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Abstract—In recent years, sparse representations have been
widely studied in the context of remote sensing image analysis. In
this paper, we propose to exploit sparse representations of mor-
phological attribute profiles for remotely sensed image classifica-
tion. Specifically, we use extended multiattribute profiles (EMAPs)
to integrate the spatial and spectral information contained in the
data. EMAPs provide a multilevel characterization of an image
created by the sequential application of morphological attribute
filters that can be used to model different kinds of structural
information. Although the EMAPs’ feature vectors may have
high dimensionality, they lie in class-dependent low-dimensional
subpaces or submanifolds. In this paper, we use the sparse rep-
resentation classification framework to exploit this characteristic
of the EMAPs. In short, by gathering representative samples of
the low-dimensional class-dependent structures, any given sample
may by sparsely represented, and thus classified, with respect to
the gathered samples. Our experiments reveal that the proposed
approach exploits the inherent low-dimensional structure of the
EMAPs to provide state-of-the-art classification results for differ-
ent multi/hyperspectral data sets.

Index Terms—Extended multiattribute profiles (EMAPs), re-
mote sensing image classification, sparse representation.

I. INTRODUCTION

THE availability of advanced observation instruments with
constantly increasing coverage of the Earth has opened

important perspectives in the analysis of remotely sensed data
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sets [1]. Recently, sparse representations have become a widely
popular approach in the context of remote sensing data pro-
cessing [2]. Such representations are widely used in many
areas [3], including spectral unmixing [4] and classification
[5]. These approaches intend to represent most observations
or image pixels with linear combinations of a small number of
elementary (dictionary) samples, which are often called atoms,
chosen from an overcomplete training dictionary. Formally, an
overcomplete dictionary is a collection of atoms, such that the
number of atoms exceeds the dimension of the image space,
and any image pixel can be represented by more than one
combination of different atoms. Under given circumstances, an
image pixel can be recovered with a minimal number of atoms
by solving a sparse regression problem.

An important aspect in sparse representations for remote
sensing image classification is how to account for spatial infor-
mation. This is because it is now commonly accepted that using
the spatial and spectral information simultaneously provides
significant advantages in terms of improving the performance
of classification techniques (see, for instance, [6]–[11] and ref-
erences herein). In the past, some efforts have been developed
in this direction. For instance, in [2], two different methods
are proposed to take into account the contextual information
in the sparse recovery procedure. One strategy imposes a local
smoothing constraint to the optimization formulation when
reconstructing the pixel of interest. Another strategy adopts
a joint sparsity model for neighboring pixels centered at the
pixel of interest. The experimental results in [2] show that
the strategies that considered the spatial-contextual information
performed better in terms of classification accuracy. However,
in these approaches, there is a need to define the size of a
spatial window used to characterize contextual information
prior to solving the joint sparse recovery problem. This involves
some kind of prior knowledge about the image objects to be
characterized.

In this paper, we explore the possibility of including spatial
information in sparse classification of remotely sensed data
using mathematical morphology (MM) [12], which is a widely
used approach for modeling the spatial characteristics of the
objects in remotely sensed images. Advanced MM techniques,
such as derivative morphological profiles (DMPs) [13], have
been successfully used for multispectral image classification
by processing the panchromatic band of these instruments.
This strategy has been also extended to hyperspectral image
classification, by extracting the first few principal components
(PCs) of the data using, for instance, PC analysis (PCA) [14]
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and then building so-called extended morphological profiles
(EMPs) on the first few PCA components to extract relevant
features for classification [15]. Since redundant information is
generally present in DMPs and EMPs with high dimensionality,
feature extraction and selection techniques have been used to
extract the most relevant information prior to classification
[16]. Recently, morphological attribute profiles (APs) [17]
have been introduced as an advanced mechanism to obtain a
detailed multilevel characterization of a very high resolution
image created by the sequential application of morphological
attribute filters that can be used (prior to classification) to model
different kinds of the structural information. According to the
type of the attributes considered in the morphological attribute
transformation, different parametric features can be modeled.
The use of different attributes leads to the concept of extended
multiattribute profiles (EMAPs) [18].

As opposed to the techniques described in [2], morphological
approaches, such as EMAPs, avoid the need for prior knowl-
edge by using multilevel operators (i.e., an image transfor-
mation with varying filter parameters) and different attributes
(leading to filtering effects related to the spatial characteristics
accounted by the attribute transformation) when describing the
spatial context. However, the information conveyed by EMAPs
can be extremely high and appeals for efficient forms of repre-
sentation in order to avoid increasing the dimensionality of the
problem, which can have a negative impact in the subsequent
classifier due to the Hughes effect [19]. Although classifiers
such as support vector machines (SVMs) [20], with reduced
sensitivity to limited training samples, have been successfully
used in the literature [6], [21]–[26], the information extracted
by morphological approaches can be made more compact in
order to further optimize the classification process. This issue
was investigated in [16], [27], and [28] by applying several
feature extraction and selection techniques to morphological
profiles and APs prior to classification, aiming at reducing the
high dimensionality of the profile by keeping only (few) rele-
vant features. A compact representation of the profile was also
proposed in [13] by defining the so-called morphological char-
acteristic (MC), which derives from the DMP if the underlying
region of each pixel is mostly darker or brighter with respect
to its surroundings. An extension of the MC has been recently
presented in [29], embedding the characteristic scale, saliency,
and level of the DMP in a 3-D index for each pixel in the image.

In this paper, we follow a different strategy and exploit the
low-dimensional structure, in which the morphological profiles
lie, and its suitability to perform sparse classification using
both spatial and spectral information. Specifically, we focus on
EMAPs that offer the potential to model structural informa-
tion in great detail according to different types of attributes,
thus generating features that may appeal for efficient forms
of representation. Here, we exploit the fact the EMAPs of
the same class lie in a low-dimensional subspace or manifold
and can, therefore, be expressed using linear sparse regression.
This property, which is common to many high-dimensional
signals from the real world, underlies the tremendous actual
interest in sparse modeling and redundant representation of
these signals [30]. Hence, combining sparse representations
with morphological approaches, such as EMAPs, into a clas-

sification framework may offer the advantage of improved
characterization of spatial and spectral features while, at the
same time, providing a better representation in terms of the in-
formation needed to discriminate between the classes. The new
classification approach proposed in this work thus combines
the advantages of classification based on sparse representations
and multiattribute morphological analysis. Our experiments,
which are conducted with both multispectral data (a Quickbird
scene collected in Beijing, China) and hyperspectral data sets,
such as the well-known Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) scene over Indian Pines, IN, USA, or
a scene collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) over the University of Pavia, Pavia,
Italy, reveal that the proposed approach can exploit both the
sparsity and the rich structural information provided by EMAPs
to provide state-of-the-art classification results for different
multi/hyperspectral data sets.

The remainder of the paper is structured as follows. Section II
presents the proposed methodology, which is made up of two
main ingredients: EMAPs and sparse classification. Section III
describes the data sets used for evaluation purposes and per-
forms an extensive experimental evaluation and comparison of
the proposed approach with regard to state-of-the-art methods.
Finally, Section IV concludes with some remarks and hints at
plausible future research lines.

II. PROPOSED METHODOLOGY

A. EMAPs

As mentioned before, EMAPs are an extension of APs ob-
tained using different types of attributes and stacked together.
The filtering operation implemented in EMAPs is based on the
evaluation of how a given attribute A is computed for every
connected component of a grayscale image f for a given refer-
ence value λ. For a connected component Ci of the image, if the
attribute meets a predefined condition (e.g., A(Ci) > λ), then
the region is kept unaltered; otherwise, it is set to the grayscale
value of the adjacent region with closer value, thereby merging
Ci to a surrounding connected component. When the region
is merged to the adjacent region of a lower (or greater) gray
level, the operation performed is a thinning (or thickening).
Given an ordered sequence of thresholds {λ1, λ2, . . . , λn}, an
AP is obtained by applying a sequence of attribute thinning and
attribute thickening operations as follows:

AP(f) := {φn(f), . . . , φ1(f), f, γ1(f), . . . , γn(f)} (1)

where φi and γi denote the thickening and thinning transforma-
tions, respectively. Problem (1) focuses on a single feature (or
spectral band) of panchromatic data. For hyperspectral images,
we can perform attribute filtering on the full original data.
However, hyperspectral data are very high dimensional, with a
large number of spectral bands. This means that constructing
the extended attribute profile (EAP) on the original spectral
bands would lead to very significant computational complexity.
On the other hand, it is generally observed that hyperspec-
tral data lie in a subspace with much lower dimensionality
than the original spectral space. As a result, we can perform
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Fig. 1. Graphical illustration of the procedure adopted in order to construct
an EAP from a hyperspectral image. The EMAP is a combination of EAPs
obtained with different attributes.

dimensionality reduction, using techniques such as PCA [14],
and then perform attribute filtering on the first few PCs, as
suggested in [27], in order to reduce computational complexity.
For multispectral data, since there are only a few spectral bands
available, we can perform attribute filtering on the full original
spectral data. In this way, the EAP is obtained by generating an
AP on each of the first q PCs (or any other features retained after
applying feature selection on the multi/hyperspectral image),
thus building a stacked vector using the AP on each feature, as
illustrated in Fig. 1. This leads to the following definition of the
EAP for the pixel xi:

EAP := {AP(f1),AP(f2), . . . ,AP(fq)} (2)

where q is the number of retained features. From the EAP defi-
nition in (2), the consideration of multiple attributes leads to the
concept of EMAP, which combines the EAPs by concatenating
them in a single vector of features and improves the capability
in extracting the spatial characteristics of the structures in the
scene, where attribute filtering can be efficiently computed by
applying a max-tree algorithm [31].

B. Sparse Representation Classification

In sparse representation models, the idea is that all the test
samples can be represented by a (sparse) linear combination
of atoms from an overcomplete training dictionary. Let us
assume that we have a training dictionary, which is denoted
by A = {x1, . . . ,xn} ∈ R

n×l, with n samples of l dimensions,
comprising a total of c distinct classes, and that the dictionary is
organized as A = [A1, . . . ,Ac], where Ak = {xk1

, . . . ,xknk
}

(i.e., Ak holds the samples of class k in its columns, nk is
the number of samples in Ak, and

∑c
k=1 nk = n). A typical

scenario in supervised classification of remote sensing data
is that, normally, we have a (limited) set of labeled training
samples for each class, and then, we use part of this information
to train a classifier, which is then tested with the remaining
labeled samples. Let xi be a test sample, which can be appropri-
ately represented by a linear combination of the atoms (training
samples) in the dictionary A as follows:

xi ≈x1α1 + x2α2 + · · ·+ xnαn

= [x1 x2 . . . xn][α1 α2 . . . αn]
T = Aα+ ε (3)

where α = [αT
1 , . . . ,α

T
c ]

T is an n-dimensional sparse vector
(i.e., most elements of α are zero), αi is the vector of regression
coefficients associated with class i, and ε is the representation
error. As in [2] and [3], the central assumption in our approach
is that xi is well approximated by Aiαi, i.e., αj = 0, for j �= i.
Under this condition, the classification of xi amounts to detect
the support of α.

In order to obtain a sparse representation for a test sample xi

(which hereinafter is assumed to be obtained using an EMAP
representation), we need to obtain a sparse vector α satisfying
xi = Aα+ ε. The sparse vector α can be estimated by solving
the following optimization problem:

α̂ = argmin ‖α‖0 subject to xi = Aα (4)

where ‖α‖0 denotes the �0-norm, which counts the nonzero
components in the coefficient vector. Due to the presence of
noise and a possible modeling error, the optimization (4) is
often replaced by

α̂ = argmin ‖α‖0 subject to ‖xi −Aα‖2 ≤ δ (5)

where δ is an error tolerance. The aforementioned problem is
nondeterministic and NP-hard; thus, it very difficult to solve.
Recently, greedy algorithms, such as basis pursuit (BP) [32]
and orthogonal matching pursuit (OMP) [33], have been pro-
posed to tackle this problem. BP replaces the �0-norm with the
�1-norm. Hence, the sparse vector α in (5) can be obtained
using �1-norm as follows:

α̂ = argmin ‖α‖1 subject to ‖xi −Aα‖2 ≤ δ (6)

where ‖α‖1 =
∑

i |αi|, for i = 1, . . . , n. On the other hand, the
OMP algorithm is a greedy strategy that performs as follows.
In the first iteration of OMP, the initial residual is equal to
the test sample xi. Then, at each iteration, the algorithm finds
the index of the atom that best approximates the residual, adds
this member to the matrix of atoms, updates the residual, and
computes the estimate of α using the set of currently obtained
atoms. The OMP algorithm stops when a predefined number of
atoms have been selected, or when the approximation error is
below a certain prescribed error.

It should be noted that, contrary to problem (5), problem (6)
is convex and can be solved using linear programming solvers.
In fact, problem (6) is equivalent to the following unconstrained
optimization problem:

min
α

1

2
‖xi −Aα‖22 + τ‖α‖1 (7)
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where the parameter τ is a Lagrange multiplier, which balances
the tradeoff between the reconstruction error and the sparse
solution, i.e., τ → 0 when ε → 0. In our experiments, we
have observed that the nonnegativity constraint (NC) α ≥ 0
improves the classification results. Our conjecture is that the
EMAPs’ feature vectors are very likely to lie in the convex cone
spanned by the atoms of the respective class and, therefore,
given by convex combinations thereof. Consequently, we solve
the following constrained �2 − �1 optimization problem:

min
α

1

2
‖xi −Aα‖22 + τ‖α‖1, α ≥ 0. (8)

It should be noted that sparse unmixing by variable splitting
and augmented Lagrangian (SUnSAL) is very efficient for
solving NC l2 − l1 problems. From the solution of (7), which
is denoted by α̂ = [α̂1, . . . , α̂c], and according to the rationale
aforementioned, the label for xi corresponds to the index of
the unique nonnull vector α̂j for j = 1, . . . , c. Unfortunately,
even when the model (3) is exact and ε = 0, the solutions of
(7) do not necessarily satisfy α̂j = 0 for j �= i when l > n
(undertermined case). The ability to recover unique solutions in
this case by solving optimization problems (6) or (7) depends
on the properties of matrix A, i.e., the so-called restricted
isometric constants [34]. In a qualitative way, the less correlated
the columns of A, the better the quality of the solutions. Since
we are just interested in detecting what α̂j is active, it is much
more important to have low interclass correlation (i.e., among
atoms of Ai and Aj for i �= j) than low intraclass correlation
(i.e., among atoms of the same Ai). The interclass correlation
is closely related with the class separability.

In the next section, we give evidence that the classification
based on the EMAP features yields better results than the
classification based on the spectral vectors. The explanation for
this improved performance of the EMAP features is the lower
interclass correlation (i.e., higher class separability) of these
features compared with that of the original spectral features. A
thorough treatment of this issue is, however, beyond the scope
of the paper.

Finally, in order to introduce robustness with respect to the
representation error ε and to the interclass correlation, we use
the following residual-based criterion to infer the class label:

ĉlass(xi) = arg min
j∈{1,...,c}

‖xi −Ajαj‖2.

III. EXPERIMENTAL RESULTS

Here, we evaluate the performance of the proposed sparse
classification algorithm using both simulated and real hyper-
spectral data sets. The main objective of the experimental
validation with simulated data sets is the assessment and char-
acterization of the algorithm in a fully controlled environment,
whereas the main objective of the experimental validation with
real data sets is to compare the performance of the proposed
method with regard to that reported for state-of-the-art com-
petitors in the literature.

It should be noted that, in all experiments, the OMP and
SUnSAL techniques are used to approximately solve sparse
problems (6) and (7) for the proposed classifier. For the SUn-
SAL algorithm, we empirically set the regularization parameter

τ = 10−5. As it can be observed in the following experiments,
although suboptimal, this parameter setting provided very good
results. For completeness, we also show the case in which
τ = 0 in our experiments, in order to illustrate a situation in
which the sparsity constraint is not considered. In addition, the
SVM and the SVM based on composite kernels (SVMCK) [35]
classifiers are considered for comparison, where the SVMCK
takes into account the spatial and spectral information simulta-
neously with more than one kernel. Two additional compos-
ite kernel-based approaches are considered: SVMCKori and
SVMCKEMAP. For the SVMCKori, the spectral kernel is built
by using the original spectral bands. For the SVMCKEMAP, the
spectral kernel is built using EMAPs. Following the work in
[35], in both cases, the spatial kernel is built by using the mean
of the neighborhood around each pixel using a 5 × 5-pixel win-
dow per spectral channel. For the SVMCK, we also consider an
new approach, which is denoted as SVMCKboth, in which the
spectral kernel is built by using the original spectral information
and the spatial kernel is built by using EMAPs. It should be
noted that, in this work, the SVM parameters are obtained by
cross-validation [36] and we always fix the weight between the
spectral and spatial kernels to 0.5, since we have empirically
found out that this value usually leads to the best results.
Another important remark is that we selected the Gaussian
radial basis function (RBF) after experimentation with other
kernels. The RBF has been shown to be able to handle complex
nonlinear class distributions. The parameters related with the
SVM classifier are optimized by fivefold cross-validation.

Furthermore, in order to show that the EMAP extracts spatial
information with good class separability, we also consider the
3-D wavelet transform filter (3D-DWT-based approach) for
comparison [37]. Following the work in [37], we choose the
same experimental setting for the comparative experiments.
In order to have a statistically relevant and fair comparison
with the methods in [37], the results are obtained by averaging
the values obtained after 50 Monte Carlo runs. Since sparse-
representation-based classification with the training samples as
dictionary can be considered an extension of the k-nearest-
neighbor (k-NN) method [38], we have also included this
method in our comparison and carefully optimized the input
parameters for this method empirically. As a result, two addi-
tional approaches are included in our comparison, i.e., k-NNori,
which uses the original spectral information, and k-NNEMAP,
which uses the EMAP as input feature. Moreover, in order to
build the EMAPs, we fix the number of PCs to be retained (q)
to the number of components that contain more than 98% of
the total variance of the data, where the obtained components
are rescaled to the range [0, 1000] and converted to integer, in
order to build the attribute filters. Specifically, the EMAPs are
built using the area (related to the size of the regions) and stan-
dard deviation (which measures the homogeneity of the pixels
enclosed by the regions) attributes. The threshold values are
chosen in the range {50, 500}, with a stepwise increment of 50
for the area attribute. For the standard deviation, attribute values
ranging from 2.5% to 20% of the mean of the feature, with a
stepwise increment of 2.5%, are chosen [39]. Finally, in order to
evaluate the computational complexity of the proposed method,
we also report the computational time of each algorithm applied
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Fig. 2. (a) Image of class labels for a simulated data set made up of highly
mixed pixels and noise. (b) Sparse classification (implemented using SUnSAL)
based on the original spectral information (OA = 89.34%). (c) Sparse classi-
fication (implemented using SUnSAL) based on EMAPs (OA = 99.11%).

in each experiment. All the algorithms were implemented by
using MATLAB R2011 on a desktop PC equipped with an Intel
Core 2 i7-2600 (at 3.4 GHz) and 8 GB of RAM memory. Then,
we run sparse-representation-based classification by using the
extracted features.

In our experiments, the training dictionary is constituted by
randomly selected samples from the available reference data,
and the remaining samples are used for validation purposes.
The overall accuracy (OA), average accuracy (AA), and the
kappa statistic (κ) are used to evaluate the performance of the
classification. Apart from the experiments for the comparison
with the work in [37], all the other values of OA, AA, and κ
are obtained by averaging the values obtained after ten Monte
Carlo runs. In order to evaluate the impact of the number of
training samples on the classification accuracy, we also consider
different numbers of training samples in our experiments.

A. Experiments With Simulated Data

Here, a simple simulated hyperspectral scene is used to pre-
liminarily evaluate the proposed sparse classification algorithm
using some of the methods aforementioned. The simulated
image is generated with a size of N = 128× 128 pixels made
up of linear mixtures between three components as follows:

xi =

c∑
k=1

mks
k
i + ni (9)

where s = {s1, . . . , sN} is the fractional abundance matrix,
which is generated according to the uniform distribution over
the simplex. In order to ensure that only highly mixed pixels
are present in the simulation, we discarded all pixels simu-
lated with abundance fractions larger than 0.5. Furthermore,
m = {m1,m2,m3} is the mixing matrix, where the spectral
signatures used were randomly obtained from the USGS dig-
ital library.1 Finally, zero-mean Gaussian noise with variance
σ2I, i.e., ni ∼ (0, σ2I), is added to our simulated image. In
our problem, we choose σ = 0.3182 (which corresponds to a
signal-to-noise ratio equal to 5 dB), to make sure that we have
a challenging classification problem, since we only can obtain
an OA of 89.41% by using 20 training samples per class for the
SVM algorithm.

The image of class labels used as reference in the experiment
is shown in Fig. 2(a). This image contains the most predominant
class label for each class, bearing in mind that all the pixels in

1http://speclab.cr.usgs.gov.

each class are highly mixed. In order to construct the training
dictionary, we randomly chose 20 labeled samples per class and
used the remaining samples per class for validation purposes.
As shown in Fig. 2, the classification results obtained by the
proposed sparse classification algorithm (implemented using
SUnSAL) are significantly better when EMAPs [see Fig. 2(c)]
were used as input features instead of the original spectral
information [see Fig. 2(b)].

The reasons why the sparse classification results based on
EMAPs are significantly better than those obtained by the same
sparse classifier using the original spectral information are
graphically illustrated in Fig. 3. Specifically, Fig. 3(a) shows
a scatterplot (constructed by randomly choosing two spectral
bands in the original data to represent a projection in a 2-D
space) depicting the training samples that were used in the
sparse classification to represent a test sample from the blue
class in the original spectral space. Similarly, Fig. 3(b) shows
a scatterplot (which also represents a projection in a 2-D
subspace) depicting the training samples used to represent the
same test sample but in the EMAP space. As it can be observed
by comparing Fig. 3(a) and (b), the class separability (linked
with the interclass correlation) is greatly improved in the EMAP
space as a result of the inclusion of spatial information. This
leads to the fact that a much better sparse representation is
possible in the EMAP space for the considered test sample;
specifically, only four atoms (two of them belonging to the
same blue class) are needed for the sparse representation of this
sample in the EMAP space, whereas a total of 17 atoms (seven
in the blue class, nine in the red class, and one in the green class)
are needed for the sparse representation of the same sample in
the original spectral space. On the other hand, Fig. 3(c) shows
a scatterplot depicting the training samples that were used in
the sparse classification to represent a test sample from the red
class in the original spectral space, whereas Fig. 3(d) shows
a scatterplot depicting the training samples used to represent
the same test sample but in the EMAP space. Again, class
separability is greatly improved in the EMAP space in which
only four atoms (belonging to the same red class) are needed
for the sparse representation of this sample [see Fig. 3(d)]; in
contrast, a much higher number of samples (belonging to the
three classes) are needed to explain the same sample in the
original spectral space [see Fig. 3(c)].

With the aforementioned observations in mind, Table I sum-
marizes the classification results obtained for the considered
simulated scene (after ten Monte Carlo runs) by the proposed
sparse classifier, using both the original spectral informa-
tion (SUnSALori) and the information provided by EMAPs
(SUnSALEMAP). For comparative purposes, the classification
results obtained by the SVM classifier in the same cases is also
reported. As shown in Table I, the superiority of the proposed
sparse classification approach in this specific example is quite
remarkable. The table also reveals that it is quite important
to exploit the information provided by EMAPs (instead of the
original spectral information) when performing the sparse clas-
sification. Specifically, when the original spectral information
was used by SUnSAL, the obtained results are inferior to those
provided by the SVM. In turn, when SUnSAL was applied
in EMAP space, the classification results outperformed those
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Fig. 3. Sparse representation of two different test samples from a simulated hyperspectral scene in spectral and EMAP space. (a) Sparse representation of a
sample from blue class (spectral space). (b) Sparse representation of a sample from blue class (EMAP space). (c) Sparse representation of a sample from red class
(spectral space). (d) Sparse representation of a sample from red class (EMAP space).

TABLE I
OA AND KAPPA STATISTIC (κ) OBTAINED AFTER CLASSIFYING

THE SIMULATED IMAGE USING DIFFERENT TECHNIQUES. IN

ALL CASES, TEN MONTE CARLO RUNS WERE CONDUCTED

(THE STANDARD DEVIATION IS ALSO REPORTED) AND THE

TRAINING SET WAS BASED ON RANDOM SELECTION

OF 20 TRAINING SAMPLES PER CLASS (60 IN TOTAL)

obtained by the SVM in the same space, indicating that a sparse
representation of EMAPs can still significantly improve their
exploitation for classification purposes.

B. Experiments With the AVIRIS Indian Pines Scene

The first hyperspectral image used in the experiments was
collected by the AVIRIS sensor over the Indian Pines region,
Northwest Indiana, USA, in 1992. This scene, with a size
of 145 lines by 145 samples, was acquired over a mixed
agricultural/forest area, early in the growing season. The scene
comprises 202 spectral channels in the wavelength range from

0.4 to 2.5 μm, nominal spectral resolution of 10 nm, moderate
spatial resolution of 20 m by pixel, and 16-bit radiometric reso-
lution. After an initial screening, 20 spectral bands (104–108,
150–163, and 220) were removed from the data set due to
noise and water absorption phenomena. A reference map is
available for the scene with 16 mutually exclusive reference
classes and a total of 10 366 labeled samples. These data,
including reference information, are available online,2 a fact
that has made this scene a widely used benchmark for testing
the accuracy of hyperspectral data classification algorithms.
This scene constitutes a challenging classification problem due
to the presence of mixed pixels in all available classes and
because of the unbalanced number of available labeled pixels
per class.

In our first experiment with the AVIRIS Indian Pines scene,
we illustrate the advantage of using a sparse representation in
EMAP space for classification purposes. Here, we consider a
training dictionary made up of 1028 samples (this is around
10% of the samples in the reference data) and the remaining
labeled samples for testing. Using these training data, the OA

2Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Fig. 4. Sparse representation of a sample from a highly mixed class (building–grass–tree–drives, class number 15) of the AVIRIS Indian Pines data in spectral
and EMAP space. (a) Original versus reconstructed signature of a sample in class 15 (spectral space). (b) Original versus reconstructed signature of a sample
in class 15 (EMAP space). (c) Sparse representation (spectral space). (d) Sparse representation (EMAP space). (e) Residuals for each class (spectral space).
(f) Residuals for each class (EMAP space).

in classification accuracy obtained by SUnSALEMAP (96.59%)
after ten Monte Carlo runs was much higher than that obtained
by SUnSALori (67.83%). However, it is interesting to note that
the reconstruction of the data in the original spectral space and
in the EMAP space were both very good. This is because, after
the inclusion of spatial information in the EMAP space, the
sparse representation is different than in the original spectral
space. In the original spectral space, the observed data are
mixed by materials, such that the representation is given by
“mixtures.” In turn, if we use classes as representees, as it
is the case in the original spectral space, it may happen that
a given sample can be perfectly reconstructed using atoms
that do not belong to that particular class [this was already
observed in Fig. 3(a) and (c)]. However, the transformed data
in the EMAP space are more discriminative, in the sense of
being able to separate different classes, and the representation
is driven by “classes” instead of “mixtures.” In this case, it
is more likely that a given sample can be perfectly recon-
structed by using atoms belonging to its correct class [as can
be observed in Fig. 3(b) and (d)]. In order to illustrate this
aspect with the AVIRIS Indian Pines data, Fig. 4 shows the
sparse representation results in both the original spectral space
and the EMAP space for a given sample in class number 15
(building–grass–tree–drives) of the AVIRIS Indian Pines data,
which is a highly mixed class. As shown in Fig. 4, the sample
can be accurately reconstructed in both the original spectral
space and the EMAP space, but the classification results are
different. In the original spectral space, the sample is classified
as belonging to class number 6 (grass/trees), resulting from the
fact that most of the samples needed to explain this sample
belong to that particular class. In fact, no samples from class
15 (which is the class that the sample belongs to) are needed
to explain the sample in spectral space. In turn, in the EMAP
space, most of the samples needed to explain this sample belong
to class 15, i.e., the class that the sample belongs to, and the
number of samples needed to perfectly explain the sample is

Fig. 5. Classification OAs as a function of training dictionary size (expressed
in percentage of training samples for each class) for different classifiers on the
AVIRIS Indian Pines data.

much lower. These are the reasons why the sparse classification
results are significantly better in the EMAP space.

In the second experiment, we compare the classification
accuracy obtained by the proposed approach with that obtained
by other classification approaches for the AVIRIS Indian Pines
data. In Fig. 5, the obtained classification accuracies are plotted
as a function of the size of the training dictionary. Several
observations can be made in Fig. 5. First of all, the best
classification accuracies (even with limited training samples)
are obtained by the SUnSALEMAP approach. The classifica-
tion accuracies obtained by OMPEMAP are very similar, and
the results obtained by SVMEMAP are also very competitive.
This reveals that the EMAP has great ability to exploit the
spatial information, which has great potential for classifica-
tion purposes. The advantage is smaller with more training
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TABLE II
OA, AA, KAPPA STATISTIC (κ), AND CLASS INDIVIDUAL ACCURACIES ([%]) OBTAINED BY DIFFERENT CLASSIFIERS ON THE AVIRIS INDIAN PINES

DATA (HERE, WE USE A TOTAL OF 115 SAMPLES FOR TRAINING, WHICH REPRESENTS ABOUT 1% OF THE AVAILABLE LABELED DATA FOR THE SCENE)

samples available. In other words, as the number of training
samples increase, the uncertainty of the classes decreases. In
turn, Fig. 5 shows that both SVMCKori and SVMori provide
better accuracies in spectral space than the sparse classifiers
SUnSALori and OMPori. This reveals the importance of using
sparse representation techniques, particularly in EMAP space.
Finally, it is interesting to observe that, in the original spectral
space, the results obtained by the SVM are better than those
obtained by the sparse-representation-based methods, i.e., OMP
and SUnSAL. This is because, in the original space, sparse-
representation-based methods have limited ability for classifi-
cation. In turn, the SVM is a discriminative approach, which
can exploit class separability in the transformed kernel space.
Therefore, it is reasonable that the SVM outperforms OMP
and SUnSAL for the original data. However, in the EMAP
space, the class discriminability is greatly improved, such that
the classification methods based on sparse representation can
achieve much better results. In order to better illustrate the
obtained classification accuracies with limited training samples,
Table II presents the individual class accuracies obtained for the
case of 1% training data in Fig. 5 (a total of 115 samples used
for training). As can be observed in Table II, in most cases,
the proposed sparse classification techniques SUnSALEMAP

and OMPEMAP provide the best results in terms of individual
class accuracies when compared with other methods. It is also
remarkable that all the methods including spatial information
obtained higher classification accuracies in comparison with
the methods using only spectral information (this is also the
case for the k-NN technique). Finally, it is important to empha-
size that the SUnSAL method without the sparsity constraint

(τ = 0) provided low classification accuracies because the
generalization capability is quite poor in this particular case.

With respect to the computational cost, some important ob-
servations can be obtained in Table II. First of all, the methods
based on spectral and spatial information are slower than the
methods only based on the spectral information. However,
as reported before, the classification accuracies achieved by
spectral-spatial methods are higher. This is expected since it
is more time consuming to extract the spatial information. For
instance, SUnSALEMAP took 18.03 s, which is worse than
4.93 s of SUnSALori. However, the EMAP-based methods can
provide higher classification accuracies with limited training
samples. Finally, as it can be observed in Table II, SUnSAL
is generally more efficient than OMP. For illustrative purposes,
Fig. 6 shows the classification maps obtained for the experi-
ments reported in Table II.

A comparison between the classification results obtained by
the proposed SUnSALEMAP method and by several methods
that use 3D-DWT features (reported in [37]) for the AVIRIS In-
dian Pines scene is also given in Table III. The results reported
in Table III indicate that the proposed SUnSALEMAP method
outperforms the methods based on using 3D-DWT features in
terms of classification accuracies.

To conclude this subsection, we analyze the relationship
between the number of iterations (atoms) needed to obtain
the sparse representation in EMAP space and the classification
accuracies obtained by the OMP and SUnSAL algorithms used
in this work. For this purpose, Fig. 7 shows the OAs and
the level of sparsity as a function of the number of itera-
tions for both OMP and SUnSAL in the case in which 115
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Fig. 6. Classification results obtained by different classifiers for the AVIRIS Indian Pines scene (using a total of 115 samples for training, which represents about
1% of the available labeled data for the scene).

TABLE III
OA, AA, AND KAPPA STATISTIC (κ) OBTAINED AFTER EXECUTING 50 MONTE CARLO RUNS OF THE PROPOSED SUnSALEMAP ALGORITHM FOR

THE AVIRIS INDIAN PINES DATA, IN COMPARISON WITH SEVERAL METHODS THAT USE 3D-DWT INPUT FEATURES, AS REPORTED IN [37].
SVM-LINEAR AND SVM-RBF DENOTE THE SVM CLASSIFIERS WITH LINEAR AND RBF KERNELS, RESPECTIVELY. LASSO,

GLASSO, SGLASSO, AND MIXED-LASSO ARE FOUR ALGORITHMS SOLVING THE SPARSE-REPRESENTATION-BASED

PROBLEM. ADDITIONAL DETAILS ABOUT THESE ALGORITHMS CAN BE FOUND IN [37]

Fig. 7. Relationship between the classification accuracy (in percentage) and
the level of sparsity (as a function of the number of iterations used to obtain the
sparse representations in EMAP space by OMP and SUnSAL) for the AVIRIS
Indian Pines data. In this experiment, 115 training samples (about 1% of the
available labeled data) are used.

training samples (about 1% of the labeled data) are used for
training purposes. Here, the level of sparsity is computed as
1− (number of atoms/number of training samples). As shown
in Fig. 7, for SUnSAL, the sparsity improves as the number
of iteration increases, and it reaches a degree of sparsity greater
than 0.8 around ten iterations. At the same time, it is remarkable
that the classification accuracy exhibits a similar trend as the
level of sparsity. In other words, as the sparsity increases,
the classification accuracy also increases. This is because the
generalization capability improves under the sparse constraint.
This result is consistent with the results presented in Table II,
in which it is shown that SUnSAL with τ = 0 (i.e., without the
sparse constraint) achieves poor classification results. However,
the sparsity of OMP decreases as the number of iterations
increases. This is because OMP includes one new atom at
each iteration. Furthermore, Fig. 7 shows that the accuracy of
both SUnSAL and OMP is fluctuant in the first few iterations,
mainly due to a poor sparse representation that can be achieved
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TABLE IV
OA, AA, KAPPA STATISTIC (κ), AND CLASS INDIVIDUAL ACCURACIES ([%]) OBTAINED BY DIFFERENT CLASSIFIERS ON THE ROSIS
PAVIA UNIVERSITY DATA (HERE, WE USE ONLY TEN SAMPLES PER CLASS FOR TRAINING, FOR A TOTAL OF 90 TRAINING SAMPLES)

with a very small number of atoms. In all cases, the SUnSAL
algorithm outperforms the OMP. The classification accuracy of
both approaches converges around 15 iterations, with a sparsity
level of 0.826. For the OMP algorithm, the best classification
result is 82.19% OA, which is about 2.8% lower than the best
classification result achieved by SUnSAL for a similar sparsity
level of 0.843.

C. Experiments With the ROSIS Pavia University Scene

In this experiment, we use the ROSIS Pavia University
scene to evaluate the proposed approach. These data were
collected by the ROSIS optical sensor over the urban area of
the University of Pavia, Pavia, Italy. The flight was operated by
the Deutschen Zentrum for Luftund Raumfahrt (DLR, i.e., the
German Aerospace Agency) in the framework of the HySens
project, which is managed and sponsored by the European
Union. The image size in pixels is 610 × 340, with very
high spatial resolution of 1.3 m per pixel. The number of data
channels in the acquired image is 103 (with the spectral range
from 0.43 to 0.86 μm). Nine thematic land-cover classes were
identified in the university campus: trees, asphalt, bitumen,
gravel, metal sheets, shadows, self-blocking bricks, meadows,
and bare soil. For these data, a fixed training set is available
comprising 3921 training samples and 42 776 test samples.
Here, we randomly choose ten samples per class from the
available 3921 training samples in order to build the training
dictionary. Table IV shows the OA, AA, and individual class
accuracies obtained for different classification algorithms. As it
can be observed in Table IV, the proposed sparse classification
technique SUnSALEMAP provided the best results in terms of
OA and individual class accuracies, followed by SVMCKEMAP

and OMPEMAP. In comparison, the use of both SVM-based
and sparse classification approaches on the original spectral in-
formation provided lower classification accuracies. Concerning
the computational cost, similar observations can be made as
in the former experiments. In other words, the spectral-spatial
methods are less computationally efficient than the spectral-
based methods but provide, in turn, higher accuracies. Another
observation is that SUnSAL-based methods are faster than

OMP-based methods. For illustrative purposes, Fig. 8 shows
some of the obtained classification maps in this experiment.
Finally, Table V shows a comparison between the proposed
SUnSALEMAP method and several classifiers (reported in [37])
that use 3D-DWT-based input features. As shown in Table V,
the proposed SUnSALEMAP can provide very competitive re-
sults in comparison with other methods.

D. Experiments With a Quickbird Scene Collected Over
Beijing, China

In order to illustrate the performance of the proposed ap-
proaches with a multispectral data set, in this experiment, we
use a Quickbird scene collected over the city of Beijing, China,
in September 2003. The scene is composed of 400 × 600 pixels,
and the spatial resolution is 2.44 m. The data comprise five
spectral bands: panchromatic (450–900 nm), blue (450–520 nm),
green (520–600 nm), red (630–690 nm), and near IR (760–
900 nm). In our experiments, we use all the available bands
and built a training dictionary made up of ten samples per
class, which are randomly selected from the available refer-
ence data. The remaining samples were used for validation
purposes. Table VI shows the OA, AA, and individual class
accuracies obtained for different classification algorithms. As
in the previous experiments, the SUnSALEMAP provided the
best classification results, with comparable or better compu-
tational cost in comparison with its competitors. Furthermore,
the SVMori could not properly model the shadow class, which
is a fact that significantly decreased its OA. As shown in
Fig. 9, this is related with the confusion between the water
and shadow classes, which have similar spectral signatures in
the multispectral image; thus, in this case, the shadow samples
can be properly represented by atoms from the water class. In
contrast, SUnSALEMAP obtains the best classification accuracy
(96.85%) for the shadow class, which further demonstrates
that EMAPs can increase the separability between the shadow
and water classes by means of the incorporation of spatial
information in the EMAP space; hence, in this case, the shadow
class can be better reconstructed using atoms from the same
class in EMAP space.
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Fig. 8. Classification results obtained by different classifiers for the ROSIS Pavia University scene (only ten samples per class are used for training, for a total of
90 training samples).

TABLE V
OA, AA, AND KAPPA STATISTIC (κ) OBTAINED AFTER EXECUTING 50 MONTE CARLO RUNS OF THE PROPOSED SUnSALEMAP ALGORITHM FOR THE

ROSIS PAVIA UNIVERSITY DATA, IN COMPARISON WITH SEVERAL METHODS THAT USE 3D-DWT INPUT FEATURES, AS REPORTED IN [37].
SVM-LINEAR AND SVM-RBF DENOTE THE SVM CLASSIFIERS WITH LINEAR AND RBF KERNELS, RESPECTIVELY. LASSO, GLASSO,

SGLASSO, AND MIXED-LASSO ARE FOUR ALGORITHMS SOLVING THE SPARSE-REPRESENTATION-BASED PROBLEM.
ADDITIONAL DETAILS ABOUT THESE ALGORITHMS CAN BE FOUND IN [37]

IV. CONCLUSION AND FUTURE LINES

In this paper, we have developed a new classification strat-
egy that integrates sparse representations and EMAPs for
spatial–spectral classification of remote sensing data. Our ex-

periments reveal that the proposed approach, which combines
the advantages of sparse representation and the rich structural
information provided by EMAPs, can appropriately exploit
the inherent sparsity present in EMAPs in order to provide
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TABLE VI
OA, AA, KAPPA STATISTIC (κ), AND CLASS INDIVIDUAL ACCURACIES ([%]) OBTAINED BY DIFFERENT CLASSIFIERS ON THE QUICKBIRD

BEIJING DATA (HERE, WE USE ONLY TEN SAMPLES PER CLASS FOR TRAINING, FOR A TOTAL OF 50 TRAINING SAMPLES)

Fig. 9. Classification results obtained by different classifiers for the Quickbird Beijing scene (only ten samples per class are used for training, for a total of
50 training samples).

state-of-the-art classification results. This is mainly due to the
fact that the samples in EMAP space can be approximately
represented by a few number of atoms in the training dic-
tionary after solving the optimization problem, whereas the
same samples could not be represented in the original spectral
space with the same level of sparsity. The proposed strategy
was tested on both simulated and real multi/hyperspectral
data sets. A comparison with state-of-the-art classifiers shows
very promising results for the proposed approach, particu-
larly when a very limited number of training samples are
available. In this context, the SUnSAL algorithm provided
excellent classification performance as compared with other
techniques. Future work will be focused on the development

of computationally efficient implementations for the proposed
approach.
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