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Abstract—Nonlinear hyperspectral unmixing (HSU) plays a
key-role in understanding and quantifying the physical-chemical
phenomena occurring over geometrically complex fields of view.
Nonlinear HSU methods that do not rely on prior knowledge of
the ground truth to analyze the scene are especially interesting.
However, they can be affected either by overfitting or performance
degradation provided by inaccurate setting of unmixing parame-
ters. In this paper, we introduce a new nonlinear HSU architecture
which aims at taking advantage of the benefit provided by the com-
bination of polytope decomposition (POD) method together with
artificial neural network (ANN)-based learning. Specifically, ANN
is able to efficiently estimate the order p of the nonlinearity pro-
vided by the given scene even without the thorough knowledge of
the ground truth. The ANN-based learning is used to feed the POD
in order to deliver accurate unmixing based on a p-linear polyno-
mial model. Experimental results over simulated and real scenes
show promising performance of the proposed framework.

Index Terms—Artificial neural network (ANN), linear pro-
gramming, nonlinear hyperspectral unmixing (HSU), p-order
polynomial models, polytope decomposition (POD).

I. INTRODUCTION

ECENTLY, the analysis of human—environment interac-

tions has become crucial for several social, financial,
health and environmental research fields [1]. Indeed, deep
knowledge of the anthropogenic impact on environment can
help in investigating epidemiological flows, predicting popu-
lation distribution and determining community policies to drive
sustainable developments [2].

In order to thoroughly understand the characteristics and
behavior of the aforementioned interactions, it is necessary to
model, study, and classify the physical-chemical properties of a
region (see for instance [3]). However, the collection of natural
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records s.t. this analysis can be performed is typically spa-
tially limited. Therefore, the study of structural composition
over geographic regions can take advantage of hyperspectral
imagery, as it provides information with both high spectral and
spatial resolution. In this regard, hyperspectral unmixing (HSU)
represents one of the most powerful and remarkable tools for
delivering effective analyses of the physical components in the
instantaneous field of view.

HSU methods aim at separating the target pixel spectra
into a set of constituent spectral signatures (endmembers) and
a set of fractional abundances. Typically, endmembers are
assumed to identify the pure materials in the given image,
while abundances report the percentage of each endmember in
a pixel. However, the definition of the aforementioned parame-
ters changes according to the mixture model that is considered
[4]. Specifically, mixing models can be classified in linear or
nonlinear. Linear mixing models (LMMs) hold when incident
light interacts at a macroscopic scale with just one material
per pixel [5]. Several papers have addressed this topic in lit-
erature. LMMSs are often employed in HSU as they are quite
easy to implement. On the other hand, LMMs can hardly deliver
efficient unmixing performance as more complex mixing phe-
nomena occur [6].

NLMMs have been developed in order to improve the
description of the macroscopic-scale interactions among the
constituent materials. Polynomial functions can be applied to
model the nonlinearities provided by layer partitions and scat-
tering properties. Bilinear mixture models (BMMs) play a key
role in this class of schemes [7], [8], since they are widely used
in nonlinear HSU. Unsupervised methods have been developed
to exploit the nonlinear effects, i.e., no ground truth information
is needed in HSU process. Basically, they aim at characteriz-
ing the interactions that occur in a hyperspectral scene among
couples of constituent materials. Thus, interferences among
endmembers that occur at a higher order of nonlinearity are
not described. Further, reflectance contributions which result
from multiple scatterings among several endmembers are not
properly characterized [9].

It is worth noting that higher order nonlinear contributions
might be considered negligible in specific scenarios (see for
instance [10]). On the other hand, when several endmembers
of different nature get close over a given region, the energy pro-
vided by multiple scatterings and acquired by the sensor is not
negligible at all. Fig. 1 reports three examples of scenarios that
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Fig. 1. Schemes of geometrically complex scenes where the higher order nonlinear contributions provided by multiple scatterings are not negligible: (a) three
endmembers scenario; (b) instance of urban scenario; (c) instance of multilayer scenario.

frequently occur when performing HSU. Specifically, Fig. 1(a)
shows how three close endmembers can interact in delivering
reflectance power to the sensor. LMM can characterize light
blue contributions, while BMMs are able to describe light blue
and orange contributions. However, LMMs and BMMs can not
efficiently track the red patterns of the light, as it is delivered by
the interaction of the endmembers that show up nearby in the
considered scene.

This effect is even more emphasized in Fig. 1(b), where an
instance of urban scenario is sketched. Indeed, when anthro-
pogenic materials show up and interplay over an hyperspectral
scene, absorption is so restrained that reflections can deliver rel-
evant contributions to the sensor also after several reflectance
interactions.

Finally, multilayer scenarios [sketched in Fig. 1(c)] deliver
higher order reflectance inputs as well. In fact, as light has
the possibility to interact with different endmembers at differ-
ent depths, the reflectance recorded by the sensor is strongly
affected by the interplay that occurs among the elements that
show up over in-depth. Hence, Fig. 1(c) can be considered as a
sketch of the reflectance interaction that shows up over a nonflat
scenario at macroscopic scale (e.g., a hilly region or a mountain
sample) or microscopic scale (e.g., a scene where several miner-
als show up). It is important to remind that the aforementioned
multilayer interactions can occur also over water basins where
in-depth elements (such as pollutants, residuals, or hydric flora)
interplay to originate the spectral signal recorded by the sensor.

In [11], the authors introduce a new model that aims at
involving all these effects in an order-p nonlinear polynomial
scheme, where p > 2. This unsupervised method, which is
based on polytope decomposition (POD), delivers very good
HSU performance as the nonlinearity follows a polynomial
behavior. On the other hand, if super-polynomial effects (e.g.,
sinusoidal) or microscopic-scale mixtures occur, POD cannot
efficiently track the interaction characteristics. Therefore, more
complex methods are required.

Indeed, as photonic interactions or multilayer mixtures show
up, NLMMs that thoroughly describe the intimate mixtures
of the constituent materials have been proposed [7]. These
schemes (such as Hapke’s model) result from theoretical analy-
ses and aim at accurately tracing the reflectance behavior when
considering a scene having specific geomorphical, chemical

and physical properties. Hence, the aforesaid models require
perfect knowledge of the geometric location of the given sensor.
Supervised methods such as kernel-based and artificial neural
networks (ANNSs) have been proposed to perform unmixing on
microscopic scale [4], [7]. These algorithms can track every
nonlinearity behavior; however, as previously mentioned, they
need reliable training samples to properly initiate the learning
process.

Combining unsupervised and supervised methods in order
to exploit only the advantages from the two classes of algo-
rithms can help in efficiently perform nonlinear HSU, while
minimizing at the same time the effect of the drawbacks of each
scheme. Specifically, properly set architectures can drive excel-
lent performance in nonlinear HSU improving the nonlinearity
characterization without the constraint of prior knowledge of
the ground scene.

In this work, we present a novel framework for nonlinear
HSU which combines POD with ANN-based learning (Fig. 2).
Previous studies [11] have shown that the POD method is able
to deliver very good performance in terms of reconstruction
error (RE) over scenes where no ground-truth is previously
available and the nonlinearity can be described by means of
polynomials. It has been observed, however, that if the non-
linearity is nonpolynomial, the POD method does not show
good performance in HSU. Further, the aforementioned method
cannot estimate the order of the nonlinearity itself, an aspect
that can lead to lower unmixing performance and/or overfit-
ting. These issues can be addressed by using supervised ANNs
which are able to deliver unmixing performance for a wider
range of nonlinearities. Even if no ground-truth information
is available, the ANN can still efficiently estimate the order
of the nonlinearity involved in the problem, thus enhancing
the capacity of the POD method. Hence, it is possible to set
up a framework for unsupervised HSU that makes use of the
POD method in order to achieve the nonlinear coefficients
and to efficiently reconstruct the image from the extracted
endmembers.

This paper is organized as follows. Section II describes the
POD and ANN methods used in this work to develop the pro-
posed approach. Section III presents an experimental validation
of the proposed approach. Section IV provides the final remarks
and future research lines.
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Fig. 2. Scheme of the proposed framework for nonlinear spectral unmixing.

II. METHOD

Fig. 2 shows a flowchart of the proposed approach, which
is made up of the combination of POD and ANN techniques
applied to the original hyperspectral image after obtaining a
set of endmembers using an endmember extraction algorithm
(EEA). In this section, we describe the aforementioned methods
in more details.

A. Artificial Neural Network (ANN)

Although many neural network architectures exist, feed-
fordward networks have been widely used in the context spec-
tral unmixing in terms of nonlinear relationships [12]-[14]. In
this work, we adopt a multilayer perceptron (MLP) architec-
ture which is easily adaptable to provide nonlinearity order
estimations, due to its proved ability as nonlinear classifier.

The MLP is composed of an input layer, two hidden lay-
ers, and an output layer. The node count in the input layer
is fixed to the spectral dimensionality of the data (number of
spectral bands of the considered dataset). The number of out-
put nodes equals the maximum number of possible orders to
be estimated, thus, the target outputs of the network are vectors
with as many components as possible orders to be estimated
containing binary values in the set {—1,+1}. Output vectors
will show a +1 at the correct order position and —1 every-
where else. Finally, logistic activation functions are used in both
hidden layers, while hyperbolic tangent is implemented in the
output layer.

In order to avoid overfitting and improve generalization, we
decided to use sufficiently large hidden layers in combina-
tion with regularization techniques (instead of early-stopping or
cross-validation techniques) which involve the modification of
the performance function embedding a term that consists of the
mean of the sum of squares of the network weights and biases.
Particularly, we use the Bayesian regulation backpropagation
training algorithm, which updates the weight and bias accord-
ing to Levenberg—Marquard optimization algorithm, which is
used to estimate the Hessian matrix of the performance func-
tion. Traditionally, feedforward networks use the mean square
error, i.e., average square error between target outputs (¢;) and
network outputs (y; ), as follows:

1<
F:MSEZEZ(@) =
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i=1
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where & is the number of output nodes of the network.

Abundance maps

However, it is possible to improve generalization by mod-
ifying the performance function to enforce the network to
have smaller weights and bias, thus smoothing the conver-
gence reducing the probability of overfitting. The modified
performance function is as follows:

F=MSEREG
=7 <; > o(ti— yz)2> +(1=7) <:L > (wi)2> ©))
i=1 =1

where ~ is an adaptive performance ratio used to determine
the direction (minimal error or minimal weights) that the net-
work must seek and W = [w;];=1....  is a vector containing the
whole set of weights and biases of the network.

Considering that the MLP is used to estimate the nonlinear-
ity order of an image and due to the lack of available reference
information for real images, we employ an innovative approach
where, from the endmembers extracted by an EEA, we gener-
ate synthetic nonlinear combinations of their spectral signatures
according to the model proposed in [11] using (7). Then, we
use such nonlinear combinations to generate both training set
(nonlinear combinations of endmembers) and test set (binary
vectors) to be used during the ANN training stage. It should be
noticed that we can generate infinite training and testing sam-
ples from an a priori estimated set of endmembers, being the
range of possible nonlinearity orders the only needed param-
eter, thus reducing the impact of the curse of dimensionality
[15]. However, the determination of optimal training sets is
beyond the scope of this paper. In the experimental validation.
we just show a proof of concept of how a set of randomly
generated training samples is able to be efective in the con-
text of nonlinearity order estimations. Additional experiments
searching for best configurations, minimum training sets and
optimal nonlinear estimators will be treated in future research
lines.

B. Polytope Decomposition (POD)

Lety, = [y1,]n=1,...n, 1, € R be the N-band spectral sig-
nature of the /th pixel in a hyperspectral image. Let us assume
that the signature y, is a nonlinear combination of R end-
members m, = [m,, J,=1,.. n, being r =1,..., R. Hence, a
polynomial model that aims at representing order-p nonlinear
multiple scatterings and interferences provided by R endmem-

bers over the /th pixel can be derived by properly setting the
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parameters and coefficients in the order-p mixing model, which
can be analytically written as follows:

R
Yy, = Zarzmr
+Z ZZ ikl —|—19Jklm]

=1 j=72

k—1

+ > [Civam]"* ©

k=1

[Cienam; ] 3)

where vy, = k — &, m; © m; = [m;, mj, Jn=1,.. N and mk =
[mfn]n 1,...~. Further, (74, 72) can be set to (R — 1,7+ 1) or
(R, ). Moreover, iy, Cig,r and 95 quantify the nonlinear
effects provided by the ith endmember over the /th pixel within
the kth order interactions. Finally, a..; is the contribution to the
linear mixture over the /th pixel provided by the rth endmem-
ber. Thus, as all the possible order-k (k < p) interactions and
interferences among pairs of endmembers can be provided by
the model in (3), the aforesaid representation can be suited for
reporting a thorough description of any p-linear mixtures. The
model in (3) can be reduced to closed-form expression by prop-
erly setting the ¥ and ( terms. Specifically, if we assume to set
p = 2 and ¥;;; = 0 Vi, (3) can be reduced as follows:

Zarlm + Z Z Bijim; © m; 4)

1=1 j=72

where ;17 - (511 = Biji. Thus, 355 is the coefficient that quan-
tifies the second-order nonlinear effect of the product of end-
members m,; and m ; over the Ith pixel. Moreover, (71, 72) can
besetto (R — 1,7+ 1) [16]-[18] or (R, %) [19] s.t. obtain dif-
ferent BMMs. Finally, the models in [16]-[18] differ along with
the definition of the (3 terms and constraints.

On the other hand, in order to achieve a closed-form expres-
sion of an order-p nonlinear mixture model, we can assume to
set the ¢ and ¢ terms in (3) as follows:

{kl %
O = (2
M (R+1)

, 1 1 (5)
x(w,vy) . k k\F
. = (=1 v . ikl .
Czwl ( ) k <R + 1) <§k>
where w = {v, &} and x(u,v) =14 u=wv, while

Xx(u,v) =0 otherwise. Further,

theorem according to

exploiting the binomial

v o - v V—ULU
(a+ D) Z<u>a b (6)
u=0
the model in (3) can be rewritten as follows: if (11, 72) = (R, 1):
Z apm, + Z Z Bl (7)

k=2r=1

where the overall contribution of the kth order delivered by the
rth endmember over the [th pixel is driven by the coefficient
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Fig. 3. Skeleton of a 3-D polytope identified by the spectral signature y =
[2,4,6].

B.1;- Hence, in order to be compliant with a coherent charac-
terization of the endmembers’ mix in the scene, the coefficients
that drive the linear and nonlinear mixtures have to fulfill the
following constraints:

arg >0, By >0
Z ary + Z B =1 @®)
T rk

Vre{l,...,R}, k€{2,...,p}.

As both the ¥ and ( terms in (7) rely on the contribution
of the B’ parameters, it is not possible to obtain (4) from the
aforementioned model. Therefore, the p-linear model that is
proposed in this paper cannot be considered as an extension of
(4). Indeed, the second-order mixture that can be drawn from
(7) takes into account the nonlinear contributions provided by
the interferences of endmembers [i.e., the terms that are driven
by the ¥ coefficients in (3)], which are discarded by the BMMs
as for (4).

The goal of p-linear spectral unmixing is to evaluate each a
and 3’ term, in order to understand the nature of the endmember
combination that delivers the given target pixel reflectance. It
can be proved [11] that the coefficients driving the nonlinear
combination in (7) can be obtained by means of a linear system
involving the original hyperspectral data and the endmembers’
spectra delivered by an EEA.

The method starts from considering y, as the skeleton of a
polytope with N vertices v = [v;];= 1, ;; where each vertex is
identified by a string of N coordlnates ie., v; < (Viy)k=1,.. N
Vi e {l,...,N}, being v;, =y, if k =1, 0 otherwise. Fig. 3
shows an N = 3-D instance of polytope skeleton.

A convex polytope may be defined as an intersection of a
finite number of half-spaces (H-representation) [20], [21]. That
is, the affine space induced by the polytope is partitioned by
(%) hyperplanes that identify each of its facets. Thus, each
hyperplane can be described by a linear inequality [20], [21]
as follows:

N
Y corn<d ©)

n=1

where x,, is the nth dimension in the /N-dimensional space,
being n € {1,...,N}. A closed convex polyhedron can be
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defined as the set of points that fulfill a system of linear inequal-
ities such as SN ;a5 < dn, where j € {1,...,(X)}.
Hence, the points on the edges of a polytope can be described
by a linear system like C'z = d. Specifically, the linear equation
that can be drawn on the facet over the nth and mth dimension
is as follows:

Y, + tan(y,,. )y, = 2w,

n

(10)

where ;. is the angle so that tan(y;,.. ) = v, /v, -

Thus, writing the aforementioned equation for each dimen-
sion pairs, it is possible to obtain a system of M = ()
linear equations. Therefore, the POD method aims at tak-
ing advantage of the overdetermination of the aforementioned
system by exploiting the contribution of the @ and 8’ terms
in that. Specifically, applying proper algebraic properties to
each possible dimension pairs, the following matrix equation is
derived:

Gw =b (11)

where w; = [w; @ )] _.R» being w(J) [wl(;z)] k=1,...p» Where
(J) =a; when k= 1 whereas wl = B when k> 1.
Gz [91..,] is an M x Rp matrix, where K € {1,...,M} and

A€ {l,...,Rp}, while b; a vector of M elements. As previ-
ously mentloned, (11) is the core of the proposed POD method.
Indeed, let us assume x = p; + nt, Where te{l,. -1},
nee€{l,...,N—t}andp; = 3\ _ N—u1ft>1 whereas
p+ = 0 if t = 1. Then, in order to 1nvert the model in (7), each
element g;,, must be defined as follows:

Glr = Gl iy n = Mo? + tan(y, ., Jmle, (12)
where A= (z—1)p+4¢,, z€{l,....,R}, and ¢,€
{1,....p} Finally, by, =0, . =2y,.

Hence, the system in (11) represents a linear representation
of the nonlinear mixture of each pixel according to the model in
(7). Thus, the nonlinear HSU issue based on the p-linear model
results in a linear programming problem that involves the orig-
inal hyperspectral data and the endmembers’ spectra according
to the POD analysis [22]-[25]. Moreover, taking advantage of
the thin QR factorization, the inversion process that aims at esti-
mating the coefficients that drive the nonlinear mix is able to
show a small condition number, s.t. the stability of the obtained
solutions is preserved [26]. Further, each term in w; has to be
compliant with the convex polytope representation, i.e., has to
fulfill the constraints in (8).

At this point, it is important to note that the geometrical prop-
erties of the H-representation and the thin QR process guarantee
that the sum-to-one constraint over the a and S terms in (7)
is fulfilled, along with the nonnegativity constraint [21], [24],
[25]. Further, it is possible to prove [27], [28] that the outcomes
of the POD system approach more accurately the global opti-
mum in inverting the mixture models, as the POD condition
number is less than that delivered by other classic inversion
algorithms such as fully constrained least square method [29].
Consequently, the POD method can deliver outputs that are
more stable to perturbations in the mixing system, i.e., the
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reconstruction process can be enhanced and improved by the
POD architecture.

However, there is still one point worth discussing. Since in
our model, like in similar nonlinear models, nonlinear con-
tributions to the abundances are not negligible, it is no more
acceptable to set the abundances equal to the a coefficients.
Indeed, this assumption may lead to a substantial perfor-
mance degradation [9]. In [10], an abundance estimate metric
that takes into account the second order nonlinear effects of
each endmember has been proposed. Specifically, the afore-
said abundance computation relies on the assumption for which
improved cover fraction estimates can be obtained by assign-
ing the physically meaningless fraction to the physical ground
components present in the pixel. Hence, in bilinear mixture sce-
narios, the pixel distribution factor of every endmember can be
optimally estimated by the component’s ground cover fraction,
leading to a compact form for abundance estimations [10].

However, in case of p-linear mixing when p > 2, this prop-
erty might not hold, as the complex geometry of the given [FOV
can affect the pixel distribution factor evaluation. Indeed, the
multiple scatterings that can be characterized by p-linear mix-
ture models can occur in case of multiple layers and interactions
among endmembers. Thus, the pixel distribution of each ele-
ment that shows up in a given scene can result from complex
processes of interplays which might be hardly described by a
linear relationship as in [10]. Therefore, in order to accurately
evaluate the abundances in higher order mixtures scenes, here
an aggregate metric based on the polytope H-representation is
proposed.

To this aim, let us write the reconstructed pixel Ql as

R
@ln = Z Pri, My, = Z Z w(r)m“l
r=1

r=1k=1

where ¢, is the overall contribution of the rth endmem-
ber to the reconstruction of the /th pixel over the nth band.
Geometrically speaking, it is possible to think of ¢,;, as the
compression/expansion factor of the rth endmember over the
nth direction in the N-dimensional space. As the relevance
of the rth endmember in contributing to the reconstruction of
the Ith pixel increases, the amplitude of p = [ort, |n=1....N
gets larger as well. Thus, in order to quantify the contribu-
tion of each endmember to the reconstruction of the /th pixel,
let us consider the polytope that is induced by the vertices
identified by ¢ . Given our assumptions such a polytope is a
simplex [20]. Therefore, we can define its volume Vfu using
the formula

13)

Vi = ﬁ det[A(D)] = + H r, (14)
where A(L) = [6;5(1')]¢ij)ef1,...,n}2 is the diagonal matrix
induced by the I = [I',],=1,... n spectral signature [20]. That
is, 0;;(F') =T, ¢+ i = j = n, whereas ¢;;(I') = 0 otherwise.
Hence, the proposed estimated rth endmember abundance G,
can be defined as

as)
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Fig. 4. (a) Original reflectance distribution in the crater scene on the 16th band.
Each endmember is distributed according to the reported abundance maps.
(b) Basalt. (c) Palagonite. (d) Tephra.

It should be noted that the abundance estimates in (15) fulfill
the sum-to-one and the nonnegativity constraints [9].

III. EXPERIMENTAL RESULTS

In this section, we will focus on showing the capacity of the
proposed methodology. A thorough comparison of nonlinear
unmixing algorithms [9] is beyond the scope of this paper. We
first tested the performance of the aforementioned methods over
a target that has been artificially generated in [30]. Specifically,
the authors in [30] provide a simulation of a crater obtained by
modifying a martian regolith. This target shows a complex pho-
tometric behavior because of its digital elevation model (DEM)
and the Hapke’s model-based mixture of the composing min-
erals (i.e., basalt, palagonite, and tephra). The target scene is
composed by 186 x 174 pixels. 16 bands in a wavelength range
from 400 nm to 1100 nm have been considered. Fig. 4(a) shows
the reflectance map of the aforementioned scene over the 16th
band. Further, the abundance maps of basalt, palagonite, and
tephra are reported in Fig. 4(b), (c), and (d), respectively.

In [30], the authors deliver several methods to unmix the
aforementioned image by deconvoluting the mixing process.
These algorithms differ in the available quantitative informa-
tion of the target they use to perform the unmixing process.
Specifically, given the bidirectional reflectance image, they can
consider conversion in single scattering albedo, information on
incidence and emergence angles, material properties, and sur-
face macroscopic roughness in a pixel. On the other hand, POD
is used to unmix the bidirectional reflectance image by consid-
ering the endmembers’ reflectance spectra provided in [30]. It
is worth noting that no other information but the target and the
endmembers’ reflectance spectra are available for POD.

We compared the unmixing performance by computing the
mean absolute difference of the mineralogical fraction images
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Fig. 5. Percentage of mean absolute difference of the MFIs for each endmem-
ber in the crater scene. The considered methods are POD and those provided
in [30].

(MFIs) [30] for each endmember. Then, we computed the per-
centage of mean absolute difference between calculated MFI
and ideal MFI for each algorithm. Fig. 5 reports the aforesaid
quantity for POD and those provided in [30]. The nonlinearity
order p in POD has been set to 3. Apparently, POD delivers
very poor performance in reconstructing the crater scene. One
of the main reasons for this result lies in the mismatch between
the Hapke’s model and the polynomial approximation implied
by POD method. Since POD is unable to efficiently track the
nonlinearity induced by the bidirectional reflectance model, the
reconstruction can be dramatically degraded. Moreover, it is
worth noting that the linear estimation of the abundance maps
from an image that has been not very efficiently nonlinearly
reconstructed can further jeopardize the MFI evaluation as well.

We tested the new architecture over an image acquired over
the World Trade Center area in New York City [Fig. 6(a)],
collected by the AVIRIS instrument on September 16, 2001,
just 5 days after the terrorist attacks that collapsed the two
main towers and other buildings in the WTC area. The full
data set considered consists on 614 x 507 pixels, with N = 224
bands and a spatial resolution of 1.7 m/pixel. Fig. 6(a) shows a
false color composite of the area using the 1.682, 1.107, and
655 nm channels, displayed as red, green, and blue respec-
tively. Extensive reference information, collected by the U.S.
Geological Survey (USGS), is available for the WTC scene.
The endmembers of the WTC scene have been extracted using
OSP algorithm [31], which provided the reflectance spectra of
ten endmembers used to feed the architecture in Fig. 2.

We have used the ANN to estimate the nonlinearity order of
each pixel, randomly generating 8000 samples as training set.
The aforesaid endmembers have been considered to feed the
POD method [11]. Specifically, ANN marked 63.9% of the pix-
els in the scene to show nonlinearities of the fifth order, 35.5%
of the pixels have been labeled as driven by linear mixture.
Finally, 0.1% and 0.5% of the pixels have been estimated to
show nonlinearities of the second and third order, respectively.
When employing the POD method only to unmix the scene,
the order of nonlinearity p for each pixel has been set to 5,
which is the maximum nonlinearity order estimated by ANN.
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Fig. 6. (a) False color composition of AVIRIS hyperspectral image collected by the NASA’s Jet Propulsion Laboratory over lower Manhattan on September 16,
2001. (b) Distribution of the pixels over which the architecture in Fig. 2, where 8000 samples have been used as training set delivers an RE improvement over the
RE provided by POD method with p = 5. (c) Probability density function of the mean-square error obtained over the WTC image by means of the architecture in
Fig. 2, when 8000 samples are used as training sets (blue line) and of the POD method when the nonlinearity order has been set to 5 for each pixel (red line). Ten

endmembers have been extracted using OSP algorithm.

We can summarize the reconstruction performance of the con-
sidered unmixing methods by means of the so-called RE which
can be defined (for an image composed by P pixels and with NV
bands) as

RE = (16)

e
PN Z ly, — gl”z
=1

where, according to (13), Ql is the the reconstructed spectral
signature.

Figs. 6 and 7 summarize the results in terms of RE that have
been achieved. Apparently, the proposed architecture outper-
forms the POD method. Indeed, the use of ANN to estimate
the nonlinearity order provides an RE while RE = 1.5- 1073
using 8000 samples as training set. On the other hand, the
POD method with p =5 for each pixel only delivers RE =
4.6-10~3 (Fig. 7). The probability density function of the
mean-square error provided by the architecture in Fig. 2, where
8000 samples are used as training sets and by POD when p = 5
is reported in Fig. 6(c).

It is possible to appreciate the improvement delivered by the
careful estimation of the nonlinearity order as provided by ANN
taking a look at Fig. 6(c) and(b), where the pixels for which
the RE obtained by using the architecture in Fig. 2, where
8000 samples have been used as training set is less than that
achieved by the POD method are shown. Hence, Fig. 6(b) gives
a figure of the overfitting distribution over the World Trade
Center scene.

We also tested the performance of the methods in Section II
over a real image recorded over the Istanbul area by Hyperion
in 2001 [Fig. 8(a)]. The scene is composed by 400 x 400 pix-
els. 198 calibrated bands in a wavelength range spanning from
426.82 to 2395.5 nm have been considered. We can summa-
rize the reconstruction performance of the considered unmixing
methods method by means of RE and the abundance estimates
delivered according to (15).

Reconstruction error
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Fig. 7. RE obtained over the World Trade Center scene using POD when the
order of the considered nonlinearity p is set to 5 and the proposed architecture
(ANN + POD) when the number of samples to build up the training set is set to
8000. Ten endmembers have been extracted using OSP algorithm.

Fig. 9 reports the RE performance delivered by three
unmixing methods: 1) fully constrained least-squares unmix-
ing (FCLSU) [29]; 2) ANN; and 3) POD. These algorithms
have been fed with the reflectance spectra of ten endmem-
bers that have been extracted by means of orthogonal subspace
projection (OSP) [32]. Further, POD is performed when the
nonlinearity order p is set to 3 and 4. Apparently, POD outper-
forms both the other methods. Specifically, POD reaches RE =
1.2 - 1073 when p = 4, while ANN’s RE is about 0.035. This
behavior is the result of the lack of ground truth information at
subpixel level over the Istanbul scene apart from the endmem-
bers obtained by the EEA. Thus, ANN is not able to properly
train its network in order to achieve a good approximation of
the nonlinear mixing process.

Further, we tested the performance in terms of RE of the
combined ANN-POD architecture shown in Fig. 2. Again, ten
endmembers were extracted using the OSP algorithm. ANN
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Fig. 8. (a) False color composition of Hyperion hyperspectral image collected over Istanbul. The abundance of the endmember associated with the urban extents
in the red box in (a) have been estimated by means of HSU based on (b) LMM, (c) BMM as in [19], (d) POD when p = 5, and (e) POD when the nonlinearity
orders have been estimated by ANN. Finally, (f) depicts a small sample of the original data, while (g) shows the results for the same area, here shown to appreciate

the fine level of details that the new approach is able to reach.
Reconstruction error
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Fig. 9. RE obtained over the Istanbul scene using fully constrained least-
squares unmixing (FCLSU), ANN and POD when the order of the considered
nonlinearity p is set to 3 and 4. 10 endmembers have been extracted using
orthogonal subspace projection (OSP).

estimates the maximum order of polynomial nonlinearity for
every pixel in the scene. Then, this information is delivered
to POD algorithm together with the endmembers’ spectra. In
this context, POD algorithm is performed over each pixel by

setting the nonlinearity order p to the corresponding estimated
order provided by ANN. Specifically, ANN marked 60.1% of
the pixels in the scene to show nonlinearities of the fifth order,
35.7% of the pixels have been labeled as driven by linear mix-
ture. Finally, 0.5%, 1.4%, and 2.3% of the pixels have been
estimated to show nonlinearities of the second, third, and fourth
order, respectively.

Fig. 10 shows the RE performance for the new ANN-POD
architecture introduced in this work. Specifically, the blue solid
line represents the RE achieved using ANN followed by POD
as a function of the number of samples that have been used
for training. The estimation of the nonlinearity order has been
repeated 10 times for each case combining the results by major-
ity voting. It is not surprising that the RE performance improves
as the number of training samples increases. Moreover, the
dashed lines identify the REs that have been achieved when
only POD is used, setting the nonlinearity order p to 3 (green
line), 4 (red line), and 5 (black line) for each pixel in the scene.
Comparing these results to the RE curve, we got from the com-
bination of ANN and POD, we can see that the number of
training samples plays a key role in providing good reconstruc-
tion performance. In fact, the proposed framework outperforms
POD when 4000 samples are used to train the ANN. Thus,
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Fig. 10. RE for the Istanbul scene as a function of the number of training sam-
ples that have been used by the ANN to estimate the nonlinearity order p of
each pixel (blue solid line). The dashed green, red and black lines identify the
RE that has been obtained using POD when p has been set for every pixel to 3,
4 and 5, respectively.

TABLE I
AVERAGE EXECUTION TIMES (IN SECONDS) FOR THE ESTIMATION OF
THE NONLINEARITY WHEN USING 400, 800, 1200, 2000, AND 4000
TRAINING PATTERNS

Number of training patterns
40 T so0 T 1200 [ 2000 [ 4000
96075 | 99590 | 120531 | 136007 [ 381295

Avg. training time (s)

apparently, the estimation of the nonlinearity order by ANN is
delivering actual reconstruction results as the training is per-
formed over a larger amount of pixels. It should be noticed
that we synthetically generate the training samples, thus the
availability of ground-truth information is not a problem.

Further analysis is needed in order to determine an optimal
methodology to estimate the nonlinearity orders (sufficient
number of artificially generated training samples, supervised/
semisupervised nonlinear classifier, etc.). Computational com-
plexity of this step is severe. We report execution times of the
nonlinear estimation step over a 1.7-GHz Intel Core I5 with
4 GB 1333 MHz DDR3 (see Table I). Although the system
is not a last generation computer, additional analysis must be
accomplished beyond this proof of concept in order to acceler-
ate this step. For the sake of completeness, we have analyzed
the variance of the randomly generated high-order interactions
between endmembers and compare it with the variance of zero
mean Gaussian noise [32] in different signal-to-noise ratios
(SNRs) from 10:1 to 1000:1. Actually, we generate 10000
training samples with random coefficients and nonlinearity
orders within [1,10] (1000 training samples for each order)
using the five endmembers provided by OSP. The variance of
randomly generated interactions between endmembers is in the
order of 102 for all considered nonlinearity orders, while in
the case of the lower SNR considered (10:1), the variance is
in the order of 109, thus the variance in high order scattering
effects is more significative than in noise effects.
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Finally, we tested the abundance estimation over the Istanbul
scene using LMM, BMM in [19], POD when p =5 and
when the nonlinearity orders are estimated through ANN
with 8000 samples used as training set. Fig. 8(b)—(e) shows
the aforementioned results over the detail in the red box
in Fig. 8(a), respectively. Apparently, higher order HSU
strongly outperforms linear and bilinear unmixing. Further,
it is possible to state that the combined ANN-POD frame-
work outperforms POD when p =5, s.t. evaluation of the
abundance for the endmember which identifies the urban
extents is enhanced by proper estimate of the nonlinearity
orders.

These effects are even more apparent by comparing the
detail in Fig. 8(f) to the abundance estimated by the archi-
tecture in Fig. 2 over the same area of Fig. 8(a). Indeed,
Fig. 8(g) shows how the combined ANN-POD framework is
able to precisely characterize the urban extents Further, the
abundance estimates performed by POD and combined ANN-
POD framework are much more detailed and highlighted than
those computed by linear and bilinear HSU. Thus, higher order
nonlinearities over the Istanbul scene deliver strong contribu-
tion to the the spectral mixture that has been recorded by
Hyperion sensor. Indeed, higher order nonlinear effects can
play a key role especially in very complex scenes, where
several endmembers interplay and where a large amount of
scattering comes across the sensor. Hence, as urban scenes
can be strongly affected by the aforementioned effects [33],
the unmixing gain provided by architectures that rely on
the proposed p-linear model can be very relevant, as shown
in Fig. 8.

IV. CONCLUSION AND FUTURE LINES

In this paper, we have developed a new method for non-
linear spectral unmixing which combines ANNs and POD.
The ANN is used to estimate the order of the nonlinearity
involved in the problem, while POD is used to perform the
actual unmixing. Our experimental results with both simulated
and real hyperspectral data sets show promising results. Future
work will focus on testing the proposed framework in dif-
ferent scenarios, in order to evaluate its capacity to provide
effective solutions using limited or no prior information, opti-
mizing the nonlinearity estimation step, reducing the amount
of necessary training patterns, and improving its computational
complexity.
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