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Abstract—Spatial–spectral classification is a very important
topic in the field of remotely sensed hyperspectral imaging. In this
work, we develop a parallel implementation of a novel supervised
spectral–spatial classifier, which models the likelihood probability
via l1 − l2 sparse representation and the spatial prior as a Gibbs
distribution. This classifier takes advantage of the spatial piece-
wise smoothness and correlation of neighboring pixels in the spa-
tial domain, but its computational complexity is very high which
makes its application to time-critical scenarios quite limited. In
order to improve the computational efficiency of the algorithm, we
optimized its serial version and developed a parallel implementa-
tion for commodity graphics processing units (GPUs). Our parallel
spatial–spectral classifier with sparse representation and Markov
random fields (SSC-SRMRF-P) exploits the low-level architecture
of GPUs. The parallel optimization of the proposed method has
been carried out using the compute unified device architecture
(CUDA). The performance of the parallel implementation is evalu-
ated and compared with the serial and multicore implementations
on central processing units (CPUs). In fact, the proposed method
has been designed to adequately exploit the massive data parallel
capacities of GPUs together with the control and logic capacities of
CPUs, thus resorting to a heterogeneous CPU–GPU framework in
the design of the parallel algorithm. Experimental results using
real hyperpsectral images demonstrate very high performance

Manuscript received October 22, 2014; revised February 08, 2015; accepted
March 13, 2015. Date of publication March 30, 2015; date of current version
July 30, 2015. This work was supported in part by the National Natural
Science Foundation of China under Grant 61471199, Grant 61101194 and
Grant 11431015, in part by the Jiangsu Provincial Natural Science Foundation
of China under Grant BK2011701, in part by the China Scholarship Fund under
Grant 201406845012, in part by the Research Fund for the Doctoral Program
of Higher Education of China under Grant 20113219120024, in part by the
Jiangsu Province Six Top Talents project of China under Grant WLW-011, and
in part by the China Academy of Space Technology Innovation Foundation
under Grant CAST201227.

Z. Wu is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China, and also
with the Hyperspectral Computing Laboratory, Department of Technology
of Computers and Communications, Escuela Politécnica, University of
Extremadura, Cáceres E-10003, Spain (e-mail: zebin.wu@gmail.com).

Q. Wang, L. Sun, and Z. Wei are with the School of Computer
Science and Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China (e-mail: wqclandy@163.com; sunlecncom@163.com;
gswei@njust.edu.cn).

A. Plaza is with the Hyperspectral Computing Laboratory, Department
of Technology of Computers and Communications, Escuela Politécnica,
University of Extremadura, Cáceres E-10003, Spain (e-mail: aplaza@unex.es).

J. Li is with the Guangdong Provincial Key Laboratory of Urbanization, Geo-
simulation, and Center of Integrated Geographic Information Analysis, School
of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
(e-mail: lijun48@mail.sysu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2413931

for the proposed CPU–GPU parallel method, both in terms of
classification accuracy and computational performance.

Index Terms—Compute unified device architecture (CUDA),
graphics processing units (GPUs), hyperspectral imaging, Markov
random fields (MRFs), parallel implementation, sparse represen-
tation, spatial–spectral classification.

I. INTRODUCTION

C LASSIFICATION is an important technique for remotely
sensed hyperspectral data exploitation [1]. Hyperspectral

instruments acquire images in hundreds of narrow and contin-
uous spectral bands, which provide detailed spectral signatures
of the observed image objects [2]. Since different materials usu-
ally reflect electromagnetic energy differently at specific wave-
lengths, it is generally known that land-cover classification can
be performed more effectively with hyperspectral scenes than
with panchromatic and multispectral images [3]. Therefore,
hyperspectral image (HSI) classification has been applied in
many application domains, such as environmental monitor-
ing, geologic surveys, and agricultural production. Moreover,
high classification accuracy is important for proper decision-
making in many critical scenarios [1], including for instance
precision agriculture, urban planning, or military reconnais-
sance. However, HSI classification is subject to important
challenges, such as high dimensionality and insufficient train-
ing samples in practice, which pose significant challenges to
HSI classification.

Among many techniques for HSI classification, supervised
approaches have received a lot of interest [2]. Classification
with kernel methods such as support vector machines (SVMs)
[4] has been complemented using spatial information extraction
using different strategies, most notably Markov random fields
(MRFs) [5], [6] and morphological profiles [7], including tech-
niques embedded in multiple kernel learning frameworks [8].
Sparse representation methods [9], [10] have also been widely
used for HSI classification. Other important trends in HSI clas-
sification comprise the use of graph-based methods [11], [12].
Probabilistic classifiers such as the multinomial logistic regres-
sion (MLR) [13] (possibly complemented with spatial-based
techniques such as the MRF) have also found great success in
the recent literature, including sparse versions [14], strategies
embedded in active learning frameworks [15], [16], and gener-
alized kernel-based approaches [17]. Most of these techniques
rely on the assumption that, in natural scenes, there are large
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homogeneous regions, where the neighboring pixels within the
regions probably consist of the same type of material and have
similar spectral characteristics. As a result, the spatial contex-
tual correlation has been exploited in combination with spectral
information via a preprocessing procedure [18], or during the
classification process itself [19]–[21] (possibly including sparse
representation strategies [22]), or as a postprocessing [23].

Taking advantage of the spatial piecewise smoothness and
the expected correlation of neighboring pixels in natural scenes,
in [21], we proposed a novel supervised spectral–spatial clas-
sifier with sparse representation and MRF-based spatial prior
under the Bayesian framework. This classifier models the like-
lihood probability via an l1 − l2 sparse representation method,
and the spatial prior is modeled as a Gibbs distribution, which
specifies an MRF on the classification labels. As shown in
[21], the classification accuracy of this method is comparable
or superior to that exhibited by many other state-of-the-art tech-
niques. However, its computational complexity was shown to be
very high, thus limiting its application in time-critical scenar-
ios. The reason is not only the extremely high dimensionality
of hyperspectral data, but also that the sparse representation-
based strategy adopted by this classifier searches for dedicated
atoms in the training dictionary for each pixel under test [24],
not involving a training stage like other supervised methods
such as the SVM. This results in a computational complexity
that is even higher than SVM-based classification.

With the rapid development of high performance comput-
ing technologies, it is now possible to significantly accelerate
the HSI processing algorithms in parallel computer architec-
tures [25], such as Beowulf clusters and distributed computers
[26], multicore central processing units (CPUs) [27], field-
programmable gate arrays (FPGAs) [28], or graphics process-
ing units (GPUs) [29]. Among these, heterogeneous CPU–GPU
techniques offer a tremendous potential to bridge the gap
toward real-time analysis of HSIs [30], combining the mas-
sively parallel and data intensive computation abilities of GPUs
[31] with the good logic control ability of CPUs [32], [33].

In this paper, we develop a new strategy for accelerating
the computational performance of spatial–spectral classifiers
with sparse representation and MRFs on CPU–GPU heteroge-
neous platforms. The proposed parallel implementation prop-
erly exploits the CPU–GPU architecture at low level and makes
effective use of the computational power of both CPUs and
GPUs in synergetic fashion. The operations relevant to large
data and intensive computations are carried out on the GPUs,
while the rest of the operations (mostly related with control) are
executed on the CPU. A parallel optimization of the proposed
methods using NVIDIA’s compute unified device architecture
(CUDA) for GPUs are described and evaluated in detail. The
performance of the proposed CPU–GPU parallel implementa-
tion is assessed using real hyperspectral datasets and compared
with both serial and multicore implementations on CPUs.

This paper is organized as follows. Section II describes
the supervised HSI classification using sparse representation
and MRFs. Section III presents its parallel implementation
on CPU–GPU heterogeneous platforms. Section IV exper-
imentally assesses the proposed method in terms of both

Fig. 1. Framework of the proposed spatial–spectral classifier based on sparse
representation and MRF (SSC-SRMRF).

classification accuracy and computational performance. Finally,
Section V concludes with some remarks and hints at plausible
future research lines.

II. SPATIAL–SPECTRAL CLASSIFIER BASED ON SPARSE

REPRESENTATION AND MRF

A. Classifier Framework

To describe the proposed classifier in mathematical terms, let
us assume that there are K distinct classes, including l train-
ing samples in total. The kth class has lk training samples,
denoted as Ak = [ak

1 ,a
k
2 , . . . ,a

k
lk
] ∈ RL×lk , where L is the

number of spectral bands. Let x = [x1,x2, . . . ,xN ] ∈ RL×N

be a HSI with N pixels, and y = [y1, y2, . . . , yN ] be an image
of class labels, where xi ∈ RL is an L-dimensional hyperspec-
tral pixel observation, and yi ∈ {1, 2, . . . ,K} is the class label
corresponding to the ith pixel.

In a Bayesian framework [19], the proposed classifier can be
defined by maximizing the posterior of y for a given HSI x in
the following expression:

p(y |x ) ∝ p(x |y )p(y) (1)

where p(x |y ) is the likelihood distribution and p(y) is the
prior distribution of the class labels y. Based on model (1),
a sparse representation can be introduced to model the prob-
ability p(x |y ), which directly forms a structured dictionary
[9] from the concatenation of several class-wise subdictionar-
ies consisting of training samples, and expresses an unknown
pixel as a sparse vector whose nonzero entries correspond to
the weights of the selected training samples. Then, the MRF is
used to model the spatial prior p(y). The framework adopted
to implement the proposed spatial–spectral classifier based on
sparse representation and MRF (SSC-SRMRF) is summarized
in Fig. 1. Details of the classifier are given in the following
subsections.
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B. Sparse Representation Classification Based on l1 − l2
Regularization

Sparse representation methods rely on the assumption that, if
a single pixel in a HSI belongs to the kth class, then its spectrum
approximately lies in a low-dimensional subspace spanned by
the training samples of the kth class, which can be compactly
represented by a linear combination of these training samples
[9]. The sparse representation of an unknown pixel is expressed
as a sparse vector whose nonzero entries correspond to the
weights of the selected training samples [22]. The class label
of the test sample can be easily determined via the sparse vec-
tor that is recovered by solving a sparse optimization problem.
For an unknown test sample xi ∈ RL, it can be modeled as
follows:

xi = A1s1 +A2s2 + · · ·+AKsK + n

= [A1 · · ·AK ][s1 · · · sK ]T + n = Asi + n
(2)

where A = [A1,A2, . . . ,AK ] ∈ RL×l is a structured dic-
tionary formed from the concatenation of several class-wise

subdictionaries consisting of training samples l =
K∑

k=1

lK , n

is Gaussian noise with zero mean, si = [si
1, . . . , si

K ]T ∈ Rl

is a sparse vector formed by concatenating the sparse vec-
tors {sik}k=1,2,...,K , and si

k = [ski1, s
k
i2, . . . , s

k
ilk

]T ∈ Rlk is
an unknown sparse vector whose entries are the weights of the
corresponding atoms in the subdictionary Ak. According to the
physical characteristics of the HSI, si satisfies the nonnegativity
and sum-to-one constraints.

For a certain HSI, its noise n is fixed, and
K∑

k=1

si
K = 1 (sum-

to-one constraint), thus the likelihood probability p(xi |yi) (the
condition likelihood of any xi given the training samples in the

kth class) is proportional to
lk∑
j=1

sij
k, i.e.,

p(xi |yi = k ) ∝
lk∑
j=1

sij
k. (3)

Let us now suppose that the probabilities of every sam-
ple assigned to the kth class are equal, i.e., p(yi) = 1

K , and
the samples are independent of each other. Then, the poste-
rior probability of a spectral-only classification process can be
simply formulated as follows:

p(yi = k |xi ) ∝ p(xi |yi = k )p(yi)

∝
lk∑
j=1

sij
k.

(4)

Therefore, the spectral-only classification process can be
simplified as the solution of sparse coefficients s of sample
x under the sum-to-one constraint. Under a sparse representa-
tion framework, the likelihood probability of sample xi can be
solved by the following l1 − l2 optimization problem

ŝi = argmins
1

2
‖xi −Asi‖22 + λ(‖si||1 − ‖si||2)

s.t. si ≥ 0, 1Tsi = 1
(5)

where ‖si||1 =
J∑

j=1

|sij | is l1-norm, ‖si||2 =

(
J∑

j=1

sij
2

) 1
2

is

l2-norm, and λ is a scalar regularization parameter. In order to
reduce the influence of spectral noise and enhance the spatial
piecewise smoothness of the classified image, we use a filtering
function to preprocess the HSI. Moreover, ‖si||1 ≡ 1 under the
sum-to-one constraint. Then, model (5) can be rewritten as

ŝi = argmins

{
1

2
‖Hf ∗ xi −Asi‖22 −

λ

2
‖si‖22

}
s.t. si ≥ 0, 1Tsi = 1

(6)

where Hf is a filter function, such as the mean filter and
Gaussian filter. The aforementioned expression can be rewrit-
ten with Lagrange multipliers. It can be efficiently solved based
on the alternating direction method of multipliers (ADMM) as
described in [34] and [35]

ŝi = argmins

⎧⎨
⎩

1

2
‖Hf ∗ xi −Asi‖22 −

λ

2
‖si‖22

+ l{1}(1Tsi) + lRn
+
(si)

⎫⎬
⎭ (7)

where Rn
+ denotes a positive vector space, and lC(x) is

an indicative function (if x ∈ C, lC(x) = 1; x �= 0, lC(x) =
+∞).

C. Spatial Prior Based on MRF

The above model takes advantage of the spectral informa-
tion only. In order to include spatial information, the MRF is
an efficient tool for modeling the spatial prior. According to
Hammersly–Clifford theory [36], Gibbs distribution is equiva-
lent to MRF. Thus, a Gibbs distribution is used in this work to
model the spatial priori in order to specify an MRF on the clas-
sification labels. It encourages neighboring pixels to be labeled
into the same class in any direction and can lead to piecewise
smoothness in the final classification map. The spatial priori is
defined as follows:

p(y) =
1

z
exp

⎧⎨
⎩−

∑
|i−j|<δ

|yi − yj |
⎫⎬
⎭ (8)

where z is a normalization coefficient, i and j refer to pixel
indexes. ∀i ∈ {1, 2, . . . , N}, class label yi ∈ {1, 2, . . . ,K}. δ
is used to control the size of neighborhood. In this work, we
take account only a small neighborhood of 2× 2 pixels for
simplicity. Thus, δ is set to be 1, unless otherwise specified.

D. Spatial–Spectral Classifier Based on Sparse Representation
and MRF

Given the definitions in Sections II-B and II-C, our SSC-
SRMRF can be summarized by the following expression:

ŷ = argminy

⎧⎨
⎩−

∑
i∈{1,2,...,N}

log p(xi |yi )+μs

∑
|i−j|<δ

|yi−yj |
⎫⎬
⎭

(9)
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where the first term is spectral fidelity term p(xi |yi ) =
lk∑

k=1

ŝki

and ŝ is the solution of model (7). The second term is a priori
constraint of spatial correlation, which encourages the pixels
in a neighborhood to belong to the same class in the spatial
domain. Finally, μs is a smoothness parameter introduced to
balance the two aforementioned terms.

E. Serial Algorithm

In order to obtain the final classification, we first use ADMM
to solve the model (7) and estimate the abundance coefficients
of the test samples. Then, we use the spatial–spectral model
(9). Taking into consideration that class label yi is a discrete
integer, the MRF model (9) is difficult to solve. Recently,
graph cuts [37]–[39], which are energy minimization algo-
rithms, have been adopted to efficiently tackle this kind of
optimization problems. The graph cut algorithm presented in
[38] has computational complexity of polynomial order, and
therefore we use it to solve model (9) in this work. Furthermore,
taking into consideration that it is time-consuming to serially
perform the classification per pixel, and that many optimized
linear algebra libraries (MKL [40], CULA [41], and CUBLAS
[42]) achieve high execution performance for matrix comput-
ing, especially for GPU parallel implementations [43], [44], we
carefully orchestrate the pixel-wise algorithm as matrix batch
computing by fitting all the test samples in a matrix for improv-
ing its execution performance. To sum up, the serial algorithm
for the spatial–spectral classifier based on sparse representation
and MRFs (referred to hereinafter as SSC-SRMRF-S) is given
in Algorithm 1.

Algorithm 1. Serial algorithm of spatial–spectral classifier
based on SR and MRF (SSC-SRMRF-S)

Input: Training samples set A ∈ RL×l, number of classes K,
test samples set x = [x1,x2, . . . ,xN ] ∈ RL×N ,
Initialization: Set m = 0, choose threshold t1, t2, maxi-
mum iteration M , filter function Hf , regularization parame-
ters μ > 0, λ > 0, μs > 0, initialize u0 = (0, 0, . . . , 0), d0 =
(0, 0, . . . , 0)
Step 1. x̃ = Hf ∗ x
Step 2. Calculate ŝ

Do:
Step 2.1. H = ATA+ (μ− λ)I
Step 2.2. w = AT x̃+ μ(u(m) + d(m))
Step 2.3. c = H−11(1TH−11)−1

Step 2.4. s(m+1) = H−1w − c1TH−1w + c
Step 2.5. u(m+1) = max(s(m+1) + d(m), 0)
Step 2.6. d(m+1) = d(m) − (s(m+1) − u(m+1))
Step 2.7. r1 =

∥∥s(m+1) − u(m+1)
∥∥
F

,
r2 = ‖u(m+1)−u(m)‖F

Step 2.8. m = m+ 1
While r1 ≥ t1, r2 ≥ t2, or m < M

Step 3. p̂(xi |yi = k) =
lk∑
j=1

ŝkij , for i = 1, 2, . . . , N

Fig. 2. Percentage of total CPU time consumed by different steps when
processing the AVIRIS Indian Pines dataset.

Step 4. P = [p̂(x1 |y1 ), . . . , p̂(xN |yN )]
Step 5. y = Graphcut(P , μs)
Output: y the Class labels of x.
End

III. PARALLEL IMPLEMENTATION ON CPU–GPU
HETEROGENEOUS PLATFORM

In this section, we describe the parallel implementation of the
spatial–spectral classifier with sparse representation and MRFs
(referred to hereinafter as SSC-SRMRF-P) on a heterogeneous
CPU–GPU platform, including how the overall computation
is decomposed and scheduled onto the CPU and GPU, and
how data transfers between the CPU and GPU memories are
carried out.

A. Framework for the Parallel Implementation

Although the solution of SSC-SRMRF can be effectively
computed based on the ADMM and graph cuts, it is still quite
expensive in computational terms. Our theoretical analysis
shows that the iterative solution for s in Step 2 of Algorithm 1
is the most time consuming part of the algorithm, as it includes
heavy computations with big matrices. Furthermore, the exper-
imental analysis of the serial algorithm execution using the
AVIRIS Indian Pines hyperspectral dataset with 1043 training
samples (details of the dataset will be given in Section IV-A)
indicates that the computations involved in Step 2 take almost
99% of the total execution, as Fig. 2 shows. However, the
calculation of Graphcut in Step 5 is quite efficient, and has
been proven to exhibit polynomial computational complexity
in [38]. Moreover, Fig. 2 reveals that the computation time of
Graphcut represents less than 0.5% of the total execution time
of Algorithm 1.

Taking into consideration that the CPU is efficient in per-
forming logic control operation and small data computations,
while the GPU architecture is more effective for massive data
parallel computations with more structured memory access
patterns, we assign the calculations related with high dimen-
sional pixel vectors and big matrices to the GPU. Meanwhile,
we allocate part of the computations operating on small data
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Fig. 3. Framework of the parallel spatial–spectral classifier based on sparse representation and MRF (SSC-SRMRF-P).

structures (such as Graphcut) to the CPU, so as to dramati-
cally reduce the data transfer between the device (GPU) and
the host (CPU). According to CUDA programming paradigms,
when executing a function (or kernel) on the device (GPU),
one has to allocate memory on it, transfer data from the host
to the GPU, and finally transfer data back to the CPU, freeing
the device memory. The data transfer is very time-consuming,
so we try to minimize the number of data movements by
optimizing the work allocation between the CPU and the GPU.
The SSC-SRMRF-P is designed as illustrated graphically in
Fig. 3.

In the following section, we describe the different steps and
architecture-related optimizations carried out in the develop-
ment of the proposed parallel implementation.

B. Details of the Parallel Implementation

The calculation of Step 2 in Algorithm 1 is a complicated
iterative procedure, in which the matrix inversion of H inside
the loop is the most complex operation. In the case of HSI
classification, the labeled samples in matrix A are fixed. Thus,
it is possible to precompute the singular value decomposition
(SVD) of ATA (i.e. ATA = S ·Σ · V ), and then calculate
H−1 = S · diag(1./(diag(Σ) + (μ− λ))) · V with the same
time complexity as a matrix multiplication operation, where
diag(x) denotes the main diagonal of x, if x is a matrix, or a
matrix with x as its main diagonal, if x is a vector. Therefore,
this operation is ideally suited for GPU implementation as it
avoids the inverse operation, which is very difficult to imple-
ment on GPUs (the same functionality can be obtained with
simpler operations). For the purpose of efficient parallelization,

the calculation of Step 2 can be modified as indicated in
Algorithm 2.

Algorithm 2. Modification of Step 2 in Algorithm 1

Step 2.1. [S,Σ,V ] = SV D(ATA)
Step 2.2. H−1 = S · diag(1./(diag(Σ) + (μ− λ))) · V
Step 2.3. c = H−11(1TH−11)−1

Step 2.4. F = H−1 − c1TH−1

Step 2.5. T = AT x̃
Do:

Step 2.6. w = T + μ(uk + dk)
Step 2.7. B = Fw
Step 2.8. sk+1 = B + c
Step 2.9. uk+1 = max(sk+1 + dk, 0)
Step 2.10. dk+1 = dk − (sk+1 − uk+1)
Step 2.11. r1 = ‖sk+1 − uk+1‖F , r2 = ‖uk+1 − uk‖F
Step 2.12. k = k + 1

While r1 ≥ t1, r2 ≥ t2, or k < M

First, the matrix multiplication ATA in Step 2.1 of
Algorithm 1 is realized using functions culaDeviceDgemm,
which is included in the highly efficient GPU-accelerated linear
algebra libraries of CULA [40], developed by EM photon-
ics in partnership with NVIDIA. Then, the SVD of ATA is
calculated by culaDeviceDgesvd of CULA in the GPU.

For the computation of Step 2.2, a kernel function
called E_kernel is defined to carry out the operation
diag(1./(diag(Σ) + (μ− λ))). Since the size of Σ is l × l,
we start a l × l thread grid on the GPU, and each thread
takes charge of the calculation for one matrix element. The
THREAD_SIZE and BLOCK_SIZE variables, respectively
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denoting the number of processing threads and processing
blocks, are set to 16× 16 and ((l + 16− 1)/16)× ((l + 16−
1)/16) in order to optimize the allocation of resources in the
GPU. Immediately after finishing the execution of E_kernel,
culaDeviceDgemm is invoked to complete the computation of
Step 2.2.

The main operations from Step 2.3 to 2.7 are related with
matrix multiplications, which can be efficiently performed
by function culaDeviceDgemm. In addition, the subtraction
operation in Step 2.4 and addition operation in Step 2.6 are
implemented by kernel functions F_kernel and w_kernel,
respectively, which conduct the mapping between thread and
pixel on GPU, and each thread is responsible for the calculation
related to one pixel.

Since the cost of I/O communication between the host (CPU)
and the device (GPU) is quite expensive, the data transfers
between the host and the device should be minimized. With this
issue in mind, it is better to compute them on GPU, in spite of
the simplicity of Steps 2.9 and 2.10. Furthermore, bearing in
mind that sk+1, uk+1, and dk+1 are of the same size, we can
perform a similar mapping between a thread and a pixel. Thus,
it is reasonable to realize the Step 2.8, Step 2.9, and Step 2.10
together in a kernel function s_kernel.

In the procedure of calculating r1 and r2 for iteration ter-
mination condition, the main operation is the squared sum of
matrix elements. This operation is efficiently realized as a ker-
nel function SumReduce_kernel by a summation reduction
model on the GPU, as illustrated Fig. 4. At the beginning, r1
and r2 are transferred from GPU global memory to shared
memory; then, we calculate the first operation of subtrac-
tion and square, and synchronize the threads by means of
syncthreads(). Then, the vectors are split into several seg-
ments with the same block size, and the summation of these
segments is performed on the shared memory. During the cir-
culation, adjacent threads operate with neighboring elements,
thus avoiding bank conflicts. Therefore, we make effective
use of shared memories, which act as small and very fast
cache memories available for the processing elements within
the same block, in order to speed up the execution. For the
kernel SumReduce_kernel, every thread needs 12 registers,
every block needs 8 kB of shared memory, and the size of
the block is set to 1024. Taking into consideration that every
streaming multiprocessor in NVIDIA Tesla C2075 (details of
the platform will be given in Section IV-A) supports 1536
threads at most, one block can be launched, and the theoreti-
cal occupancy of SumReduce_kernel is 1024/1536 ≈ 66.7%
in this case. Moreover, taking the AVIRIS Indian Pines hyper-
spectral dataset as an example, the practical occupancy of
SumReduce_kernel calculated by the NVIDIA visual profiler
is 66.3%.

Once the stopping condition is satisfied, we perform the
memory copy of s from device to host, and the Graphcut
procedure is executed on the CPU.

C. Overall Approach of SSC-SRMRF-P

With the aforementioned observations in mind, a
detailed step-by-step algorithm description of the parallel

Fig. 4. Summation reduction model on the GPU.

TABLE I
HARDWARE SPECIFICATIONS AND COMPUTING CAPABILITIES OF THE

CONSIDERED PLATFORMS

TABLE II
SOFTWARE SPECIFICATIONS OF THE CONSIDERED PLATFORMS

spatial–spectral classifier with sparse representation and MRFs
on CPU–GPU heterogeneous platforms (SSC-SRMRF-P) is
summarized in Algorithm 3.
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TABLE III
CLASSIFICATION ACCURACIES (%) AND EXECUTION TIME OBTAINED FOR THE AVIRIS INDIAN PINES DATASET

Fig. 5. Classification experiments with the AVIRIS Indian Pines dataset.
(a) False color composition. (b) Ground truth as a collection of mutually
exclusive classes. Some of the classification maps obtained after 10 Monte
Carlo runs: (c) SSC-SRMRF-S. (d) SSC-SRMRF-L. (e) SSC-SRMRF-M.
(f) SSC-SRMRF-P.

Algorithm 3. Parallel spatial–spectral classifier with SR and
MRF on CPU–GPU heterogeneous platforms (SSC-SRMRF-P)

Input: Training samples set A ∈ RL×l, number of classes K,
test samples set x= [x1,x2, . . . ,xN ] ∈ RL×N ,
Initialization: Set m = 0, choose threshold t1, t2, maxi-
mum iteration M , filter function Hf , regularization parame-
ters μ > 0, λ > 0, μs > 0, initialize u0 = (0, 0, . . . , 0), d0 =
(0, 0, . . . , 0)
Step 1. x̃ = Hf ∗ x
Step 2. Copy data from host to device
Step 3. Invoke culaDeviceDgemm and culaDeviceDgesvd

to calculate [S,Σ,V ] = SV D(ATA) on GPU
Step 4. Invoke kernel function E_kernel and

culaDeviceDgemm to compute H−1 on GPU
Step 5. Invoke culaDeviceDgemm to compute

c = H−11(1TH−11)−1 on GPU
Step 6. Invoke F_kernel and culaDeviceDgemm to compute

F = H−1 − c1TH−1 on GPU
Step 7. Invoke culaDeviceDgemm to calculate T = AT x̃ on

GPU
Do:

Step 8. Invoke kernel function w_kernel to calculate
w = T + µ(uk + dk) on GPU

Step 9. Invoke culaDeviceDgemm to calculate B =
Fw on GPU

Step 10. Invoke kernel function s_kernel to com-
pute sk+1 = B + c, uk+1 = max(sk+1 + dk, 0) and
dk+1 = dk − (sk+1 − uk+1) on GPU

Step 11. Invoke kernel function
SumReduce_kernel to calculate r1 =
‖sk+1 − uk+1‖F , and r2 = ‖uk+1 − uk+1‖F
on GPU

Step 12. k = k + 1
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TABLE IV
CLASSIFICATION ACCURACIES (%) AND EXECUTION TIME OBTAINED FOR THE ROSIS PAVIA UNIVERSITY DATASET

While r1 ≥ t1, r2 ≥ t2 or k < M
Step 13. Copy S from device to host

Step 14. Compute p̂(xi|yi = k) =
lk∑
j=1

ŝkij , for i = 1, 2, . . . , N

on CPU
Step 15. Compute P = [p̂(x1|y1), . . . , p̂(xN |yn)] on CPU
Step 16. Calculate y = Graphcut(P , μs) on CPU
Output: y, the Class labels of x.
End

IV. PERFORMANCE EVALUATION

In this section, we present a summary of the performance
tests that have been conducted in order to assess the computa-
tional performance and classification accuracy of the proposed
method.

A. Experimental Configuration

The experimental platform used in our tests is a hetero-
geneous processor consisting of two CPUs and a GPU. The
hardware specifications and computing capabilities, as well as
the software specifications of the considered platforms, are
respectively listed in Tables I and II.

We evaluate the classification accuracy and execution perfor-
mance of SSC-SRMRF-P using two real HSIs for which ground
truth information is available. The first HSI used in our exper-
iments is the Indian Pines image, collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
NW Indiana in June 1992. The AVIRIS sensor collects 220
spectral bands in the range from 0.4 to 2.5 µm. In our experi-
ments, the number of bands is reduced to 200 by removing 20
water absorption bands. This scene has a spectral resolution of
10 nm and a spatial resolution of 20 m by pixel, and the size
in pixels is 145× 145. The ground truth contains 16 land cover
classes and a total of 10 366 labeled pixels. The number of pix-
els in the smallest class is 20, while the number of pixels in the
largest class is 2468.

The second hyperspectral scene used in our experiments is
the University of Pavia image [45], which was acquired in
2001 by the Reflective Optics System Imaging Spectrometer
(ROSIS), flown over the city of Pavia, Italy. The sensor collects
115 spectral bands ranging from 0.43 to 0.86 µm, and has a
spatial resolution of 1.3 m per pixel. The image scene, with a
size of 610× 340 pixels, is centered at the University of Pavia
and has 103 bands after removing 12 noisy bands. There are
nine ground-truth classes of interest.

The classification accuracies are measured by the overall
accuracy (OA), average accuracy (AA), and kappa statistic (k)
[46]. The OA is computed as the ratio between the correctly
classified test samples and the total number of test samples, and
the AA is the mean of the accuracies across the different classes.
The kappa statistic is computed by weighting the measured
accuracies. It incorporates both of the diagonal and off-diagonal
entries of the confusion matrix and is a robust measure of the
degree of agreement.

In order to demonstrate the performance improvements
between the parallel implementations on multicore CPU plat-
form and our considered GPU platform, a multicore imple-
mentation of SSC-SRMRF (SSC-SRMRF-M) has been carried
out following the design principles in [29] and using OpenMP
API (Application Program Interface) and the MKL (Intel Math
Kernel Library) [40] for matrix multiplications. Besides, in
order to distinguish the effects of MKL and OpenMP, another
version (SSC-SRMRF-L) has been implemented by using the
functions in MKL library (which were not used in the serial
version). The versions of SSC-SRMRF-S and SSC-SRMRF-
L are executed on one core of the Intel Xeon E5-2609 CPU,
and the multicore version (SSC-SRMRF-M) is run on eight
cores of the two Intel Xeon E5-2609 CPUs. These versions of
the SSC-SRMRF algorithm were implemented using the C++
programming language. All of the measurements reported in
the following experiments are achieved by the adopted clas-
sifiers after ten Monte Carlo runs. According to [21] and our
repeated experiments, the parameters were empirically set to
be λ = 0.01, μ = 0.01, and μs = 2. A Gaussian filter with
variance of 1 and window size of 3× 3 was used as the filter
function Hf .
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Fig. 6. Classification experiments with the ROSIS University of Pavia dataset.
(a) False color composition. (b) Ground truth as a collection of mutually
exclusive classes. Some of the classification maps obtained after 10 Monte
Carlo runs: (c) SSC-SRMRF-S. (d) SSC-SRMRF-L. (e) SSC-SRMRF-M.
(f) SSC-SRMRF-P.

B. Performance Assessment on AVIRIS Indian Pines Dataset

The first experiment was carried out using the AVIRIS
Indian Pines dataset. Nearly 10% of the labeled pixels of each

class (1043 pixels in total) were randomly chosen as training
samples, and the remaining labeled pixels were used as test
samples, as shown in Table I. The classification accuracies (OA,
AA, and κ) are quantitatively shown in Table III, and graphi-
cally illustrated in Fig. 5. Table III indicates that the proposed
SSC-SRMRF-S, SSC-SRMRF-L, SSC-SRMRF-M, and SSC-
SRMRF-P obtain very similar classification accuracies, leading
to smooth classification maps as depicted in Fig. 5.

The parallel implementation SSC-SRMRF-P achieves a
remarkable acceleration factor of more than 210 relative to the
serial version SSC-SRMRF-S. This is because the parallel ver-
sion benefits from an efficient exploration of GPUs parallel
capacities, as well as from the utilization of the highly efficient
GPU-accelerated linear algebra libraries of CULA. As noted
in Table III, the proposed parallel implementation of SSC-
SRMRF-P is well below 20 s in processing time, including the
loading times and the data transfer times from CPU to GPU
and vice versa. This represents a significant improvement with
regard to both serial and multicore versions.

C. Performance Assessment on ROSIS Pavia University
Dataset

A second experiment was conducted on the ROSIS Pavia
University dataset. In this experiment, nearly 9% of all labeled
pixels were randomly chosen from each class as training sam-
ples, and the remaining labeled pixels are used as test sam-
ples. Table IV shows the obtained classification accuracies,
whereas Fig. 6 shows some of the obtained classification maps
after 10 Monte Carlo runs. The results indicate that the four
implementations of SSC-SRMRF all obtain very competitive
results. Here, it is also worth mentioning that they obtain very
similar results in terms of classification accuracy. As a result,
they can be considered approximately equivalent in terms of
classification accuracy. The SSC-SRMRF-P achieved signif-
icant acceleration factors of almost 250x in the considered
CPU–GPU heterogeneous architecture.

We now turn our attention to the execution efficiency.
Although SSC-SRMRF-P gets significant acceleration factors
on the Pavia University dataset, the execution time is still very
high (almost 40 min). This makes it hard to adapt the algorithm
to time-critical scenarios. Thus, it is important to find a balance
between classification accuracy and execution performance.

In order to explore this issue, we carried out a third exper-
iment to illustrate the impact of the size of the training set
on both classification accuracy and execution performance. For
this purpose, we consider different numbers of training sam-
ples, ranging from 40 to 120 of each class. Table V reports
the processing times obtained for the three implementations
of SSC-SRMRF on the considered CPU–GPU platform and
for the ROSIS Pavia University scene. The measured times of
each execution were always very similar. The reported times are
mean of 10 executions in the platform.

As illustrated in Table V and Fig. 7, both the classifica-
tion accuracy and the execution time of the implementations
increase as the size of the training set increases. The accelera-
tion factors tend to a plateau when the size of the training set
increases, which is mainly related to the computing capabilities
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TABLE V
EXECUTION TIMES AND ACCELERATION FACTORS OBTAINED FOR THE ROSIS PAVIA UNIVERSITY DATASET

Fig. 7. OA, AA, and kappa statistic obtained after using different training sizes on the ROSIS Pavia University dataset.

of the considered platforms. However, the SSC-SRMRF-P pro-
vides more significant acceleration factors as the size of training
set becomes larger. This is an important consideration, as it
indicates that the proposed implementation scales better as the
problem size becomes larger. Let us now take a closer look at
the I/O communications between the host and the device, which
often becomes the main bottleneck of parallel systems. As
shown in Table V, the time required for data transfers between

the host and the device contributes very little to the overall exe-
cution time of our SSC-SRMRF-P. In all the cases, less than
0.9% of the total solver time is consumed by data transfers. The
most significant portion of the time taken by our parallel imple-
mentation is the pure computation steps, which is ideal in terms
of parallel efficiency. As a result, the performance bottleneck
becomes the processing units themselves and the algorithm is
expected to scale very effectively for larger size problems.
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Last but not least, the average acceleration factor of the par-
allel SSC-SRMRF-P reaches more than 150× with regards
to the serial version SSC-SRMRF-S, while the multicore ver-
sion SSC-SRMRF-M only gets an average acceleration factor
of 31×. This is a quite remarkable parallelization result that
proves the significant computing performance improvement
that can be gained by our proposed implementation while
retaining the similar classification accuracies obtained by the
original algorithm.

V. CONCLUSION AND FUTURE WORK

In this work, we have developed an efficient parallel imple-
mentation of a spatial–spectral HSI classifier with sparse rep-
resentation and MRFs. The proposed implementation achieved
significant acceleration factors on a CPU–GPU heterogeneous
platform, a kind of low-weight hardware platform that offers
a tremendous potential to bridge the gap toward real-time
analysis of remotely sensed hyperspectral data. The parallel
implementation of the proposed method has been carried out
using the CUDA. The proposed implementations have been
evaluated not only in terms of classification accuracy, but also
in terms of computational performance, using an NVIDIA Tesla
C2075 GPU connected to two Intel Xeon E5-2609 CPUs. The
experimental results reported in this work reveal considerable
acceleration factors while retaining very similar classification
accuracies obtained by the proposed algorithm. It is felt that this
is an important contribution, as there have been not many hyper-
spectral imaging classification techniques optimized in GPU
architectures so far. The results reported in this work are very
encouraging, but the proposed implementation is still far from
real-time performance, although significantly faster than most
other available techniques for HSI classification. In the future,
we will explore implementations on more performing GPU core
units that already are or will be available on the market in order
to further pursue the long desired goal of achieving HSI classi-
fication in real time, which will be important for many remote
sensing techniques and applications.
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