IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

2939

GPU Implementation of Iterative-Constrained
Endmember Extraction from Remotely Sensed
Hyperspectral Images

Eysteinn Mar Sigurdsson, Antonio Plaza, Fellow, IEEE, and J6n Atli Benediktsson, Fellow, IEEE

Abstract—Hyperspectral unmixing is an important technique
for remotely sensed hyperspectral data exploitation. Linear spec-
tral unmixing is frequently used to characterize mixed pixels in
hyperspectral data. Over the last few years, many techniques have
been proposed for identifying pure spectral signatures (endmem-
bers) in hyperspectral images. The iterated constrained endmem-
bers (ICE) algorithm is an iterative method that uses the linear
model to extract endmembers and abundances simultaneously
from the data set. This approach does not necessarily require the
presence of pixels in the hyperspectral image as it can automati-
cally derive the signatures of endmembers even if these signatures
are not present in the data. As it is the case with other endmember
identification algorithms, ICE suffers from high computational
complexity. In this paper, a complete and scalable adaptation of
the ICE algorithm is implemented using the parallel nature of
commodity graphics processing units (GPUs). This gives signifi-
cant speed increase over the traditional ICE method and allows
for processing of larger data set with an increased number of
endmembers.

Index Terms—Graphics processing units (GPUs), hyperspec-
tral imaging, iterative constrained endmembers (ICEs), spectral
unmixing.

I. INTRODUCTION
A. Hyperspectral Unmixing

YPERSPECTRAL unmixing is a very important tech-

nique for remotely sensed hyperspectral data exploitation
[1]. This is because the signal recorded by a hyperspectral sen-
sor at a given band and from a given pixel, letting alone the
effects of the atmosphere, is a mixture of the “light” scattered
by the constituent substances located in the respective pixel
coverage. With the ultimate goal of recovering the ability to dis-
criminate materials, a significant amount of research work has
been devoted to hyperspectral unmixing in recent years (see,
e.g., [1], [2], and references therein).

Manuscript received December 04, 2014; revised April 15, 2015; accepted
May 25, 2015. Date of publication June 17, 2015; date of current version
July 30, 2015. This work was supported by the EU FP7 Theme Space Project
North State.

E. M. Sigurdsson is with the Faculty of Electrical and Computer Engineering,
University of Iceland, Reykjavik IS-107, Iceland (e-mail: eysteinn@hi.is).

A. Plaza is with the Department of Technology of Computers and
Communications, University of Extremadura, Caceres E-10071, Spain (e-mail:
aplaza@unex.es).

J. A. Benediktsson is with the Faculty of Electrical and Computer
Engineering, University of Iceland, Reykjavik IS-107, Iceland (e-mail:
benedikt@hi.is).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2441699

The linear mixing model holds true when the mixing scale
is macroscopic and the incident light interacts with just one
material, as is the case in checkerboard type scenes [3]. Despite
its simplicity, the linear model is an acceptable approximation
for the light scattering in many real scenarios. In linear spec-
tral unmixing, each mixed pixel is characterized as a linear
combination of pure spectral signatures (called endmembers
[4]), weighted by their corresponding abundance fractions in
the pixel [5]. Despite the simple interpretation of the linear
model, researchers are beginning to move into the nonlinear
mixing field to cope with the limitations of the linear model
[6]. Unmixing via sparse regression is still another direction
recently introduced to circumvent a part of the limitations of
the linear model. This line of research formulates hyperspectral
unmixing as a semisupervised approach in which the endmem-
ber identification is replaced by a sparse regression over a
library of ideal spectral signatures, usually overcomplete, and
generally obtained in laboratory [7]. This approach avoids the
identification of the endmembers directly from the image scene,
which is generally a difficult step, as well as the estimation of
their number [8]. However, in the cases, in which a spectral
library is not available, techniques for endmember identification
from the image scene are required. Available algorithms can
broadly be classified either as pure pixel or nonpure pixel based.

In the pure pixel-based algorithms, the presence in the data
of at least one pure pixel per endmember is assumed, meaning
that there is at least one spectral vector on each vertex of the
data simplex. This class of algorithms has been the most often
used in linear spectral unmixing applications, perhaps because
of the light computational burden and clear conceptual mean-
ing. Most of the pure pixel-based algorithms exploit one of
the following properties of the endmember signatures. 1) The
extremes of the projection of the spectral vectors onto any sub-
space correspond to endmembers. 2) The volume defined by
any set of spectral vectors is maximum when those are end-
members. Representative algorithms of class 1 are pixel purity
index (PPI) [9], vertex component analysis (VCA) [10], simplex
growing algorithm (SGA) [11], successive volume maximiza-
tion (SVMAX) [12], and the recursive algorithm for separable
NMF (RSSNMF) [13]. Representative algorithms of class 2 are
N-FINDR [14], iterative error analysis (IEA), [15], sequential
maximum angle convex cone (SMACC), and alternating volume
maximization(AVMAX) [12], and among many others [1], [2].

For nonpure pixel-based algorithms, the endmembers are
generally inferred by fitting a minimum volume simplex to

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2940

the data. This rather simple and yet powerful idea, intro-
duced by Craig in his seminal work [16], underlies several
geometrical-based unmixing algorithms. This is the case for
iterative-constrained endmembers (ICE) algorithm [17] and of
the minimum volume-constrained-nonnegative matrix factor-
ization (MVC-NMF) [18], whose main differences are related
with the way they define the volume regularizer term. For vari-
ations of these ideas recently introduced, see [1] and [2]. The
sparsity-promoting ICE (SPICE) [19] is an extension of the
ICE algorithm that incorporates sparsity-promoting priors aim-
ing at finding the number of endmembers. A main problem of
this kind of algorithms is their high computational complexity,
since the optimization problem that they address is nonconvex.
The simplex identification via variable splitting and augmented
Lagrangian (SISAL) [20] and the minimum volume enclosing
simplex (MVES) [21] address this complexity by introducing
efficient solvers. In this work, we develop an optimized ver-
sion of ICE, which exploits the computational power offered by
commodity graphics processing units (GPUs). In the following,
we provide an overview of recent developments in the exploita-
tion of GPU technology for spectral unmixing applications, as
well as a description of the organization of the remainder of the
paper and the notations adopted.

B. GPUs for Hyperspectral Image Processing

In recent years, GPUs have evolved into highly parallel,
multithreaded, many-core coprocessors with tremendous com-
putational power, and memory bandwidth [22]. The combined
features of general-purpose supercomputing, high parallelism,
high memory bandwidth, low cost, compact size, and straight-
forward programmability are now making GPU-based desktop
computers an appealing alternative to a massively parallel
systems made up of commodity CPUs. The exploding GPU
capability has increasingly attracted scientists and engineers
to use it as a cost-effective high-performance computing plat-
form, including scientists in hyperspectral imaging areas. With
the advent of tools such as compute device unified archi-
tecture (CUDA),' intended for general-purpose programming
of NVidia cards, and OpenCL,” which can be used to pro-
gram GPU cards from any vendor, the number of applications
implemented on GPUs has boosted over recent years.

Several efforts exploiting GPU technology can already be
found in the hyperspectral imaging literature [23], with many
popular algorithms adapted to the GPU (PPI [24] and N-FINDR
[25]). For instance, in the area of spectral unmixing, there have
already been many developments. A seminal effort was the
GPU-based implementation of the automated morphological
endmember extraction (AMEE) algorithm [26] for endmem-
ber identification, described in [27]. In that case, speedups of
the GPU implementation on the order of 15x compared to a
single core CPU version were reported. A full spectral unmix-
ing chain comprising the automatic estimation of the number of
endmembers, the identification of the endmember signatures,
and quantification of endmember fractional abundances has

![Online]. Available: http://www.nvidia.com/object/cuda home new.html,
accessed on April 7, 2015.

2[Online]. Available: https://www.khronos.org/opencl, accessed on April 7,
2015.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

been reported in [28] with speedups superior to 50 <. Additional
efforts toward real-time implementations of spectral unmixing
chains have also been developed [29]. It should be noted that,
despite the increasing programmability of low-power GPUs
such as those available in smartphones, radiation-tolerance and
power consumption issues still prevent the full incorporation of
GPUs to spaceborne Earth observation missions [30].

C. Paper Organization

This paper is organized as follows. Section II explains the
ICE algorithm. In Section III, the OpenCL architecture is
explained and the details of the GPU implementation are pre-
sented. The performance is discussed in Section IV both in
terms of accuracy and processing time. Conclusions are drawn
in Section V.

D. Notation

Matrices are denoted by capital letters (A) where a matrix
with character in subscript (A;) indicates a single column
of that matrix. 1, represents a p x 1 vector of ones. Lower
case letters can be a vector or a single number depending
on their description. In the pseudocode, MATLAB notation is
sometimes used with matrices, such as Ali,j]. The frace and
covariance of a matrix are, respectively, denoted as #r(A) and
Y A. Finally, || Al is the Frobenius norm of the matrix A.

II. ITERATED-CONSTRAINED ENDMEMBERS

In this section, the ICE algorithm is explained. This endmem-
ber estimation method is an iterative cyclic descent algorithm
that converges to an optimal solution for the endmembers. ICE
is based on the convex geometry model, which assumes that
every pixel is a linear combination of endmembers. This can be
described by a mathematical formulation for each pixel Y;

Yi=) puMi+e i=1...n M
k=1

where n is the number of pixels, m is the number of endmem-
bers, M}, is the kth endmember, p;; defines how much the
endmember contributes proportionally to the pixel (abundance),
and e is the noise term with Gaussian distribution. The propor-
tions of the endmembers can never be negative and the total
sum of proportions has to add up to one. As a result, the mixing
proportions need to satisfy the constraints

pik >0, k=1,....m, > pi=L 2)
k=1

This indicates that the data lie inside a simplex in b-dimensional
space and the endmembers form the vertices of the simplex. The
dimensionality of this simplex has to follow:

m<b+1. 3

All pixels that are inside this convex shape can be represented
as a linear sum of endmember proportions. The aim is then to

SIGURDSSON et al.: GPU IMPLEMENTATION OF ICE EXTRACTION

find a simplex with vertices (endmembers) that minimizes the
error term in (1). This can be reformulated to minimizing the
residual sum of squares given by

RSS = Z (szkMk> (E - épikMk>

=1

= Z — Aej)T(y; — Aej) (4)

where A is a m x n matrix of proportions, y; is a vector of
n observations of the jth band and e; is the m-vector of end-
member values in the jth band. The minimizer of this is any
m-simplex that encompasses all data points.

The linear model described in (1) can be rewritten as

Y =M A + N

bxn bxm mxn bxn (5)
where Y represents the pixel spectra, M represents the end-
member matrix, A represents the abundances, and N is the
noise term. To get a reasonably accurate endmembers, the
enclosing simplex should minimize the volume that contains
all pixel observations. To constrain the size of the simplex,
an additional regularization term is added to (4) that measures
the total variance of the simplex vertices. High variance now
increases the cost function and the vertices are pulled toward
the mean. From an optimization point of view, this can be
formulated as

argmin||Y — MA||% + \V (M)
M, A

subjectto: A >0, 174 =17 (6)
where V' is the simplex’s variance term that promotes mix-
ing matrices of minimal variance with A controlling the term’s
relative weight.

One way to solve (6) is to use a cyclic minimization method
where the abundances and the endmembers are estimated in
repeated fashion, until convergence is reached.

Each iteration in the algorithm is based on two main steps.
In the first step, the abundance estimation step, the endmem-
ber proportions are estimated by minimizing the residual sum
of squares (RSSs) over (1). The second step is to estimate the
endmembers given the new abundances.

A. Estimate Abundances

Equation (6) is minimized for abundances. The variance term
can be skipped, since it does not depend on abundances

argmin|Y — MA||%
A

A>0,17A=17. (7

subject to: m

This equation can be reformulated as a quadratic programming
problem.

2941

B. Estimate Endmembers
argmin|Y — MA||% + AV (M). (3)
M

Since there are no constraints, (8) has an explicit solution

(17 (1-23E))
M=(AA" + X (I- AY)

m

where [is the m x m identity matrix, 1 is a m-vector of ones,
A :.m, and p is a regulariza'tio.n parameter. Further
details about how the variance term is implemented can be
found in [31].

An outline of the ICE method is given in Algorithm 1.

Algorithm 1. Iterated constrained endmembers (ICE)

= Y = MAJP 4 po
until 7‘7;/’[”,'_1 >t

1: Y «+ Image matrix[b X n]

2: M < Initial endmembers matrix[b X m)

3: A < Initial abundance matrix[m x n]

4: repeat

3 A argmin,||Y — MA[}, A>0,17A=1
~1

6: e (AT 4 a(1-10)) (avT)

7: v tr(XM)

&:

9:

Lines 7 and 8 are part of a convergence test that is optional
and does not strictly need to be calculated at every iteration.
The ratio of successive RSS values including the variance term
is computed and the program terminates when the ratio exceeds
some predefined value ¢ and the method is considered to have
converged to a solution.

III. GPU IMPLEMENTATION

In this section, the OpenCL framework is first discussed,
with particular emphasis on how it can be used to effectively
speed up the ICE algorithm on GPUs. Most importantly, a good
quadratic programming solution method needs to be found,
which is suitable to the parallel nature of the GPU. All the
required kernel programs are elaborated on and a complete
parallel implementation is given in pseudocode.

A. GPU Architecture

There are two main competing frameworks for developing
parallel algorithms on GPUs. OpenCL was initially developed
by Apple Inc., but is now maintained by the nonprofit tech-
nology consortium Khronos Group as an open standard. It is
designed to allow programs to be written in a relatively platform
agnostic way and to run on CPUs, GPUs, digital signal pro-
cessors (DSPs) [32], field programmable gate arrays (FPGAs)
[33], and other processors. CUDA, on the other hand, is a plat-
form that was developed by NVidia specifically for the line of
GPUs they produce and, therefore, allows for platform-specific
optimizations. There is an ongoing debate of CUDA versus

2942

Global memory

Constant cache

Texture cache

v v v

Processor
3

Processor Processor
1 2

Registers

Registers ' Registers
11 11 L 1
I Instruction unit I

Shared memory

Multiprocessor (MP)

Fig. 1. Schematic overview of a GPU architecture, which can be seen as a set
of MPs.

OpenCL. The portability of OpenCL can come at the price of
performance [34], although carefully constructed programs can
achieve similar performance as CUDA [35]. This paper values
portability above peak performance, and hence OpenCL was
chosen for this implementation, but it would be trivial to convert
the program to run on the CUDA platform.

GPUs can be abstracted in terms of a stream model, under
which all data sets are represented as streams (i.e., ordered data
sets). Fig. 1 shows the architecture of a GPU, which can be seen
as a set of multiprocessors (MPs). Each MP is characterized
by a single instruction multiple data (SIMD) architecture, i.e.,
in each clock cycle, each processor executes the same instruc-
tion, but operating on multiple data streams. Each processor
has access to a local shared memory and also to local cache
memories in the MP, while the MPs have access to the global
GPU (device) memory. Algorithms are constructed by chain-
ing so-called kernels, which operate on entire streams and are
executed by a MP, taking one or more streams as inputs and
producing one or more streams as outputs. Thereby, data-level
parallelism is exposed to hardware, and kernels can be concur-
rently applied without any sort of synchronization. The kernels
can perform a kind of batch processing arranged in the form of
a grid (workgroup in OpenCL jargon) of blocks (see Fig. 2),
where each block is composed by several threads, which share
data efficiently through the shared local memory and synchro-
nize their execution for coordinating accesses to memory. As a
result, there are different levels of memory in the GPU for the
thread, block, and grid concepts (see Fig. 3). There is also a
maximum number of threads that a block can contain, but the
number of threads that can be concurrently executed is much
larger (several blocks executed by the same kernel can be man-
aged concurrently, at the expense of reducing the cooperation

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

0,0)

1))

(1L,0)

ot Grid
2x (1,1 S
00 (L0) (20) (30)

))
< { (2 s H—>Thread

l J
(O TG)
T
| |
Block

Fig. 2. Batch processing in the GPU: grids of blocks of threads, where each
block is composed by a group of threads.

Thread S «—— | Perthread
local memory
Block (] Per-block
2000 shared memory
(0,0)

2,0

Raasasand

01 (11 2,1)

) ; —>|
— Grid 0
(00) (10) Global memory
(qu) ‘(‘1’,1) : :
e et
— G

Fig. 3. Different levels of memory in the GPU for the thread, block, and grid
concepts.

between threads, since the threads in different blocks of the
same grid cannot synchronize with the other threads).

B. Algorithm

By observing the program flow in Algorithm 1, it is possible
to identify mainly two potential bottlenecks in the ICE algo-
rithm. The most important one is the minimization problem
in line 5, which is a process that can require many iterations
to converge. There are also two large matrix multiplications
in line 6 that could benefit from parallelization. Assuming
no optimization, AAT requires nm? multiplications and

SIGURDSSON et al.: GPU IMPLEMENTATION OF ICE EXTRACTION

(n — 1)m? additions totaling (2n — 1)m? floating-point oper-
ations (FLOPS) and AYT requires nbm multiplications and
(n — 1)bm additions totaling (2n — 1)bm FLOPS. During mul-
tiple iterations of Algorithm 1, the FLOPS multiply, respec-
tively.

For the remainder of this paper, the local workgroup is
designed to be two-dimensional with the first dimension (y)
fixed to the number of endmembers (m) and second dimension
(x) that scales according to defined threads per block. The x
dimension is an integer multiple of y that is guaranteed to be
lower than a predefined threads per block variable. In other
words, dim = [m x w], where w = |threads per block/m|.
For example, if threads per block is 192 and we search for
19 endmembers, the dimensions of the local workgroup are
19 x 10 for a total of 190 active threads. This lends itself well
to the problem at hand, since most of the calculations are done
on matrices with the first dimension equal to the number of end-
members, in practice, which means that local (or global) thread
(work-item in OpenCL jargon) identifiers give the position of
the element in the matrix.

C. Abundance Estimation

An efficient method to solve the quadratic programming
problem in line 5 is essential for achieving good overall per-
formance of the algorithm. Consider the minimization of the
quadratic problem in (7). If both abundance nonnegativity
(ANC) and abundance sum-to-one constraints (ASCs) are to be
satisfied, the problem of abundance estimation becomes com-
plicated. A simple solution is to introduce a soft constraint [36]
on the ASC and include it in the ANC formula. To do this,
Y and M matrices are augmented with a slack variable § by
adding a row as follows:

argmin||Y — MAH%
A (10)
subject to: A >0

M
175 |-

As a consequence of this, for each pixel spectra in Y, the
last row in Y — MA becomes & — (a16 + - - - + a,,8). The
minimization of (10) will, therefore, try to maintain the ASC
intrinsically with high value of § enforcing ASC more force-
fully. With the aforementioned considerations in mind, the
optimization problem (10) can be formulated as a quadratic
programming problem as follows:

~ v —
where Y = [IT(S] and M = [

1
arg min§vTHv + fTw

(1)

where v is a single column vector in A, H = 2 (MTM) and

f is a single column vector in F' = MTY . The matrix H is
symmetric and positive definite, since z7Hz = 2T MMz =
(MT2)T(MTz) > 0, so its optimization is convex, but due to
the nonnegativity constraint an iterative solution is necessary.

2943

The multiplicative margin maximization method [37] pro-
vides a suitable solution to nonnegative quadratic programming
problems and has been used in hyperspectral unmixing prob-
lems before [38]. The matrix H can be split into two nonnega-
tive matrices, H = H+ — H~ where

H:jr = max(H;;,0) Vi,j 12)
Hz; = max(—H,;j, 0) VZ,_]
The iterative updates are then
—f 2 L A(H+v);(H v),
5y = oy L VI A0 g

2(H+1))7;

These updates never violate the ANC constraint, since the ele-
ments of H+, H~, and v are always nonnegative. Therefore,
the factor multiplying v; can only be nonnegative. Using this
update, function will decrease the cost function in (11) mono-
tonically to the value of its global minimum. The ASC is not
respected by the iterative algorithm, but introduced using soft
constraints, as described in (10).

The matrix F' = —2M7TY only needs to be evaluated once
and then reused each iteration. Computationally, the multiplica-
tion of the matrices requires b*p multiplications and (b — 1)bp
additions and can benefit from parallelization.

Two separate kernels are developed to solve the quadratic
programming problem. The first kernel computes the value for
F = —2MTY and the second kernel uses that information to
solve (11). In the following, we describe these two kernels.

1) SolveQP Kernel: A very important property of the
iterative updates in (13) is that parallelization comes naturally,
since each new element in vector v can be updated indepen-
dently. This kernel is outlined in Algorithm 2. The loop starting
in line 11 needs to read H, and read/write A, repeatedly.
Therefore, to reduce memory fetches to global memory, it is
beneficial to move some of the required content to local (cache)
memory. In line 8, A; is defined as a [m x w] matrix that holds
the required part of the abundance matrix and in line 9, H; is
defined a [m x m] matrix and holds a copy of the global H,,
matrix.

In line 19 of Algorithm 2, there is a test for convergence.
This test is optional and does not need to be run every itera-
tion. According to our experiments, running the test for every
50 iterations gives good results. This, however, requires that the
old value for the abundance be kept either in private or local
memory. In some of our benchmarks, this has been disabled to
get a consistent result between platforms.

The local memory footprint per workgroup is kept relatively
low for any number of endmembers, since the x-dimension of
the workgroup is scaled by m. This results in a local memory
consumption of m? + muw reals, i.e. with 15 endmembers and
192 threads, the local memory usage is 152 4+ 15[192/15] =
405 reals per workgroup.

Algorithm 2. SolveQP Kernel

1: global H, < Initial H matrix [m x m)]
2: global F); < Initial F' matrix [m X n]
3: global A, < Initial A matrix [m X n]

2944

gy < get_global_id(0),
ly < get_local_id(0),
Lh < get_local_size(0)
gi < gy * lh + gz
local A;ly,lx] < Aglgi]

9: local H; <« H,
10: f « Fy(g1)
11: repeat
12: v+ 0,v" «0
13: for i=0,1h do
14: v vt + max(H[ly,i],0) x A;[i, lz]
15: v v~ + max(—H;[ly,i],0) * Afi, lx]
16: end for
17: Synchronize Threads

18: Ally, lz) + Ailly, lz] * %

gx < get_global_id(1)
lx < get_local_id(1)

AN A

N 2
19: Y, (Al[k, lz] — Ak, lx]) < ¢ then
20: break

21: end if

22: until maximum iteration
23: Aglgi] < Ally, lx]

2) CalculateF Kernel: This kernel simply multiplies the
transposed abundance matrix by the pixel matrix and is outlined
in Algorithm 3. In addition to multiplying these two matrices, it
takes the slack variable ¢§ introduced in (10) as input to satisfy
the soft ASC. The kernel is not highly efficient, since it reads
from two global variables in a loop, but it is only called once
in each iteration of ICE, so there is not much need to optimize
it further, since the overall improvement of the processing time
will be minimal.

Algorithm 3. CalculateF kernel

1: global Y, < Initial Y matrix [b X n]

2: global M, < Initial M matrix [b x m)]

3: global a, < Augmentation value o

4: global Fj

5 v al

6: gy < get_global_id(0), gx < get_global id(1)
7: for i=0,b do

8: v v+ Yylgx « b+]« My[gy * b+ 1]

9: end for
10: Fylgz «+ m + gy] < —2v

D. Endmember Identification

The endmember identification step of line 6 of Algorithm 1
has three important elements. First, there are the two matrix
multiplications: 1) AA” and 2) AYT, and then, the matrix
inverse operator. In the following, we describe the kernels that
perform these operations.

1) Calculate AAT Kernel: This kernel multiplies the abun-
dance matrix by its transpose and then, adds the lambda term.
Two inputs are required, the abundance matrix (A,) and A value
from (6) with the output stored in memory buffer V. Since,
the output matrix has dimensionality m x m, the global work-
group dimension for this kernel needs to be m x [m/w]| * w.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

The kernel is outlined in Algorithm 4, the § in line 6 is the dirac
delta function.

Algorithm 4. Calculate AA” Kernel

1: global A, < Initial abundance matrix[m x n]
2: global A,

3: global V

4: gy < get_global_id(0), gx < get_global_id(1)
5: if gz < m then

6: v Ag (0 (gy — gx) — 1/m)

7: for p=0,n do

8: P4 pxm

9: v v+ Agli+ gy] + Agli + gx]
10: end for
11: Volgz «+m + gy] < v
12: end if

2) Calculate AYT Kernel: This kernel multiplies the abun-
dance matrix (M) by the pixel matrix (Y') resulting inan m X b
output matrix (V). The global workgroup dimension for this
kernelis m X [b/w] * w. The kernel is outlined in Algorithm 5.

Algorithm 5. Calculate AYT Kernel

. global
: global
: global Vj,

1 gy < get_global_id(0),
. if gr < b then

1 A, < Initial abundance matrix[m x n]
2
3
4
5
6: v+ 0
7
8
9
0
1

Y, < Initial pixel matrix [b X n]

gx < get_global_id(1)

for p=0, n do

v v+ Aglprm+ gyl + Yypx b+ gz
end for
Vylgz xm + gy] < v

. end if

3) Inverse Operator: The size of the matrix to be inverted
is only m x m; therefore, it is preferable to use the highly opti-
mized LAPACK library? to invert the matrix on the CPU it
instead of doing it on the GPU. The transfer time for such a
small matrix is also negligible.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method is
analyzed via two experiments. The first experiment uses a syn-
thetic data set where endmembers from spectral library are
used. In the second experiment, a real data set collected over
the Cuprite mining district in Nevada is used, and the extracted
endmembers are compared against some highly represented
elements using the United States Geological Survey (USGS)
spectral library. For comparative purposes, two other imple-
mentations in addition to the GPU one have been compared:
1) a single thread version of the algorithm in C++ and 2) a high
level implementation in MATLAB. The test hardware for the
parallel version is Nvidia Tesla M2090 GPU with 512 cuda

3[Online]. Available: http://www.netlib.org/lapack, accessed on April 7,
2015.

SIGURDSSON et al.: GPU IMPLEMENTATION OF ICE EXTRACTION

cores, 6 GB of memory, and capable of floating point peak
performance of 1330 GFLOPS. The hardware used to run the
single thread applications is a Linux machine with 64 GB of
main memory and Intel Xeon CPU Model E5-2648L running at
1.80 GHz with a peak performance of 115.2 GFLOPS.

Both the parallel version and the single core versions were
compiled using GNU compiler (g++) with the O3 flag for
highest optimization level and SSE enabled, which allows
significant portion of the QP routine to be vectorized. The
vectorizer verbose output was used to verify that impor-
tant parts of the algorithms source code was vectorized.
Denormal floating point numbers are set to zero in code using
the macro _MM_SET_DENORMALS_ZERO_MODE(_MM _
DENORMALS_ZERO_ON); which does not have significant
impact on accuracy, but can slightly enhances performance.
All matrix and vector operation are performed using optimized
version of the BLAS library, and LAPACK is used to solve
a system of linear equations. To evaluate the accuracy of the
methods, the following metrics are defined.

1) Spectral angle distance (SAD) [2] measures the angle
between two vectors based on their dot product and is
not affected by signal scaling and sign. SAD is given in
degrees and a value of zero means two identical vectors

Ty 180
SAD = cos~! (M> 150
[mll[[]|) =
where m and m are two column vectors.

2) The mean square error (MSE) is denoted as the Frobenius
norm of the difference of two endmember matrices

(14)

MSE = | M — M| . (15)

A. Synthetic Data Set

In this experiment, a synthetic data set is created consist-
ing of 221 bands and 10000 pixels constructed using the
linear mixture model with nine endmembers. This gives us
a complete control over the data set and, therefore, allows
for accurate estimation of the endmember identification and
abundance estimation accuracy. The spectral signatures used to
generate the data are randomly selected from the USGS library.
The abundance matrix is randomly generated using a Dirichlet
distribution [10], so that the samples are uniformly distributed
over the simplex with the exception that no single sample can
have abundance fraction higher than 0.80 to guarantee that no
pure pixels exist in the simulated data. This can, e.g., describe a
low spatial resolution image where each pixel is heavily mixed.
Gaussian noise is then added, so that the signal-to-noise ratio
(SNR) is 50 dB. Table I shows the selected endmembers and
the single maximum abundance of the corresponding spectra in
the simulated abundance matrix.

Fast methods such as PPI or VCA that assume the presence of
pure pixels in the data can be used to extract sane values for the
initialization of the ICE algorithm. In this case, the VCA was
used to extract nine vertices that are used as a starting point. To
facilitate a comparison between the three different versions of
the program, the convergence test in the quadratic programming
solver (Algorithm 2, line 19) is skipped, and a 500 iteration

2945

TABLE I
NINE ENDMEMBERS RANDOMLY SELECTED FROM THE USGS LIBRARY
| Name Maximum abundance
1 | Olivine KI3291 <60um 0.7319
2 | Witherite HS273.3B 0.7214
3 | Dolomite HS102.3B 0.7012
4 | Rutile HS126.3B 0.6729
5 | Jarosite WS368 Pb 0.7015
6 | Praseodymium_Oxide GDS35 0.7656
7 | Erionite+Merlinoit GDS144 0.6560
8 | Coquimbite GDS22 0.6406
9 | Topaz Wigwam_Area_6_#16 0.7072

TABLE II
PROCESSING TIME (IN SECONDS) FOR 5000 ITERATIONS

Program Total time Mean iteration time Relative time
OpenCL 93.63 0.0187 1.00
C++ 4080.56 0.8161 43.64
Matlab 1710.18 0.3420 18.29
OpenCL* 3725 0.0075 0.40
5 —
@) .
(<,C) 4
3 .
2 | I T T T
1 I I I I I]
g 08 .
= 0.6 |- .
0. 4 | | | | I
0 500 1000 1500 2000 2500 3000

Iteration #

Fig. 4. Results from the ICE algorithm by iteration shows: (a) mean SAD score
and (b) mean MSE for the estimated endmembers when compared to their true
values.

limit is set on the loop. This is mainly done to simplify the
vectorization of loops in MATLAB to maximize speed.

To guarantee an accurate value for the mean iteration time,
Algorithm 1 is iterated 5000 times and Table II shows the pro-
cessing time. The slack variable for the ASC constraintis d = 1,
and the quadratic solver is set to 500 iterations (except for entry
marked with asterisk in the table, where the convergence test is
allowed to terminate the loop prematurely) and ;o = 1072,

Fig. 4 shows how the mean SAD and MSE values converge as
the iterations increase. From the plots, it is clear that the quality
of the estimated endmembers increases fast after the first couple
of hundred iterations (and very slowly after 3000 iterations).

To assess the accuracy of the method, a set M of nine end-
members were estimated by iterating the ICE algorithm 3000
times. Then for each extracted endmember, a SAD score was
calculated against a set [that contains each of the nine true
endmember spectra that the data set was created from. The end-
member and spectra with the lowest SAD scores were said to
have the same spectral signature and removed from both M
and F sets. This is repeated until all endmembers in M have
been matched with a spectra from F'. Fig. 5 shows the spectral

2946

| —— Real
—— Estimated

oo

CR0— ORI~ ORI~ ORI OB OB ORI~ ONRI— ORS00~
T $ T T 1
| .

Spectra: 1

Spectra: 2
[en]enlenlen)

2

Spectra: 3
[en]en]enlen)

Spectra: 4
SooOo

o000

Spectra: 5

o000

Spectra: 6

Spectra: 7
SOoOOoOo

Spectra: 8
SOoOOoOo

Cooo

Spectra: 9

|
50 100

| |
150 200

Fig. 5. Estimated endmembers after 3000 iterations of the algorithm. The mean
SAD is 0.038910 and the mean MSE is 0.460266.

signatures from Table I with a matching extracted endmember
and Table III shows the MSE and SAD values for the corre-
sponding pairs. As a reference, mean SAD and MSE values
for initial values for the endmembers that were extracted using
VCA are 5.5079 and 1.1339, respectively. These results indicate
the accuracy obtained by the proposed method in the task of
endmember identification and abundance estimation in the con-
sidered scenario. The soft constraint encourages a sum-to-one
for the abundances, this is verified by summing the abundances
for each pixel, which gives a mean value of 1.0001 and variance
of 0.0018.

B. Cuprite Data Set

In our final experiment, the method is evaluated on a real
hyperspectral data set. The hyperspectral scene used is the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

TABLE III
MSE AND SAD FOR ESTIMATED ENDMEMBERS
Spectra # SAD MSE
1 3.9342 | 0.5558
2 1.1012 | 0.6397
3 1.4643 | 0.4266
4 1.0720 | 0.1559
5 2.3186 | 0.3248
6 4.7394 | 0.5337
7 0.3444 | 0.0568
8 4.0628 | 0.5695
9 1.0277 | 0.8795
| Mean | 2.2294 | 0.4603 |

well-known airborne visible infra-red imaging spectrometer
(AVIRIS) Cuprite data set, available online in reflectance units.*
This scene has been widely used to validate the performance of
endmember extraction algorithms. The portion used in exper-
iments corresponds to a 350 x 350-pixel subset of the sector
labeled as 970619t01p02_r02_sc03.a.rfl in the online data. The
scene comprises 224 spectral bands between 0.4 and 2.5 um,
with nominal spectral resolution of 10 nm. Prior to the analy-
sis, bands 1-2, 105-115, 150-170, and 223-224 were removed
due to water absorption and low SNR in those bands, leaving a
total of 188 spectral bands. The Cuprite site is well understood
mineralogically, and has several exposed minerals of interest,
all included in the USGS library considered in experiments,
denoted splib06’ and released in September 2007. In our exper-
iments, we use spectra obtained from this library to substantiate
the quality of the endmembers derived by MVSA and compare
them with those produced by other algorithms. For illustrative
purposes, Fig. 6 shows a mineral map produced in 1995 by
USGS, in which the Tricorder 3.3 software product was used to
map different minerals present in the Cuprite mining district.®

There are many ways to estimate the accuracy of the
extracted endmembers. For instance, in [39], five spectra
from the USGS library that are highly representative in the
Cuprite data set are compared against 19 extracted endmem-
bers. Specifically, the spectral signatures of the minerals are:
alunite (GDS84), buddingtonite (GDS8S5), calcite (WS272),
kaolinite (KGa-1), and muscovite (GDS107). Table IV shows
the selected spectra and the best SAD in degrees to any of the
endmembers extracted by running ICE for 100 iterations with
1 =0.0001 and § = 8929. The whole AVIRIS Cuprite scene,
comprising 122500 pixels, has been processed, where each
pixel has a spectral dimension of 188 bands. When extract-
ing 19 endmembers, the total processing time is 24.94 s for
the OpenCL version with an average iteration time 0.2494 s.
In the following, we provide a more detailed evaluation of
performance.

4[Online]. Available:
accessed on April 7, 2015.

5[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06, accessed on
April 7,2015.

[Online]. Available: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.
gif, accessed on April 7, 2015.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html,

SIGURDSSON et al.: GPU IMPLEMENTATION OF ICE EXTRACTION

Cuprite, Nevada
AVIRIS 1995 Data
USGS
Clark & Swayze
Tetracorder 3.3 product

2947

TABLE VI
TIME TAKEN BY THE DIFFERENT KERNELS USED BY THE OPENCL
IMPLEMENTATION OF ICE ALLOWING EARLY QP EXIT

Fig. 6. USGS map showing the location of different minerals in the Cuprite
mining district in Nevada.

TABLE IV
BEST SAD BETWEEN SELECTED SPECTRA AND ESTIMATED
ENDMEMBERS IN THE AVIRIS CUPRITE SCENE

Spectra SAD
Alunite GDS84 Na03 3.3647
Buddingtonite GDS85 D-206 | 7.060
Calcite WS272 5.6681
Kaolinite KGa-1 6.3115
Muscovite GDS107 5.7068
Mean | 5.6022 |

TABLE V
TIME TAKEN BY THE DIFFERENT KERNELS USED BY THE OPENCL
IMPLEMENTATION OF ICE

Abund. est. Endm. est.
Total 10
MTy | QP | AAT | AYT
Seconds | 75.070 | 6.390 | 62.100 | 2.140 | 3.680 | 0.760
Relative 1.000 0.085 0.827 | 0.029 | 0.049 | 0.010

C. Evaluation of Performance

To evaluate the computational performance of our OpenCL
implementation of ICE, Table V shows a breakout of the time
taken by the different kernels used in the implementation. The
Cuprite scene is processed the same way as in the previous
section except to simplify comparison the QP solver is set to
500 iterations and the convergence test is skipped. This allows
us to identify which part of the method is the most time con-
suming. As shown by the table, the QP kernel takes up roughly
83% of the total processing time. This is directly proportional
to how many iterations of the QP solver are performed.

Sulfates Abund. est. Endm. est.
K~Alunite 150¢c Total 10
K-Alunite 250c MTY I QP AAT | AYT
K-Alunite 450¢
Nag2-Alunite 100c Seconds | 22.730 6.250 9.940 | 2.080 | 3.720 | 0.740
Nad0-Alunite 400c
Jarosite Relative 1.000 0.275 0.437 | 0.088 | 0.164 | 0.033
Alunite+Kaolinite
and/or Muscovite
Kaolinite group clays
Kaolinite, wxI TABLE VII
Kaolinite, pxI
Kaolinite+smectite COMPARISON OF PERFORMANCE ACHIEVED BY DIFFERENT
or muscovite
U7 Halloysite IMPLEMENTATIONS OF THE ICE ALGORITHM
Dickite
| - ”ég,‘;ﬂe Mean time per iteration (s)
Igg:g;;; thadints Implementation | Total | MTY | QP [AAT [AYT | 10
montmorillonite
aﬂ‘!;a_l OpenCL 0.753 0.063 0.622 0.021 0.037 | 0.009
- Norltror}itE(Fe clay) OpenCL* 0.227 0.063 0.099 0.021 0.037 | 0.006
er minerals
low-Al muscovite C++ 32.506 0.200 32.087 | 0.025 | 0.194 -
d-Al i
B oA muscovite MATLAB 14148 | 0272 | 13817 | 0019 | 0040 | -
[et Speedup 43.169 | 3.175 | 51.587 | 1.190 | 5243 | -
Buddingtonite over C++
| L Chalesdany B8 iz Speedup 18.789 | 4317 | 22214 | 0.905 | 1.081 =
Pyrophyllite +Alunite
— 4N over MATLAB

An obvious modification is to allow the convergence test on
the abundance matrix. This reduces the iterations required for
the QP solver considerably as shown in Table VI. However, in
MATLAB, this is not so simple to implement, since the loops
are vectorized for performance reasons.

Allowing the convergence test to exit the QP loop early will
give slightly different abundance matrices and in turn endmem-
bers. To evaluate the error, normalized mean square error of the
two resulting endmember matrices (M and M) is defined as

1M — M|

nMSE =
M|

(16)

For the previous example, the mean value of the nMSE for the
19 endmembers is found to be 0.0034. This is ultimately a bal-
ance between accuracy and speed. In this case, the cost of mean
nMSE of 0.0034 for 6.2475 speed increase of the QP kernel.
Finally, Table VII provides a comparison between the GPU
times (measured for the different kernels) and for the single
core versions of the algorithm (in MATLAB and C++). The
table also includes details about the transfer times, which are
labeled as I/O (for input/output). The table also provides the
speedup achieved by the GPU implementation from the C++
and the MATLAB version. From this table, we can conclude
that the OpenCL implementation outperforms the other C++
and MATLAB versions by one order of magnitude. The QP
solver has the biggest impact on the overall performance and,
therefore, benefits the most from optimization. The other ker-
nels are rather basic, using global memory fetches that could be
improved, but still compare to and even outperform highly opti-
mized CPU libraries, such as BLAS for C++ and MATLAB.
But as previously stated, the cumulative effect on overall per-
formance is small, so the benefit of the optimization is smaller
than for the QP kernel. This is evident in line 2 of Table VII,

2948

where the convergence test of the QP kernel has been enabled
and the iteration time is considerably reduced even further.

V. CONCLUSION AND FUTURE RESEARCH

In this work, we have developed a GPU implementation of
the ICE algorithm for endmember identification in remotely
sensed hyperspectral data. This algorithm is an instance of the
family of algorithms that do not assume the presence of pure
pixels in the data, and has been successfully used in many sce-
narios. Our implementation utilizes the parallel nature of GPUs
to accelerate the algorithm, and has been developed in OpenCL,
which allows its portability to GPU cards developed by any
vendor. The evaluation of the parallel implementation has been
conducted using both synthetic and real data sets, obtaining
very promising results. When compared to a single core ver-
sion using MATLAB and C++, the GPU implementation is
shown to be orders of magnitude faster. The method is also eas-
ily scalable to increase the number of desired endmembers or
pixels to process in the original hyperspectral image. Although
the results obtained are very promising, it is felt that the per-
formance of the parallel algorithm can be further increased in
future developments by resorting to multi-GPU platforms. A
more detailed comparison of other parallel endmember iden-
tification algorithms implemented on GPUs with OpenCL is
desirable.

REFERENCES

[1] J. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.

[2] N. Keshava and J. F. Mustard, “Spectral unmixing,” /EEE Signal Process.
Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002.

[3] A.Plaza et al., “Recent advances in techniques for hyperspectral image

processing,” Remote Sens. Environ., vol. 113, pp. 110-122, 2009.

A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and com-

parative analysis of endmember extraction algorithms from hyperspectral

data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663,

Mar. 2004.

A. Plaza, Q. Du, J. Bioucas-Dias, X. Jia, and F. Kruse, “Foreword to the

special issue on spectral unmixing of remotely sensed data,” IEEE Trans.

Geosci. Remote Sens., vol. 49, no. 11, pp. 4103—4110, Nov. 2011.

R. Heylen, M. Parente, and P. Gader, “A review of nonlinear hyperspec-

tral unmixing methods,” IEEE J. Sel. Topics Appl. Earth Observ. Remote

Sens., vol. 7, no. 6, pp. 1844—-1868, Jun. 2014.

[71 M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Sparse unmixing of

hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6,

pp. 2014 —2039, Jun. 2011.

J. Bioucas-Dias and J. Nascimento, “Hyperspectral subspace identifica-

tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445,

Aug. 2008.

J. Boardman, “Automating spectral unmixing of AVIRIS data using con-

vex geometry concepts,” in Proc. Ann. JPL Airborne Geosci. Workshop,

vol. 1, 1993, pp. 11-14.

[10] J. Nascimento and J. Bioucas-Dias, “Vertex component analysis: A fast
algorithm to unmix hyperspectral data,” [EEE Trans. Geosci. Remote
Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.

[11] C.-I. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, “A new growing
method for simplex-based endmember extraction algorithm,” IEEE Trans.
Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.

[12] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex vol-
ume maximization framework for hyperspectral endmember extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177-4193, Nov.
2011.

[13] N. Gillis and S. Vavasis, “Fast and robust recursive algorithms for sepa-
rable nonnegative matrix factorization,” arXiv preprint arXiv:1208.1237,
2012.

[4

=

[5

—

[6

—_

[8

—

[9

—

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

[14] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
endmember determination in hyperspectral data,” in Proc. SPIE Image
Spectrom. V., vol. 3753, 1999, pp. 266-277.

[15] R. A.Neville, K. Staenz, T. Szeredi, J. Lefebvre, and P. Hauff, “Automatic
endmember extraction from hyperspectral data for mineral exploration,”
in Proc. Can. Symp. Remote Sens., 1999, pp. 21-24.

[16] M. Craig, “Minimum-volume transforms for remotely sensed data,” [EEE
Trans. Geosci. Remote Sens., vol. 32, pp. 542-552, May 1994.

[17] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and
J. F. Huntington, “ICE: A statistical approach to identifying endmem-
bers in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 42,
no. 10, pp. 2085-2095, Oct. 2004.

[18] L. Miao and H. Qi, “Endmember extraction from highly mixed data using
minimum volume constrained nonnegative matrix factorization,” /EEE
Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.

[19] A.Zare and P. Gader, “Sparsity promoting iterated constrained endmem-
ber detection for hyperspectral imagery,” IEEE Geosci. Remote Sens.
Lett., vol. 4, no. 3, pp. 446450, Jul. 2007.

[20] J. Bioucas-Dias, “A variable splitting augmented Lagrangian approach to
linear spectral unmixing,” in Proc. IEEE GRSS Workshop Hyperspectral
Image Signal Process.: Evol. Remote Sens. (WHISPERS), 2009
pp. 1-4.

[21] T.Chan, C. Chi, Y. Huang, and W. Ma, “Convex analysis based minimum-
volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE
Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.

[22] J. Nickolls and W. J. Dally, “The GPU computing era,” [EEE Micro,
vol. 30, pp. 56-69, Mar.—Apr. 2010.

[23] A. Plaza, J. Plaza, A. Paz, and S. Sdnchez, “Parallel hyperspectral image
and signal processing,” IEEE Signal Process. Mag., vol. 28, no. 3,
pp. 119-126, May 2011.

[24] S. Sanchez and A. Plaza, “GPU implementation of the pixel purity index
algorithm for hyperspectral image analysis,” in Proc. IEEE Int. Conf.
Cluster Comput. Workshops Posters (CLUSTER WORKSHOPS’10),
2010, pp. 1-7.

[25] S. Séanchez, G. Martin, and A. Plaza, “Parallel implementation of
the N-FINDR endmember extraction algorithm on commodity graph-
ics processing units,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS’10), 2010, pp. 955-958.

[26] A.Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral endmember
extraction by multidimensional morphological operations,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002.

[27] J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, “Parallel
morphological endmember extraction using commodity graphics hard-
ware,” IEEE Geosci. Remote Sens. Lett., vol. 43, no. 3, pp. 441-445,
Jul. 2007.

[28] S. Sanchez, A. Paz, G. Martin, and A. Plaza, “Parallel unmixing of
remotely sensed hyperspectral images on commodity graphics processing
units,” Concurrency Comput.: Pract. Exper., vol. 23, no. 13, pp. 1538—
1557, Sep. 2011.

[29] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. Benediktsson, and
R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-core proces-
sors: A comparison,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.,
vol. 6, no. 3, pp. 13861398, Jun. 2013.

[30] S. Sanchez, G. Leon, A. Plaza, and E. Quintana-Orti, “Assessing the
performance-energy balance of graphics processors for spectral unmix-
ing,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 7, no. 6,
pp. 2305-2316, Jun. 2014.

[31] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and
J. F. Huntington, “Ice: A statistical approach to identifying endmem-
bers in hyperspectral images: Learning from Earth’s shapes and colors,”
IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085-2095,
Oct. 2004.

[32] M. Castillo, J. Fernandez, F. Igual, A. Plaza, E. Quintana-Orti, and
A. Remon, “Hyperspectral unmixing on multicore DSPs: Trading off
performance for energy,” IEEE J. Sel. Top. Appl. Earth Observ. Remote
Sens., vol. 7, no. 6, pp. 2297-2304, Jun. 2014.

[33] S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, and
A. Plaza, “The promise of reconfigurable computing for hyperspectral
imaging onboard systems: A review and trends,” Proc. IEEE, vol. 101,
no. 3, pp. 698-722, Mar. 2013.

[34] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance
comparison of CUDA and OpenCL,” in Proc. Int. Conf. Parallel Process.
(ICPP’11),2011, pp. 216-225.

[35] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Comput., vol. 38, no. 8,
pp. 391-407, 2012.

SIGURDSSON et al.: GPU IMPLEMENTATION OF ICE EXTRACTION

[36] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear spec-
tral mixture analysis method for material quantification in hyperspectral
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545,
Mar. 2001.

[37] F. Sha, L. K. Saul, and D. D. Lee, “Multiplicative updates for nonnegative
quadratic programming in support vector machines,” in Proc. Adv. Neural
Inf. Process. Syst., 2002, pp. 1041-1048.

[38] J. Sigurdsson, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral
unmixing with [_{q} regularization,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 11, pp. 6793-6806, Nov. 2014.

[39] G. Martin and A. Plaza, “Region-based spatial preprocessing for end-
member extraction and spectral unmixing,” IEEE Geosci. Remote Sens.
Lett., vol. 8, no. 4, pp. 745-749, Jul. 2011.

Eysteinn Mar Sigurdsson received the B.S. degree
in 2006 and the M.S. degree in 2008, both in electri-
cal and computer engineering from the University of
Iceland, Reykjavik, Iceland. He is currently pursuing
the Ph.D. degree in electrical and computer engi-
neering from the Faculty of Electrical and Computer
Engineering, University of Iceland.

His research interests include hyperspectral image
processing and high-performance computing.

Antonio Plaza (M’05-SM’07-F’15) was born in
Caceres, Spain, in 1975. He received the Computer
Engineer degree in 1997, the Master degree in com-
puter engineering in 1999, and the Ph.D. degree
in computer in engineering in 2002, all from the
University of Extremadura, Caceres, Spain.

He is an Associate Professor (with accredita-
tion for Full Professor) with the Department of
Technology of Computers and Communications,
University of Extremadura, Caceres, Spain, where
he is the Head of the Hyperspectral Computing
Laboratory (HyperComp). He has been the advisor of 12 Ph.D. disserta-
tions and more than 30 M.Sc. dissertations. He was the Coordinator of the
Hyperspectral Imaging Network, a European project with total funding of 2.8
million Euro. He has authored more than 400 publications, including 142 jour-
nal papers (92 in IEEE journals), 20 book chapters, and over 240 peer-reviewed
conference proceeding papers (94 in IEEE conferences). He has edited a book
on High-Performance Computing in Remote Sensing (CRC Press/Taylor &
Francis) and guest edited eight special issues on hyperspectral remote sensing
for different journals. He has served as a Proposal Evaluator for the European
Commission, the National Science Foundation, the European Space Agency,
the Belgium Science Policy, the Israel Science Foundation, and the Spanish
Ministry of Science and Innovation. He has reviewed more than 500 articles
for over 50 different journals. His research interests include hyperspectral data
processing and parallel computing of remote sensing data.

Dr. Plaza served as the Director of Education Activities for the IEEE
Geoscience and Remote Sensing Society (GRSS) in 2011-2012, and is cur-
rently serving as President of the Spanish Chapter of IEEE GRSS (since
November 2012). He is currently serving as the Editor-in-Chief of the
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING journal.
He is also an Associate Editor for IEEE ACCESS, and was a member of
the Editorial Board of the IEEE GEOSCIENCE AND REMOTE SENSING
NEWSLETTER (2011-2012) and the IEEE GEOSCIENCE AND REMOTE
SENSING MAGAZINE (2013). He was also a member of the Steering
Committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (JSTARS). He was a recipient of
the Recognition of Best Reviewers of the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS, in 2009, the Recognition of Best Reviewers of the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, in 2010, a jour-
nal for which he served as Associate Editor in 2007-2012, the 2013 Best Paper
Award of the JSTARS journal, the most highly cited paper (2005-2010) in
the Journal of Parallel and Distributed Computing, the Best Paper Awards
at the IEEE International Conference on Space Technology and the IEEE
Symposium on Signal Processing and Information Technology, and the best
Ph.D. Dissertation Award at the University of Extremadura.

2949

Jon Atli Benediktsson (S’84-M’90-SM’99-F’04)
received the Cand.Sci. degree in electrical engi-
neering from the University of Iceland, Reykjavik,
Iceland, in 1984, and the M.S.E.E. and Ph.D. degrees
in electrical engineering from Purdue University,
West Lafayette, IN, USA, in 1987 and 1990, respec-
tively.

He is currently Rector and Professor of Electrical
and Computer Engineering at the University of
Iceland. He is the Co-Founder of the biomedical
start-up company Oxymap, Reykjavik, Iceland. His
research interests include remote sensing, biomedical analysis of signals, pat-
tern recognition, image processing, and signal processing, and he has published
extensively in those fields.

Dr. Benediktsson was the President of the IEEE Geoscience and
Remote Sensing Society (GRSS), 2011-2012, and has been on the GRSS
Administrative Committee, since 2000. He was Editor-in-Chief of the IEEE
Transactions on Geoscience and Remote Sensing (TGRS) from 2003 to
2008 and has served as Associate Editor of TGRS since 1999, the IEEE
GEOSCIENCE AND REMOTE SENSING LETTERS since 2003 and IEEE
ACCESS since 2013. He was a member of the 2014 IEEE Fellow Committee.
He is a member of the Association of Chartered Engineers in Iceland (VFI),
Societas Scinetiarum Islandica, and Tau Beta Pi. He is on the Editorial Board
of the PROCEEDINGS OF THE IEEE, the International Editorial Board of the
International Journal of Image and Data Fusion and was the Chairman of
the Steering Committee of the IEEE JOURNAL OF SELECTED TOPICS IN
APPLIED EARTH OBSERVATIONS AND REMOTE SENSING (JSTARS) from
2007 to 2010. He is a Fellow of the Society of Photographic Instrumentation
Engineers (SPIE). He was the recipient of the Stevan J. Kristof Award from
Purdue University in 1991 as an Outstanding Graduate Student in remote sens-
ing, the Icelandic Research Council’s Outstanding Young Researcher Award in
1997, the IEEE Third Millennium Medal in 2000, the Yearly Research Award
from the Engineering Research Institute of the University of Iceland in 2006,
the Outstanding Service Award from the IEEE Geoscience and Remote Sensing
Society in 2007, and the IEEE/VFI Electrical Engineer of the Year Award
in 2013. He was the corecipient of the University of Iceland’s Technology
Innovation Award in 2004, the 2012 IEEE Transactions on Geoscience and
Remote Sensing Paper Award, the IEEE GRSS Highest Impact Paper Award
in 2013 and the 2012-2013 Best Paper Award from the International Journal of
Image and Data Fusion.

