand sides (RHSs) of (8) and (10) are replaced by 

	 | [ ] | ,max w y n
, ,

k
n L

k
T

1
, =

f=

t 	 (12)

for , , ,k N1 f=  where wk  is a randomly generated vector lying 
on the orthogonal complement subspace of .A :k1 1-

t  Specifically, 
it is given by / ,w P PA Ak 2: :k k1 1 1 1p p=

= =
- -

t t  where p  is an indepen-
dent and identically distributed (i.i.d.) zero-mean Gaussian vec-
tor. Following the same derivations described above for SPA, 
one can show that VCA also perfectly identifies all the endmem-
ber signatures in the noiseless case and under the pure pixel 
assumption; this result holds with probability one. Also, we 
must mention the  pixel purity index (PPI) by Boardman et al. 
in 1995 [6], which is one of the earliest blind HU algorithms. 
PPI does not have successive nulling. It is analogous to running 
(12) only for ,k 1=  but for many independent random trials. 
The number of trials needs to be large enough so to increase the 
chance of successfully hitting all endmembers’ pure pixels. For 
numerical comparisons of SPA, VCA, and PPI, please see [23] 
(also [20]). 

Some additional comments are in order. 
1)	To simplify the presentation, we have intentionally skipped 
a conventional preprocessing procedure, specifically, dimen-
sion reduction (DR). In practice, VCA and PPI would apply 
DR to the observed data { [ ]} ,y n n

L
1=  prior to pure pixels 

search. While we have seen that DR is not required in SPA (as 
well as VCA and PPI), applying DR plays a crucial role in sup-
pressing noise, which in turn helps improve pure pixel identi-
fication performance. Readers are referred to [2, Section III] 
for the state-of-the-art DR methods in HU. 
2)	SPA can be extended in at least two ways. First, it can be 
modified to accommodate outliers, which are anomalous 
pixels that exhibit markedly different behaviors from the 
nominal model and can cause substantial performance deg-
radation. The idea is to consider outliers as endmembers, 
identify them together with true endmembers, and discard 
them from the obtained estimates [23]. Second, one can 
extend the method for joint blind HU and endmember 
number identification. We note that if we keep running the 
SPA step in (10) recursively, then, at stage ,k N 1= +  the 
projection residuals [ ]P y nA 2

2
:k1 1

=
-

t  become zeros. Thus, 
the projection residuals may serve as an indicator of the 
number of endmembers. Similar ideas have been consid-
ered in [24] and [27]. 

Convex Geometry
We have previously shown how blind HU may be easily handled 
under the pure pixel assumption. The pure pixel concept actu-
ally came from the study of convex geometry (CG) of hyperspec-
tral signals, where remote sensing researchers examined the 
special geometric structure of hyperspectral signals and looked 
for automatic methods for endmember determination, i.e., 
blind HU. In fact, a vast majority of blind HU developments, if 

Algorithm 1 SPA.

input { [ ]} ,y n n
L

1=  .N  
1: P I==

2: for , ,k N1 f=  do 
3:    [ ]arg max P y n, ,k n L1 2

2
, = f

=
=

t  
4:    [ ]a yk k,=t t

5:    : ( ( ) ( ) / )P a a aP P P PI T
k k k 2

2= -= = = = =t t t

6: end for 
output [ , , ] .A a aN1 f=t t t  
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not all, are directly or intuitively related to concepts introduced 
in early CG studies, such as simplex volume minimization by 
Craig [4], simplex volume maximization by Winter [7], and the 
previously reviewed pure pixel search by Boardman et al. [6]. 
We give a historical review in the “Who Discovered Convex 
Geometry for Blind Unmixing?” 

Preliminaries
We introduce several mathematical notations and facts in con-
vex analysis, whose physical relevance to blind HU will become 
clear soon. The affine hull of a set of vectors { , , }a a RN

M
1 f 1  

is defined as 

	 { , , }  |  , .a a y a 1aff RN i
i

N

i
N

i
i

N

1
1 1

f !ii i= = =
= =

) 3/ / 	 (13)

An affine hull can always be represented by 

	 { , , } {  |  }a a y Cx d xaff RN
P

1 f != = + 	 (14)

for some ,C RM P! #  ,d RM!  where ( )C Prank =  and 
P N 1# -  is the affine dimension of the affine hull. The affine 
dimension is P N 1= -  if { , , }a aN1 f  is affinely independent. 

The convex hull of a set of vectors { , , }a a RN
M

1 f 1  is 
defined as 

	 { , , }  |  , .a a y a 10conv N i
i

N

i i
i

N

1
1 1

f $ii i= = =
= =

) 3/ / 	 (15)

The set { , , }a aconv N1 f  is called an ( )N 1- -simplex, or simply 
a simplex, if { , , }a aN1 f  is affinely independent. The vertices of 
a simplex are , , .a aN1 f  Given a full-dimensional simplex, i.e., 
an ( )N 1- -simplex lying in RN 1-  (or ),M N 1= -  its volume 
can be determined by 

	 ( , , ) deta a
a a

c
1 1

vol N
N

1
1

f
f

f
= c m; E 	 (16a)

	 ([ , , ]) ,det a a a ac N N N1 1f= - -- 	 (16b)

where / ( ) !c N1 1= -  For the mathematical details of the above 
concepts, readers are referred to the literature [35]. 

Convex Geometry in Hyperspectral Signals
There is a strong connection between convex analysis and 
hyperspectral signals. To see it, consider the signal model (1)–
(3) in the noiseless case. By comparing the model and the defi-
nition of convex hull in (15), we observe that 

Affine Transformation
y [n ] x [n ]

0

aff{a1, ···, a3}

conv{a1, a2, a3}

conv{b1, b2, b3}

d

c1

c2

x [n ] = C†(y [n ] – d )

a1

a2

a3

b1

b2

b3

[Fig2]  The convex geometry of hyperspectral signals.

Who Discovered Convex Geometry for Blind Unmixing?

In geoscience and remote sensing, the work by Craig in the 
early 1990s [3], [4] is widely recognized to be most seminal 
in introducing the notion of CG for hyperspectral signal 
analysis and unmixing. Craig’s original work not only 
described simplex volume minimization, which turns out to 
become a key CG concept for blind HU, it also inspired other 
pioneers, such as Boardman who made notable early contri-
butions to CG-based blind HU [5] and introduced pure pixel 
search [6], and Winter, who proposed the simplex volume 
maximization concept [7] that results in the popularized 
N-FINDR algorithm class. What is remarkable in these early 
studies is that they discovered such beautiful blind SP con-
cepts through sharp empirical observations and strong intu-
itions, rather than through rigorous SP or mathematics. 

CG is also an idea that has been discovered several times in 
different areas. The introduction of CG can be traced back to 

as early as 1964 by Imbrie [28]. Imbrie’s work belongs to 
another branch of geoscience studies wherein CG is used for 
the analysis of compositional data in earth science, such as 
mineral assemblages, grain-size distribution data, and geo-
chemical and petrological data; see [29] for an overview. In 
fact, Imbrie’s Q-mode analysis and the subsequent QMODEL 
by Klovan and Miesch [30] are conceptually identical to vertex 
or pure pixel search, although the methodology is different. 
Likewise, Full et al. already considered the same simplex vol-
ume minimization principle as Craig’s in the 1980s [31]. CG 
has also been independently discovered in other fields such as 
chemometrics [32] and SP [33], [34]. In all the discoveries or 
rediscoveries mentioned above, the driving force that led 
researchers on different backgrounds to devise the same idea 
seems to be with the geometric elegance of CG and its pow-
erful implications on solving blind unmixing problems.
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	 [ ] { , , },  , , ,y a a n Ln 1conv for allN1 f f! =

i.e., each measured hyperspectral pixel [ ]y n  is a convex combi-
nation of the endmember signatures , , .a aN1 f  Also, the set 

{ , , }a aconv N1 f  is a simplex, since { , , }a aN1 f  is linearly inde-
pendent (and thus affinely independent). The left-hand side of 
Figure 2 gives a vector space illustration for the case of .N 3=  
As can be seen, { , , }a aconv N1 f  is a triangle; note that 

{ , , }a aconv N1 f  is a tetrahedron for ,N 4=  and so forth. Also, 
every [ ]y n  is enclosed by the triangle, and the corners of the 
triangle, or more formally, the vertices of { , , },a aconv N1 f  are 
the true endmember signatures , , .a aN1 f  This observation  
is simple, but gives a very powerful implication—if we can find 
all the vertices of { , , }a aconv N1 f  from the observation 
{ [ ]} ,y n n

L
1=  then blind HU is solved. 

Intuitively speaking, CG-based blind HU amounts to finding a 
set of vectors, say, { , , },a aN1 ft t  such that the corresponding sim-
plex { , , }a aconv N1 ft t  gives a best fitting to the true endmembers’ 
simplex { , , } .a aconv N1 f  The previously reviewed pure pixel 
search algorithms are among one class of such CG solutions; the 
idea is that pure pixels, if they exist, are also vertices of 

{ , , } .a aconv N1 f  Hence, pure pixel search is also vertex search 
in CG, under the pure pixel assumption. Now, we are interested in 
a different approach where simplex volume is used as the metric 
to find the best-fitting simplex. Moreover, the pure pixel assump-
tion will not be assumed during the development. We should nev-
ertheless mention a subtle point that the pure pixel assumption 
will come back when we discuss endmember identifiability. 

Before proceeding to the main developments, it is essential 
for us to introduce a concept related to the affine nature of 

[ ] .y n  Since [ ] { , , },y a an conv N1 f!  it also holds true that 
[ ] { , , };y a an aff N1 f!  cf. (13). By the equivalent affine hull 

representation in (14), we can write 

	 [ ] [ ] ,y Cx dn n= + 	 (17)

for some ,C R ( )M N 1! # -  ( ) ,C N 1rank = -  ,d RM!  [ ] ,x n RN 1! -   
, , .n L1 f=  Suppose that ( , )C d  is known, and consider the 

inverse of (17) with respect to (w.r.t.) [ ]x n

	 [ ] ( [ ] ) .x C y dn n= -@ 	 (18)

From the signal model (1)–(3), it is easy to show that 

	 [ ] [ ] [ ],x b Bsn s n ni
i

N

i
1

= =
=

/ 	 (19)

where ( ) ,b C a d Ri i
N 1!= -@ -  , , ,i N1 f=  and [ , ,B b1 f=  

] .b R( )
N

N N1! #-  We see that (19) takes exactly the same form as 
the original model (1), but its vector dimension is ,N 1-  which 
is less than .M  Also, { , , }b bconv N1 f  is a full-dimensional sim-
plex [36]. Therefore, (19) is a dimension-reduced equivalent 
model for hyperspectral signals, where the CG structure is pre-
served. We will employ the equivalent model (19) in our subse-
quent CG developments. The transformation for the equivalent 
model is illustrated in Figure 2. 

We should discuss how the affine set variable ( , )C d  is 
obtained in practice. Since there is no prior knowledge on 

{ , , },a aN1 f  we must estimate ( , )C d  from the observation 
{ [ ]} .y n n

L
1=  This can be done by solving an affine set fitting 

(ASF) problem 

	   [ ] [ ]  ,min y Cx dn n
, ,{ [ ]}

( )
C d

C
x n

N
n

L

1

2
2

1
rank

n
L

1

- -

= -
==

/ 	 (20)

where the rationale is to find an affine set that gives the best fitting 
w.r.t. the measured pixels [ ],y n  given knowledge of ;N  see [36] for 
details. The ASF solution is as follows. Let / [ ]yL n1

n

L
y 1
n =

=
/  

and / ( [ ] ) ( [ ] )y yL n n1
n
L

y y y
T

1
n nU = - -

=
/  be the sample 

mean and sample covariance of [ ],y n  respectively. Also, let qi  
be the ith principal eigenvector of .yU  The solution to (20) is 
given by [ , , ],C q qN1 1f= -  .d yn=  There is an interesting 
coincidence here—the ASF solution is exactly the same as 
that of principal component analysis (PCA), which is a com-
monly used DR preprocessing procedure. While ASF and PCA 
turn out to be equivalent, one should note that they were 
derived from different principles: ASF is deterministic and 
concerned with CG-preserving transformation, while PCA is 
statistical and does not exploit CG.  

Simplex Volume Maximization
This subsection focuses on the simplex volume maximization 
approach. This approach considers the following problem: 

	
( )

  { [ ], , [ ]},  , , . 

max B

b x x L i N1 1

vol

s.t. conv
B

i f f! = 	 (21)

We will call (21) VolMax for convenience. A picture is illustrated in 
Figure 3(a) to help us explain the aim of (21). We intend to find a 
best-fitting simplex, { , , },b bconv N1 f  by maximizing its volume 
while keeping it inside { [ ], , [ ]} .x x L1conv f  One can imagine 
that if the pure pixel assumption holds, then { [ ], , [ ]}x x L1conv f  
is also the true endmembers’ simplex and the maximum volume 
simplex should perfectly match the latter—this is Winter’s intu-
ition when he first introduced VolMax [7]. 

We are interested in simple optimization schemes for pro-
cessing VolMax. Two such schemes are described as follows. 

Successive Volume Maximization
To facilitate our description, let 

	 ,  ,  [ ]
[ ]

.F
b b

f
b

x
x

n
n

1 1 1 1
N

i
i1 f

f
= = =r; ; ;E E E

It can be shown that [20], [37] 

	 | ( ) | ,det F P fF k
k

N
2

1
2

2
:( )k1 1= =

=
-% 	 (22)

where F R:i
N i

1 ! #  denotes a submatrix of ,F  obtained by pick-
ing the first i  columns of F.  We see from the simplex volume 
formula in (16a) that maximizing ( )Bvol  is the same as maxi-
mizing (22). In successive volume maximization (SVMAX) [20] 
(also [37]), the principle is to exploit the successive structure of 
(22) to recursively generate an approximate solution to (21). 
Specifically, we carry out the following heuristic: for 

, , ,k N1 f=  determine an estimate 
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	   { [ ], , [ ]},arg maxb P f b x x L1s.t. conv
b

Fk k k2
2

:( )
k

k1 1 f!=
=

-

t
t 	(23)

where F :( )k1 1-
t  is defined in the same way as ,F :( )k1 1-  with bi  

replaced by bi
t  for all .i  Essentially, we estimate one endmember 

bk
t  based on the previous endmember estimates , ,b bk1 1f -

t t  and 
partial maximization of (22). Let us complete the SVMAX algo-
rithm by giving the solution to (23) 

	 [ ], [ ] ;arg maxb x P x n
, ,

Fk k k
n L1 2

2
:( )k1 1, ,= =

f

=

=
-

t t t rt 	 (24)

see [20]. Intriguingly, we have seen this algorithm before—SPA in 
the previous section. To explain, first note that [ ]x nr  can be 
expressed as [ ] [ ],x Fsn n=r  an LMM form. If we apply SPA to 
{ [ ]}x n n

L
1=r  to retrieve ,F  then the resulting SPA is exactly the 

same as SVMAX. Hence, we conclude that SVMAX is also a pure 
pixel search algorithm, and SPA has a “dual” identity in VolMax. 

Successive N-FINDR 
We consider an alternative scheme based on alternating optimiza-
tion (AO). The idea is to optimize (21) w.r.t. one bi  at a time, while 
fixing other variables { } .b j j i!  To be specific, given a starting point 

[ , , ],B b bN1 f=t t t  we update each bk
t  via 

:  ([ , ])  { [ ], , [ ]}  arg maxb b b x xB L1vol s.t. conv
b

k k k k
k

f!= -
t t

� (25)

for , , ,k N1 f=  where B k-
t  denotes a submatrix of Bt  in which 

the kth column is removed. Also, we repeat the AO cycle in (25) 
until some stopping rule (e.g., almost no volume increase) is satis-
fied. The updates in (25) have a closed form 

	 [ ], [ ] ,arg maxb x P x n
, ,

Fk k k
n L1 2

2
k, ,= =

f

=

=
-

t t t rt 	 (26)

where (26) is obtained by using (22) to turn (25) to (23) (with a 
proper index reordering), and then applying (24). We call the 
resulting algorithm successive N-FINDR (SC-N-FINDR) since it is 
very similar to the SC-N-FINDR proposed in [38]. The pseudocode 
of SC-N-FINDR is given in Algorithm 2. Note that for 

initialization, we can use another algorithm, e.g., SVMAX, or do so 
randomly. There are several interesting connections here. First, 
SC-N-FINDR performs pure pixel search. Following [20, Prop. 1], 
it can be shown that in the noiseless case and under the pure pixel 
assumption, SC-N-FINDR may perfectly identify all the endmem-
bers’ pure pixels within one AO cycle. Second, since 

[ ] [ ],x Fsn n=r  we see from (26) that SC-N-FINDR is performing 
nulling—this time for all other endmember estimates ;F k-

t  cf. the 
nulling in SPA in (9a). Thus, SC-N-FINDR is also a nulling-based 
algorithm. Third, we notice that each AO cycle in SC-N-FINDR is 
essentially the same as the SPA postprocessing strategy we briefly 
discussed in the section “Successive Projections Algorithm,” 
which is provably robust against noise. 

VolMax-based solutions, such as the SVMAX and SC-N-FINDR 
algorithms above, are usually simple and efficient to implement. 
Some further discussions are in order. 

1)	Historically, Winter mainly used VolMax to devise the 
N-FINDR concept [7] for pure pixel search. There, the intu-
ition is to update one endmember estimate at a time to itera-
tively increase the volume. N-FINDR is now a popularized 
algorithm class in blind HU, where we can find many 
N-FINDR implementation variants in the literature; see [2], 
[20], and [38]. The SC-N-FINDR we just illustrated is just 
among one of the many N-FINDR variants, although we have 
revealed that SC-N-FINDR has several good characteristics. 

^
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[Fig3]  (a) Simplex volume maximization. (b) Simplex volume minimization.

Algorithm 2 SC-N-FINDR

input { [ ]} ,x n n
L

1=  ,N  Bt  (a starting point) 
1: repeat 
2:  for , ,k N1 f=  do 
3:    : [  ]F B 1T T T=t t

4:    : [ ]arg max xP n, , Fk n L1 2
2

k, = f
=

= -
t tt

5:    : [ ]b xk k,=t t

6:  end for 
7: until a stopping rule is satisfied 

output [ , , ] .b bB N1 f=t t t
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2)	VolMax is a provably sound criterion from an endmember 
identifiability viewpoint. Specifically, the optimal solution of 
(21) is uniquely the true endmembers’ signatures in the noise-
less case and under the pure pixel assumption [20]. Also, in 
this setup, the optimal solution can be easily retrieved by 
either SC-N-FINDR or SVMAX. However, we should note a fun-
damental caveat—that SC-N-FINDR and SVMAX are not glob-
ally optimal solvers of (21), say, in the presence of noise and/or 
without pure pixels. In fact, (21) is NP-hard in general [37]. 

Simplex Volume Minimization
We turn our attention to the simplex volume minimization 
approach, or simply VolMin, which was first pursued by Craig 
[4] and Boardman [5] in the blind HU context. VolMin is differ-
ent from VolMax. It performs simplex fitting by finding a sim-
plex that encloses all the measured pixels, while yielding the 
minimum volume. This is illustrated in Figure 3(b). Mathemati-
cally, VolMin can be formulated as 

	
 ( )

 [ ] { , , },  , , . 

min B

x b bn n L1

vol

s.t. conv
B

N1 f f! =
	

(27)

VolMin is generally recognized as a more powerful approach 
than VolMax. Let us illustrate this numerically, before describ-
ing VolMin optimization schemes. We simulated a noiseless, 
three endmember case, where the endmembers were taken 
from a spectral library [39] and the abundances synthetically 
generated. Figure 4(a) shows a scenario where the pure pixel 
assumption holds. We see that both VolMax (via SVMAX or SC-
N-FINDR) and VolMin perfectly identify the true endmembers. 
Figure 4(b) shows another scenario where pure pixels are miss-
ing. VolMax is seen to fail, while VolMin can still give accurate 
endmember estimates. Readers are referred to [2], [20], [36], 
and [40]–[43] for more numerical comparisons and real-data 
experiments. Simply speaking, VolMin is numerically found to 
be robust against lack of pure pixels. 

Let us now discuss how VolMin is optimized. VolMin does 
not have simple closed-form schemes as in VolMax, and requires 

numerical optimization. In fact, the VolMin problem in (27) is 
more difficult to handle; a major obstacle is with the simplex 
constraints in (27), which are nonconvex. This issue can be 
overcome by transforming the simplex to a polyhedron (see, 
e.g., [35, pp. 32–33]). To help the reader understand the idea, an 
illustration is given in Figure 5. We see that a simplex can be 
equivalently represented by an intersection of halfspaces, i.e., a 
polyhedron. More precisely, the following equivalence holds for 
an affinely independent { , , }b bN1 f  [36] 

 [ ] { , , }  [ ] , ( [ ] ) ,  x b b Hx g Hx gn n n 10 1conv N
T

1 ,f! $ #- -

� (28)

where the RHS is a polyhedron, and 

	 [ , , ] , .H b b b b g HbN N N N1 1
1f= - - =-
- 	 (29)

By the change of variables in (29), and noting (28) and (16b), we 
can recast (27) as 

	
| ( ) |

  [ ] , ( [ ] ) ,  ,

max det H

Hx g Hx gn n n10 1s.t. L
,H g

T$ # !- -
	

(30)

where { , , } .L1L f=  The equivalent VolMin problem in (30) is 
arguably easier to handle than the original in (27). Specifically, 
the constraints in (30), which form a data-enclosing polyhe-
dron, are linear (and convex). However, there is still one obsta-
cle—the objective function | ( ) |det H  is nonconvex. Current 

Data Points x [n ] True Endmembers b i SVMAX SC-N-FINDR VolMin CSR

(a) (b) (c)

[Fig4]  Numerical comparison of VolMax, VolMin, and sparse regression solutions.

[Fig5]  The transformation of a simplex to a polyhedron.
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state-of-the-art methods for VolMin tackle this issue by succes-
sive convex approximation. Specifically, one can apply iterative 
linear approximation to the objective function [40], [44]. 
Another alternative is to perform row-by-row AO w.r.t. ( , )H g  
[36]. These two schemes both operate by solving a sequence of 
convex optimization problems; see [36], [40], and [44] for the 
details and comparison. 

We complete this subsection by the following comments. 
1)	As mentioned above, numerical evidence suggests that 
VolMin may be able to identify the true endmembers accu-
rately in the absence of pure pixels. By analysis, it is known 
that in the noiseless case, the optimal solution of VolMin is 
uniquely the true endmembers’ signatures if the pure pixel 
assumption holds [36]. A proof for the no pure pixel case is 
currently unavailable and is an open fundamental question. 
2)	While VolMin is deterministic and geometric based, it has 
a dual identity in stochastic maximum-likelihood (ML) esti-
mation. Specifically, consider the noiseless case, and assume 
that every abundance vector [ ]s n  is i.i.d. uniformly distrib-
uted on the support of unit simplex .S  Then, it can be shown 
that the corresponding ML estimator is the same as the 
equivalent VolMin problem in (30) [42]. Note that the 
authors in [42] also consider a generalization where the 
abundance prior distribution is nonuniform. 

Further Discussion
The CG framework presented above is based on exploitation of 
the simplex { , , } .a aconv N1 f  There is an alternative CG formu-
lation where the simplex { , , , }a a0conv N1 f  is utilized [40]–
[42]; the concepts are identical, though the resulting 
algorithms exhibit minor differences. Readers should also note 
other CG interpretations, e.g., [45]. For tutorial purposes, we 
have focused on the noiseless case only. In the presence of spec-
trally i.i.d. noise, the ASF preprocessing stage (or equivalently 
PCA) can be shown to be noise resistant. However, for non-i.i.d. 
noise, HySime [46] may provide better DR performance. More-
over, both VolMax and VolMin can be modified to improve 
robustness against noise; e.g., soft constraints [41], chance con-
straints [43], and robust max-min volume [20]. CG is known to 
be sensitive to outliers. A robust ASF can be used to identify and 
discard outliers, before they get into the data [47]. Soft con-
straints also help “desensitize” VolMin w.r.t. the outliers [41]. 

Dictionary-Based Semiblind HU
This section describes a relatively new development, where HU 
is performed by using spectral libraries and techniques arising 
in compressive sensing (CS). This approach also has a link to 
sensor array processing in SP, as we will discuss. 

Sparse Regression
When performing blind HU, we generally assume no informa-
tion on the spectral shapes of the true endmember signatures. 
The latter is not totally true. In geoscience and remote sensing, 
a tremendous amount of effort has been spent on measuring 
and recording spectral samples of many different materials, 

which has resulted in spectral libraries for various research pur-
poses. For example, the U.S. Geological Survey (USGS) Library, 
which has taken over 20 years to assemble, contains more than 
1,300 spectral samples covering materials such as minerals, 
rocks, liquids, artificial materials, vegetations, and even micro-
organisms [39]. Such valuable knowledge base can be turned to 
blind HU purposes, or more precisely, semiblind HU. 

A slight abuse of notations is required to explain the semib-
lind formulation. We redefine [ , , ]A a a RK

M K
1 f != #  as a 

dictionary of K  hyperspectral samples, where each ai  corre-
sponds to one material (each ai  is also assumed to have been 
appropriately processed, e.g., atmospherically compensated). We 
assume that the dictionary A  is known, obtained from an avail-
able spectral library, and that the true endmembers in each 
measured pixel [ ]y n  are covered by the dictionary. The mea-
sured pixels in the noiseless case (again, for tutorial purposes) 
can then be represented by 

	 [ ] [ ],y an s ni
i S

i
n

=
!

/ 	 (31)

where { , , }S K1n f3  is an index subset that indicates the mate-
rials present in the measured pixel [ ],y n  and [ ] ,s n i S0i n2 !  
are the corresponding abundances. In this representation, note 
that the sum-to-one constraint [ ]s n 1ii Sn

=
!
/  may not hold; 

the measurement conditions of library samples and the actual 
scene are often different and this can introduce scaling inconsis-
tencies between the library samples and true endmembers. By 
also letting [ ]s n 0i =  for all ,i Sn"  (31) can be written as 

	 [ ] [ ],y Asn n= 	 (32)

where [ ] [ [ ], , [ ]]s n s n s n RK
T K

1 f !=  is now a sparse abun-
dance vector. The problem now is to recover [ ]s n  from [ ] .y n  
This is not trivial because we often have K M2  and the corre-
sponding system in (32) is underdetermined. However, we know 
beforehand that [ ]s n  have only a few nonzero components, 
since the number of materials present in one pixel is often very 
small, typically within five. Hence, a natural formulation for the 
semiblind HU problem is to find the sparsest [ ]s n  for the rep-
resentation in (32). This inference problem turns out to be 
identical to that investigated in CS, where the objective is to 
recover a sparse representation of a signal on a given frame 
from compressive measurements [48]. This connection allows 
us to capitalize on the wealth of theoretical and algorithmic 
results available in the CS area. 

The sparse regression (SR) problem we describe above can 
be formulated as 

	  [ ]   [ ] [ ],  min s y Asn n ns.t.
[ ]s n 0 = 	 (33)

for each , , ,n L1 f=  where [ ]s n 0  denotes the number of 
nonzero elements in [ ] .s n  The above SR problem possesses 
provably good endmember identifiability. Specifically, (33) is 
known to have a unique solution if the true sparse abundance 
vector [ ]s n  satisfies 
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	 [ ] ( ),s An
2
1 · spark0 1 	 (34)

where ( )Aspark  is the smallest number of linearly dependent 
columns of A  [49]. Since every [ ]s n  is highly sparse by nature, 
(34) should hold in practice. The consequent implication is 
meaningful—the SR problem (33) can perfectly identify all the 
true endmembers in general. 

While the SR approach sounds promising, there are chal-
lenges. Since (33) is NP-hard in general, it is natural to seek 
approximate solutions. Let us consider the popularized 1,  relax-
ation solution to (33): 

	  [ ]  [ ] [ ],  min s y Asn n ns.t. 
[ ]s n 1 = 	 (35)

which is convex and has efficient solvers. The CS literature has a 
series of analysis results telling when (35) gives the same solution 
as (33), or simply sufficient conditions for exact recovery. Those 
sufficient conditions usually depend on the conditioning of .A  
For example, one sufficient exact recovery condition for (35) is 

[ ] ( / ) ( ( )),s An 1 2 10
11 n+ -  where 

	 ( )
| |

maxA
a a

a a,i j K
i j

i j

i
T

j

1 2 2
n =

!

# #
	 (36)

is called the mutual coherence of A  [49]. Unfortunately, spec-
tral libraries in practice are strongly correlated, yielding ( )An  
almost being one [50]. A similar issue also occurs in other suffi-
cient conditions, particularly in the restricted isometry property  
[48]. Thus, one may not obtain a desirable SR solution from a 
straight 1,  relaxation application. 

However, all is not lost. Recall that every [ ]s n  is, by nature, 
nonnegative. Let us consider a nonnegative 1,  relaxation prob-
lem, which is (35) plus the nonnegative constraint [ ] .s n 0$  As 
it turns out, exploiting nonnegativity helps a lot. There is a 
large amount of experimental evidence that indicates that non-
negative 1,  relaxation can yield useful unmixing results [2], 
[50], [51]. Also, nonnegative 1,  relaxation is theoretically 
proven to be able to give rather sparse solutions for certain 
classes of A  [52]. Although the above noted theoretical result 
does not give a direct answer to exact recovery under highly 
correlated libraries, it gives good insight on the capability of 
nonnegative 1,  relaxation. 

We can also combat the spectral library mutual coherence 
issue by using the multiple-measurement vector (MMV) formula-
tion [53], which exploits the fact that in a given data set all the 
spectral vectors are generated by the same subset of library signa-
tures, corresponding to the endmember signatures. Let 

[ [ ], , [ ]]S s s L1 RK Lf != #  and [ [ ], , [ ]] ,Y y y L1 RM Lf != #  
so that we can write .Y AS=  Also, define S 0row-  to be the 
number of nonzero rows in ;S  i.e., | ( ) | ,S Srowsupp0row =-

( ) { | } .S si K1 0rowsupp i !# #=  We consider a collaborative 
SR (CSR) problem [54] 

	 ,min Y ASS  s.t.
S row 0 =- 	 (37)

where the rationale is to use the whole set of measured pixels, 
rather than one, to strengthen SR performance. It is interesting 
to note that S 0row-  also represents the number of endmem-
bers. Like the previous SR problem, we can apply a convex 
relaxation to CSR by replacing S 0row-  in (37) by ,S ,2 1  where 

.S s,
/

p q
i
p
q

i
k q

1

1
=

=
` j/  In theory, there is no extra benefit in 

using the CSR or MMV formulation in the worst-case sense 
(think about a special and rather unrealistic case where 

[ ] [ ])s s L1 g= =  [53]. However, an average analysis in [55] 
gives an implication that increasing the number of measure-
ments (or pixels here) can significantly reduce the probability of 
recovery failure. In practice, this has been found to be so. Also, 
the nonnegativity constraint S 0$  can be incorporated in (37) 
to improve performance. 

A practical SR or CSR solution should also cater for the pres-
ence of noise. For CSR, the following alternative convex relax-
ation formulation may be used to provide HU [54] 

	 min Y AS S ,F
2

2 1S 0
m- +

$
	 (38)

for some constant .02m  The rationale is to seek an LS data fit-
ting, rather than exact, with a sparsity-promoting regularizer 

.S ,2 1m  It is important to note that while (38) is convex, it is a 
large-scale optimization problem. An efficient solver for (38) is 
provided in [54], where a divide-and-conquer optimization 
strategy, specifically, the alternating direction method of multi-
pliers (ADMM), was implemented. 

At this point readers may be wondering: How do we compare 
SR- and CG-based solutions? Simply speaking, CG relies on 
exploitation of simplex structures, while SR does not. To illus-
trate, consider the previous numerical example in Figure 4. In 
Figure 4(c), we generated a heavily mixed (and noiseless) sce-
nario where data do not possess simplex structures expected in 
CG. It is seen that even VolMin fails in this scenario. However, 
CSR, which was run under the USGS Library with 498 spectral 
signatures, is seen to be able to identify the true endmembers 
perfectly. Note that the true endmember signatures were taken 
from the same library, which makes the setting slightly ideal. It 
would not be too surprising that if the library fails to cover all 
true endmember signatures (e.g., a new material), then SR 
solutions would fail. For further numerical results and real-data 
experiments, see [2], [50], [54], [56], and [57]. 

Sensor Array Processing Meets Semiblind HU
MMV is a powerful concept that has been applied to estimation 
problems in statistical SP and sensor array processing [58]. 
Curiously, a classical concept originated from sensor array pro-
cessing, specifically, subspace methods, also finds its way to 
MMV research [59]—this provides yet another opportunity for 
semiblind HU [56]. 

The idea is simple for readers who are familiar with subspace 
methods or sensor array processing; or, see classical literatures 
such as [17]. Consider the block model Y AS=  (again, assum-
ing no noise). Let ( )SS rowsupp=  be the set of indices of 
active materials in the measured data ,Y  and AS  be a submatrix 
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of A  whose columns are { } .ai i S!  Note that AS  is the true end-
member matrix. Let us assume that { } ,si i S!  the set of true 
abundance maps, is linearly independent; in practice this refers 
to situations where the abundance maps are sufficient different. 
Then, one can easily deduce that ( ) ( ),Y AR R S=  where R  
denotes the range space of its argument. The above expression 
implies that 

	 P a k S0Y k , !== 	 (39)

for all ,k K1 # #  as far as { } { }a a { }\k i i S k, !  is linearly indepen-
dent for any .k K1 # #  Since the latter holds for | |S 1 1+  

( ),Aspark  we have the following endmember identifiability con-
dition for (39): 

	 ( ) .S A 1spark0row 1 -- 	 (40)

Remarkably, with the mild assumption of linear independence 
of { } ,si i S!  we can achieve such provably good endmember iden-
tifiability by the simple subspace projection in (39). 

In practice, the identification in (39) can be implemented by 
the classical multiple signal classification (MUSIC) method [17]; 
see [56] for implementation details. 

Further Discussion
There are a few more points to note. 

1)	As a side advantage, the SR approach does not require 
knowledge of the number of endmembers .N  Note that this 
does not apply to the subspace approach, which often 
requires knowledge of N  to construct subspace projections. 
2)	Hyperspectral signals are very often piecewise smooth 
w.r.t. their three dimensional domain (one spectral dimen-
sion plus two spatial dimensions). Therefore, one can exploit 
such spatial/spectral contextual information for improving 
SR performance by applying piecewise smooth regulariza-
tion, such as total variations (TVs) [57], on top of an SR for-
mulation, e.g., (38). 
3)	An interesting (but also elusive) question is whether a 
given dictionary can truly cover the true endmembers. From 
an end user’s viewpoint, it depends on the scene and whether 
one can preselect a reliable library for that scene specifically. 
Moreover, there are concurrent studies that consider learning 
the dictionary from the data, thereby circumventing these 
issues [51], [60], [61]. Dictionary learning is an active 
research topic. It is also related to NMF, to be described in the 
next section. In addition, there has been interest in using the 
measured data Y  itself as the dictionary for MMV [62]. This 
self-dictionary MMV (SD-MMV) approach is related to pure 
pixel search. For example, SPA and VCA can both be derived 
from SD-MMV [63]. 

NonNegative Matrix Factorization
This section turns the attention back to blind HU, where we 
review a class of algorithms known as nonnegative matrix fac-
torization (NMF). 

NMF was originally proposed as a linear DR tool for analyzing 
environmental data [64] and for data mining applications [65]. It 
is posed as a low-rank matrix approximation problem where, 
given a data matrix ,Y RM L! #  the task is to find a pair of non-
negative matrices ,A RM N! #  ,S RN L! #  with { , },minN M L1  
that solves 

	 .min Y AS
,A S F0 0

2-
$ $

	 (41)

In blind HU, the connection is that the NMF factors obtained, A  
and S,  can serve as estimates of the endmembers and abun-
dances, respectively (note that endmember spectral signatures 
are nonnegative by nature). However, there are two problems 
here. First, (41) is NP-hard in general [66]. For this reason, opti-
mization schemes we see in the current NMF-based blind HU 
developments are rather pragmatic. We should, however, men-
tion that lately, there are new theory-guided NMF developments 
in optimization [67], [68]. Second, NMF may not guarantee solu-
tion uniqueness. This is a serious issue to the blind HU applica-
tion, since it means that an NMF solution may not necessarily be 
the true endmembers and abundances, even in the noiseless case. 

In blind HU, NMF is modified to fit the problem better. 
Roughly speaking, we may unify many NMF-based blind HU 
developments under one formulation 

	 ( ) ( ),min Y AS A Sg h· ·
,A S

F
2

0 SL
m n- + +

$ !
	 (42)

where { |  [ ] , [ ] , },S s sn n n L1 10 1 SL T$ # #= =  g  and h  
are regularizers, which vary from one work to another, and 

, 02m n  are some constants. In particular, the addition of g  
and h  is to make (42) more well posed through exploitation of 
the problem natures. Also, for the same reason, we incorporate 
the unit simplex constraints on .S  

In the literature, one can find a plethora of NMF-based blind 
HU algorithms—each work may use different , ,g h  modified con-
straints for simpler implementations (e.g., no constraints on ),A  
and a different optimization algorithm. Our intention here is not 
to give an extensive coverage of all these developments. Instead, 
we are interested in several representative NMF-based blind HU 
formulations, where we will see connections between NMF, CG, 
and SR. A summary of those formulations is shown in Table 1. 

Although we see many choices with the regularizers g  and 
,h  the philosophies behind the choices follow a few core princi-

ples. For the endmember regularizer ,g  the principle can be 
traced back to VolMin in CG. A classical example is minimum 
volume constrained NMF (MVC-NMF) [69] 

	 ,( ( ))min Y AS B· volF
2 2

,A S0 SL
m+-

$ !

	 (43)

where ( )Bvol  is the simplex volume corresponding to ,A  in 
which ( )b C a di i= -@  for all ;i  cf. the section “Convex Geome-
try.” MVC-NMF is essentially a variation of the VolMin formula-
tion [see (27)] in the noisy case, with endmember nonnegativity 
incorporated. As mentioned before, )Bvol(  is nonconvex. Iter-
ated constrained endmember (ICE) [70] and sparsity promoting 
ICE (SPICE) [73] avoid this issue by replacing ( ( ))Bvol 2  with a 
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convex surrogate, specifically, ( ) ,A a ag NN
i jj ii 2

2
11

1= -
= +=

- //  
which is the sum of differences between vertices. A similar idea 
is also adopted in collaborative NMF (CoNMF) [74]; see Table 1. 

As for the abundance regularizer ,h  the design principle 
usually follows that of sparsity. A good showcasing example, 
curiously, lies in dictionary learning (DL) [60]  

	 ;min Y AS S·
, ,A S F0

2
1 10

n- +
$ $

	 (44)

note that [ ] .S s n, ii

N

n
L

1 1 11
=

==
//  The original idea of (44) 

is to learn the dictionary A  by joint dictionary and sparse signal 
optimization; cf. the section “Dictionary-Based Semiblind HU” 
and, in particular, (38). However, (44) can also be seen as an 
NMF with sparsity-promoting regularization. Following the 
same spirit, L /1 2 -NMF [71] uses a nonconvex, but stronger spar-
sity-promoting regularizer based on the /1 2,  quasinorm. Apart 
from sparsity, exploitation of spatial contextual information via 
TV regularization may also be used [72]. 

The aforementioned connection between DL and NMF pro-
vides an additional insight. In DL, the dictionary size is often 
set to be large, and should be larger than the true number of 
endmembers; the number of endmembers is instead deter-
mined by the row sparsity of ,S  i.e., .S 0row-  From an NMF-
based blind HU perspective, this means that we can use row 
sparsity to provide joint endmember number, endmember and 
abundance estimation. More formally, consider a blind version 
of the MMV (38) 

	 ,( )min Y AS A Sg· ·
,A S

F
2

0
0

row
SL

m n- + +
$ !

- 	 (45)

where the number of columns of ,A  given by ,N  is now chosen 
to be a number greater than the true number of endmembers 
(say, by overestimating the latter), and we use S 0row-  to repre-
sent the endmember number. SPICE is arguably the first algo-
rithm that explores such opportunity [73]. In SPICE, the 
abundance regularizer can be expressed as ( )S sh

i
N

i
i

1 1c=
=
/  

for some weights { }ic  that are iteratively updated; this regular-
izer is a convex surrogate of .S 0row-  CoNMF also aims at row 
sparsity, using a nonconvex surrogate ( ) ,S sh

i
K i p

21
=

=
/  

p0 11 #  [74]. 

We should also discuss optimization in NMF-based blind HU. 
Most NMF-based blind HU algorithms follow a two-block AO 
strategy, although their implementation details exhibit many 
differences. Two-block AO optimizes (42) w.r.t. either A  or S  
alternatingly. Specifically, it generates a sequence of iterates 
{( , )}A S( ) ( )k k

k  via 

	 ( )arg minA Y AS Ag·( ) ( )k k
F

1 2

A 0
m= - +-

$
	 (46a)

	 ( ) .arg minS Y A S Sh·( ) ( )k k
F
2

S SL
n= - +

!

	 (46b)

Note that if g  and h  are convex, then (46a)–(46b) are convex 
and hence can usually be solved efficiently. Moreover, every 
limit point of {( , )}A S( ) ( )k k

k  is a stationary point of (42) under 
some fairly mild assumptions [75], [76]. For practical reasons, 
most algorithms use cheap but inexact updates for (46a) and 
(46b), e.g., multiplicative update [71], one-step projected gradi-
ent or subgradient update [60], [69], [72], and one-step 
majorization minimization [74]. Convergence to a stationary 
point of these inexact AO methods has still to be thoroughly 
analyzed. However, by numerical experience, many NMF-based 
blind HU algorithms work well under appropriate settings (e.g., 
using reasonable initializations that can be obtained, e.g., with 
VCA or N-FINDR). 

To summarize, NMF is a versatile approach that has connec-
tions to both CG and SR. It leads to a fundamentally hard opti-
mization problem, although practical solutions based on 
two-block AO usually offer good performance by experience. 
Also, we should highlight that the more exciting developments 
of NMF-based blind HU lie in extensions to scenarios such as 
nonlinear HU [77], EV [78], and multispectral and hyperspectral 
data fusion [79]. Such extensions may not be easily achieved in 
other approaches. 

Conclusions
This article provided a tutorial review on blind HU techniques 
using a fundamental SP perspective. Four major blind HU 
approaches—pure pixel search, convex geometry, sparse regres-
sion, and NMF—have been studied. We briefly compare their 
advantages and drawbacks. Pure pixel search and VolMax are very 
simple but require the pure pixel assumption; VolMin is resistant 

[Table1] A  summary of some NMF formulations.

algorithm ( )Ag ( )Sh  OPTIMIZATION schemes and remarks 

MVC-NMF [69] ( ( ))C A d1vol T2 -@ 0 AO + one-step projected gradient 

ICE [70] a aN
i jj ii

N
2
2

11
1 -

= +=

- // 0 AO; unconstrained A

DL [60] 0 s ,1 1 AO + one-step projected gradient for ;A  s 0$

L /1 2 -NMF [71] 0 s / , /
/

1 2 1 2
1 2 AO + multiplicative update 

APS [72] 0 [ ] [ ]n js s
( )n

L

j n 11 N
-

!=
//  where ( )nN  is the  

neighborhood pixel index set of pixel .n
AO + one-step projected subgradient

SPICE [73] a a
j i

N

i
N

i j 2
2

11
1 -

= +=

- // s
i

N
i

i
1 1c
=
/ AO; unconstrained ;A  iteratively reweighted 

ic  via : / ,[ ]s1 ( )
, :i

k
i L

1
1 1c = -  i N1 # #

CoNMF [74] a
i

N
i y 2

2
1

n-
=
/ ,s

i
N i p

21=
/  p0 11 # AO + one-step majorization minimization; 

unconstrained A
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to lack of pure pixels but still has limitations when data are too 
heavily mixed; sparse regression holds great potential in unmixing 
heavily mixed data but one should be aware of its reliance on dic-
tionaries; NMF is a very flexible formulation for blind HU but leads 
us to a hard optimization problem to solve. Also, real hyperspec-
tral data can be quite elusive at times, where we may be faced with 
issues such as outliers, modeling errors, and uncertainty in the 
number of endmembers. Their subsequent effects on the afore-
mentioned approaches could be substantial. On the other hand, 
the need for meeting these challenges also makes HU continue to 
be a vibrant and active field of research. 
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