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Abstract In this paper, we perform an experimental study of the interactions between
execution time (i.e., performance), power, and energy that occur in modern low-power
architectures when executing the RX algorithm for detecting anomalies in hyperspec-
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tral images (i.e., signatures which are spectrally different from their surrounding data).
We believe this is important because, for airborne and spaceborne remote sensing mis-
sions, power and/or energy can be in practice as relevant as performance. In this sense,
this paper investigates whether several recent low-power multithreaded architectures,
from ARM and NVIDIA, can be a practical alternative in this domain to a standard
high-performance multicore processor, using the RX anomaly detector as a case study.

Keywords Anomaly detection - Remote sensing - Power wall - High performance -
Multicore processors - Low-power architectures

1 Introduction

Anomaly detection [29] is a crucial task for the exploitation of hyperspectral data.
This type of information can be viewed as a stack of images, where each image (or
spectral band) represents a wavelength of the electromagnetic spectrum and each pixel
has an associated spectral signature [6,11, 14].! In this scenario, the objective for the
anomaly detector is to identify spectral signatures which are spectrally distinct from
their surroundings without prior knowledge [7,30]. In this context, the anomalies
correspond to a set of isolated pixels with anomalous signatures (when compared to
the image background), they represent a very small piece of the full image, and they
only occur in the image with low probabilities [3, 10, 18].

Remote sensing missions are frequently performed onboard airborne devices and
satellites, which may impose severe constraints on the power and energy consumption
(e.g., due to battery life time or electricity being produced by the attached solar pan-
els). The combination of fine spectral resolution, extensive earth coverage, and high
dimensionality of hyperspectral images justifies the exploration of high-performance
yet low-power technologies together with energy-aware novel computational algo-
rithms that can produce a response in real time or near real time while minimizing the
power/energy usage [25,28].

In this paper, we assess the potential of current low-power multicore and many-
core architectures for remote sensing from the perspectives of both performance and
power/energy efficiency. For this purpose, we target the RX anomaly detector devel-
oped by Reed and Yu [26]. This specific method has been applied with great success in
many different hyperspectral imaging applications, being currently adopted as a stan-
dard benchmark for anomaly detection purposes [5]. The target systems for our study
include two types of low-power architectures. On the one hand, we evaluate multi-
core general processors from Intel (Atom S1260 with 2 cores) and ARM (Cortex-A7,
Cortex-A9, Cortex-Al5, all three with 4 cores each) designed for low-power con-
sumption and which are heavily employed in embedded and mobile devices. On the
other hand, we consider two low-power CUDA-compatible graphics processing units
(GPUs) from NVIDIA (Quadro 1000M, with 96 CUDA cores; and GK20A, with

A spectral signature, or fingerprint, is the specific combination of emitted, reflected or absorbed electro-
magnetic radiation at varying wavelengths which can be leveraged to uniquely identify an object.
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“Kepler” architecture and 192 CUDA cores). For reference, we also include in the
comparison an Intel 8-core Xeon (“Sandy-Bridge”) processor.

In summary, the major contribution of our paper is in the performance—power—
energy evaluation of the RX detector, a representative operation for remote sensing,
using a complete collection of up-to-date low-power architectures. We emphasize that
the RX detector is composed of basic dense linear algebra operations (matrix—matrix
products, vector operations, matrix factorizations) which are also present in other
remote sensing algorithms such as, e.g., estimation of the number of endmembers,
dimensionality reduction, endmember extraction or abundance estimation [2]. In con-
sequence, we believe that the results from our experimental analysis carry beyond the
RX detector, and are extensible to many other remote sensing algorithms. As an addi-
tional contribution, we introduce a simple modification of the routine that computes
the correlation matrix reducing the cost of this stage roughly by half.

The rest of the paper is organized as follows. In Sect. 2, we offer a short description
of related work. In Sect. 3, we briefly review the RX algorithm for anomaly detection,
and in Sect. 4 we offer some details on the parallelization of this algorithm. The
experimental evaluation of the RX algorithm on the target architectures using a real
hyperspectral image follows in Sect. 5. Finally, the paper is closed with a discussion
of concluding remarks in Sect. 6.

2 Related work

The RX detector has been implemented and optimized for a variety of high-
performance architectures in previous works, including clusters, multicore architec-
tures, and manycore GPUs [20,22,24]. In all these cases, the focus was on raw per-
formance and no analysis of the power-energy consumption was made. A few recent
studies shed some light into the interactions of the performance—power—energy triangle
using remote sensing algorithms to analyze hyperspectral data. In Castillo et al. [4], the
authors offer a study similar to ours, using parts of a spectral unmixing chain, but focus
on a specialized multicore DSP (digital signal processor) which is completely different
from the point of view of programming to the low-power architectures that we consider
in this paper. That study also included quite an old Intel Atom (D510 with 2 cores, from
2010) as well as an old ARM Cortex-A9, with 2 cores only. In [27,28], the authors pre-
sented complementary analyses of the time—power—energy balance in remote sensing
on general-purpose multicore processors and high-performance GPUs, respectively.
The first paper only considered an extreme platform equipped with four 12-core AMD
processors (Opteron 6,172). In the second one, the target GPUs comprised two high-
performance but power-hungry boards such as the Tesla K20c (“Kepler”) and the
GTX 480 (“Fermi”), with 2,496 and 240 CUDA cores, respectively. The study also
included the old Quadro 1,000 M that we utilize in our experiments.

It is also worth mentioning that FPGAs have been shown to be a competitive
low-power architecture in many remote sensing operations (see, among many others,
[1,13,15]), which can also be applied to anomaly detection. However, for this partic-
ular paper, we preferred to focus on more conventional multithreaded technologies.
The reason that motivated our choice is that, compared with FPGA, multithreaded
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processors are programmed via high-level languages, which are more amenable to
scientists and lead to less fatiguing implementations.

3 The RX algorithm

The RX anomaly detector has been widely used in hyperspectral signal and image
processing [26]. A practical variant of the RX algorithm replaces the covariance
matrix by the sample correlation matrix and removes the mean vector from each
b-dimensional hyperspectral pixel (column) vector

T
X = [xo,xl,...,xb] eR?

where b is related to the number of bands of the image [7]. This variation represents
an adaptation of the original RX algorithm to online analysis scenarios which does
not impair its ability to detect anomalies.
The RX filter is defined as
s(x) = xR 1x, )

and the correlation matrix R is given by

R = , (2)

where the transposed image, HT =[x, X2, ...,%,] € RP*" consistsof n =1 x s
pixel vectors; and [ and s (the lines and samples, respectively) define the spatial
dimensions of the image H [6,26]. The results from the anomaly detection filter
themselves can be represented as a grayscale image, where each value represents the
probability of the associated pixel being anomalous.

Two well-defined stages can be identified in the computation of RX:

1. Calculation of the correlation matrix R: this initial stage requires the computation
of the matrix—matrix product in Eq. (2). In principle, this operation has a com-
putational complexity of 2b% - n floating-point arithmetic operations (or flops, for
short). For real hyperspectral images, though, this cost can be reduced by tak-
ing into account the symmetry of the result (the correlation matrix). Concretely,
because of this property, it is not necessary to compute the entire matrix but only
its lower or upper triangle. Therefore, the computational complexity for this stage
can be halved, to approximately b - n flops only, compared with the prior imple-
mentation in Molero et al. [21]. Additionally, the execution time for this stage is in
practice short as the matrix—matrix multiplication is implemented as an extremely
tuned kernel for most architectures.

2. Computation of the filter §(x) = x' R~!x: the classic implementation of this stage
first computes the inverse (or pseudoinverse) matrix Z = R™! explicitly. This is
next followed by the evaluation, for each pixel of the image, of the expression

@ Springer



Exploring low-power architectures for anomaly detection 1897

8(x) = x' Zx, 3)

which can be implemented as a matrix-vector product (y(x) = Zx), followed by
an inner (or dot) product (8 (x) = xTy(x)) [18,22].
Nevertheless, a more clever approach that relies on a specialized factorization of
R can contribute to a reduction in the cost of this operation [20]. In particular,
given that the correlation matrix R is square, symmetric and positive definite, an
efficient way to proceed is to initially compute the Cholesky factorization of this
matrix:

R=U"U, )

where the upper triangular matrix U € R?*? is referred to as the Cholesky factor
of R [12]. This is then simply followed by the calculation:

§(x) = xR Ix = (U_TX)T (U_Tx) = Z(X)TZ(X), 5)

for each pixel of the image. In summary, this alternative method, based on the

Cholesky factorization, consists of the following three steps:

(a) Decompose the correlation matrix R into a product of two triangular matrices
R =UTU (b3/3 flops).

(b) Solve the triangular system U Tz(x) = x for the intermediate vector z(x) (b2
flops per pixel).

(c) Finally, compute the inner product §(x) = z(x) z(x) (2b flops per pixel).

Proceeding in this structure-aware manner, the computational cost of this stage is

reduced to %3 +b% - n + 2b - n flops, which represents a significant lower amount

of computations compared to the use of the classic method [21].

4 Parallelization of the RX algorithm

This work is focused on the performance—power—energy evaluation of the RX algo-
rithm on modern low-power representants of multicore and manycore GPU architec-
tures. For this purpose, we have leveraged two parallel RX codes tuned, respectively,
for multicore processors and GPUs. These parallel RX algorithms were developed as
part of previous work [19-21], where they were evaluated on high-performance mul-
ticore and graphics accelerators. The versions that we employ in this paper to extract
performance of the low-power processors are slight variants of the original algorithms.
We next describe the main properties of both parallel RX implementations.

4.1 Parallel RX detector on multicore processors
Algorithm 1 sketches the multicore implementation of the RX algorithm. This code

takes advantage of the underlying hardware parallelism via OpenMP threads and
multithreaded implementations of dense linear algebra libraries such as LAPACK and
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BLAS [8].2 We note that this functionality has been optimized for different multicore
architectures to exploit the inherent parallelism of the algebraic computations [9, 16,
17].

In the RX algorithm, the calculation of the correlation matrices (Stage 1) is per-
formed via the BLAS routine dsyrk (symmetric rank-k update) to exploit the symme-
try of the result. For the factorization of the correlation matrix (Stage 2), we employed
routine dpotrf from LAPACK; and routine dtrtrs, from BLAS, is applied to
obtain the intermediate vector(s) z(x) as a triangular linear system solve with multiple
right-hand sides (one right-hand side per pixel). Finally, the inner product involving
z(x) is implemented via the BLAS kernel ddot, with the loop around it parallelized
using OpenMP threads.

Algorithm 1 Pseudocode of the multicore implementation of the RX algorithm.

H = Load Hyperspectral Image
T
R= % {Matrix—matrix product using dsyrk function}
U = Cholesky factorization (R) {Cholesky fact. of R matrix using dpotrf function}
z = Solve linear systems (U, H) {Solve triangular linear system with multiple right-hand sides using
dtrtrs routine}
for j = 1to!/-s do {Loop parallelized via OpenMP threads}
3j = z}' - z; {Compute RX filter of jth pixel using ddot kernel}
end for

4.2 Parallel RX on GPUs

In this case, the stages of the RX algorithm have been parallelized using differ-
ent strategies. In the first stage, the correlation matrix is computed using the entire
GPU architecture. In this case, the calculation of the correlation matrix is cast in
terms of a matrix—matrix product, computed via kernel dsyrk from the CUBLAS
library (available as part of the NVIDIA CUDA SDK [23]). For real hyperspectral
images, the matrix—matrix product is usually large enough to be efficiently performed
in the GPU, since the two matrices being multiplied are of dimension b x n and
n xb.

For the second stage, we leveraged tailored kernels for the Cholesky factorization,
the solution of the triangular linear system, and the inner product from [21]. In this case,
the small size of the system led us to implement our own algebraic kernels instead of
leveraging routines from existing general libraries. Specifically, the Cholesky factor-
ization of the matrix is computed using a single CUDA block, to avoid communication
penalties, and the results are stored in the GPU memory.

For the solution of the linear system, each pixel of the image is assigned to one
CUDA block, and each band of the image is mapped onto one CUDA thread. Pro-
ceeding in this manner, the threads of a block cooperate in the solution of a single
independent triangular linear system, while all the blocks work independently in par-

2 http://www.netlib.org/lapack.
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allel, avoiding communications between different blocks. Finally, the inner product
involving z(x) is merged into the same kernel with the system solver.

5 Experimental results

This section is opened with a technical description of the experimental hardware
setup, consisting of the multicore architectures and power measurement devices. This
is followed by a brief review of the hyperspectral data tested that was employed in all
the experiments. Finally, the section is concluded with the analysis of the performance—
power—energy balance of the RX algorithm, when applied to detect anomalies of the
reference hyperspectral scene on the target architectures.

5.1 Hardware setup

The experimental study was performed on a variety of stand-alone computing “plat-
forms” or boards, and a conventional server, all of them equipped with recent processor
technology from ARM, Intel and NVIDIA; see Table 1. The results with the A9 where
simply collected from the ARM processor in the Carma development board.

These systems represent three current trends in the design of processors:

— The ARM Cortex and Intel Atom are lower power general-purpose processors,
with big (or “fat”) cores offering a functionality similar to their server relatives

Table 1 Main features of low-power multicore processors, GPU-equipped boards, and the Intel server
(top, middle and bottom, respectively) employed in the experiments

Acronym  Architecture #Cores  Frequency (GHz)  Idle power (W) RAM (GB)

Exynos5 Octa 3.1 2

Al5 ARM Cortex-Al5 4 1.2,1.6

AT +ARM Cortex-A7 +4 0.25,0.45, 0.6

IAT Intel Atom S1260 2 0.6, 1.0, 1.5,2.0 40.3 8
Carma dev. kit 10.2

QDR NVIDIA Quadro 1000M 96 1.4

A9 +ARM Cortex-A9 4 0.76, 1.0, 1.3
Jetson TK1 dev. kit 11.8

KEP NVIDIA Kepler 192 0.85 1.7

- +ARM Cortex-Al5 4 2.32 16

ISB Intel Xeon 17-3930 6 1.2,19,25,3.2 95.5 24

(Sandy-Bridge)

Most of these architectures can operate at different frequencies, which can be set by the user. The column
labeled as “frequency” lists the values that were employed in the experiments. In all cases, the “idle power”
is measured with the platform idle during 30 s, and with the processors set at the nominal frequency. For
the GPU-equipped boards (Carma and Jetson kits), the idle power includes the consumption of both the
processor and the accelerator
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from Intel (e.g., Xeon, 13, 15, i7 series) and AMD (Opteron series), but much lower
power dissipation and, obviously, lower performance as well.

— The “small” GPUs from NVIDIA in the Carma development kit and the Jetson TK1
embedded development kit feature high hardware parallelism (almost 100 cores
in QDR and close to 200 in KEP), very appropriate for data-parallel operations. On
the other hand, they achieve these high numbers at the expense of embedding fine-
grained CUDA cores into the chip, which are little more than mere floating-point
arithmetic units. In consequence, these GPUs cannot operate alone, but are instead
integrated into a low-power board, in both cases together with a general-purpose
processor from ARM in charge of the control.

— The Intel Xeon is a modern general-purpose processor integrated into a complete
server node, with a disk, as well as two network cards and several PCI-e connectors
embedded into the motherboard.

The following operating system+compiler were used in each platform:

Exynos5 Octa: Odroid 3.4.75+gcc 4.8.1;

JIAT: CentOS 6.5 (2.6.32)+icc 11.1;

— Carma Development kit: Tegra-Ubuntu 3.1 armv7+gcc 4.6.3+nvcc
5.0;

Jetson TK1 embedded development kit : Tegra-Ubuntu 3.1 armv7 +gcc
4.8.2+nvcc 6.0.1;

ISB: Rocks 2.6.32+icc 12.1.3.

Nevertheless, as most of the operations of the RX algorithm are cast in terms of the
kernels available in these highly tuned libraries, the operating system and compiler that
was employed in these cases have a negligible contribution. Tuned implementations
of the computational kernels that appear in the RX algorithm were obtained, for the
Intel-based platforms and the NVIDIA GPUs, respectively, from recent releases of
Intel MKL (release 11.1 for IAT and 12.1 for 1SB) and NVIDIA CUBLAS (release 5.0
for QDR and 6.0 for KEP). For the ARM, we relied on BLIS (release 0.1.2—4) for the
specialized matrix—matrix product that appears in the first stage of the algorithm (see
Eq. 2),% and ATLAS (release 3.10.2) for the remaining computations.*

To measure power, we employed a WattsUp? Pro .Net wattmeter. This device is
plugged to the cable that connects the electrical socket to the system, and reports total
external AC power, with a sampling rate of 1 Hz, an accuracy of 1 %, and a resolu-
tion of 0.1 W. We warmed up the platforms by executing the RX algorithm repeatedly
during 3 min before the sampling was initiated. Power measures were then contin-
uously recorded while the test (i.e., the algorithm) was run during three additional
minutes. Power was then averaged over this period and multiplied by the execution
time of a single instance of the algorithm to obtain its (total) energy consumption. A
complementary metric to compare the energy efficiency of the different platforms is
the net energy consumption, which was obtained by subtracting the product of idle
power by the time from the energy consumption. This measure reflects more accurately
the effective amount of energy necessary to perform the work, canceling the effect

3 http://code.google.com/p/blis/.
4 http://math-atlas.sourceforge.net/.
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of unnecessary components (e.g., the disk) on the consumption. Hereafter, execution
time is reported in seconds (s), power in Watts (W) and energy in Joules (J = W -s),

5.2 Hyperspectral scene

The hyperspectral image for the experiments was collected by the AVIRIS instrument,
flown by NASAs Jet Propulsion Laboratory over the World Trade Center area in New
York city on September 16, 2001. The size of the full scene is 614 x 512 pixels, with
224 spectral bands, for a total size of about 140 MB (this is the standard size of the
data chunks collected by the AVIRIS instrument before saving the data to disk in the
onboard data collection). The acquisition time required by the AVIRIS sensor is 5.1 s
for the entire image.

All test with this image were performed using IEEE 754 real double-precision arith-
metic.

5.3 Performance—power—energy analysis

Table 2 reports the performance, power dissipation and energy consumption of the
RX algorithm executed in the seven target architectures, using different number of
cores and operation frequencies. For the power, we provide three values, Payg, Pmax
and Ppet, corresponding to the average, maximum and net power, respectively. The
last metric is obtained by subtracting the idle power from the average power for each
platform. For the energy, we include the net and total results.

Consider the execution time first. Unsurprisingly, the best option is to execute the
algorithm at the highest possible frequency and using all the cores of the platform. The
only exception to this is A9 where, for all frequencies, it is actually more convenient
to use 3 cores instead of 4. Moreover, in this particular system there is a negligible
difference between the executions times observed with the processor operating at 1.0
and 1.3 GHz, when 3 cores are in use. If we compare now the performance of all
the architectures, the winner is ISB with KEP quite close to it. These two systems are
roughly 3 x faster than the low-power QDR, about one order of magnitude better than
A15, and outperform A9 and IAT even by a larger margin. This is not totally unexpected,
as ISB is a processor optimized for performance, while all other platforms place energy
efficiency at least on par with performance. The interesting observation here is that
KEP almost matches the performance of the power-hungry ISB. At this point, it is worth
pointing out that whether these differences are relevant or not actually depends on the
application. In particular, for certain scenarios, anomaly detection must be performed
in real time, i.e., at the pace that the images are acquired. In these circumstances, an
execution time above the threshold defined by these conditions is unacceptable. On
the other hand, an execution time that is lower may not offer any benefit either, or can
be even undesirable if, e.g., incurs into a higher power dissipation rate or increases the
total energy consumption.

The results on IAT deserve some further comments. We performed some additional
experiments on this platform to discover that the source of its lower performance is
the lack of efficient implementations of the BLAS kernels that are part of Intel MKL
for this particular architecture.
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Table 2 Execution time, power and energy consumption of the RX algorithm executed on the target

platforms

Architecture Frequency #Cores Time Payg Prax Pret Enet Etot
(GHz)

AlS 1.2 1 12.5 6.8 8.1 3.7 46.3 85.2
1.2 2 9.1 8.2 9.1 5.1 47.4 75.8
1.2 3 8.0 8.9 9.8 5.8 47.3 72.3
1.2 4 9.2 8.8 10.1 5.7 53.0 81.6
1.6 1 10.0 10.0 18.3 6.9 69.7 100.7
1.6 2 7.3 12.1 19.3 9.0 66.4 89.1
1.6 3 6.3 14.4 19.1 11.3 71.6 91.2
1.6 4 58 15.3 17.9 12.2 70.8 88.8

A7 0.25 1 116.1 31 33 0.1 9.2 369.3
0.25 2 82.6 32 34 0.1 12.3 268.4
0.25 3 68.6 33 34 0.2 13.7 226.5
0.25 4 62.5 33 34 0.2 15.0 208.8
0.45 1 66.3 33 3.6 0.2 17.9 223.7
0.45 2 459 3.5 3.6 0.4 19.3 161.7
0.45 3 40.3 3.6 3.7 0.5 20.1 145.2
0.45 4 37.1 3.6 3.8 0.5 20.4 135.5
0.6 1 513 3.6 4.0 0.5 26.1 185.3
0.6 2 37.8 3.8 4.1 0.7 28.7 146.2
0.6 3 30.6 4.0 4.3 0.9 27.5 122.4
0.6 4 27.2 4.1 4.5 1.0 28.5 1129

IAT 0.6 1 234.0 41.2 41.4 0.9 2129 9,643.5
0.6 2 118.7 41.4 41.6 1.1 137.7 4,922.1
1.0 1 140.6 41.5 41.7 1.2 177.2 5,845.2
1.0 2 71.2 42.1 42.3 1.8 128.2 2,998.9
1.5 1 94.5 42.0 42.3 1.7 165.4 3,974.3
1.5 2 48.0 42.8 43.0 2.5 120.5 2,056.6
2.0 1 70.6 42.5 42.7 22 158.1 3,003.3
2.0 2 35.9 43.6 438 33 120.0 1,569.0

QDR 1.4 4 1.7 17.0 17.1 6.7 11.8 29.8

A9 0.76 1 45.5 11.6 13.0 1.3 63.3 530.6
0.76 2 325 12.5 132 2.2 73.9 407.7
0.76 3 39.5 12.9 14.0 2.7 107.5 513.0
0.76 4 63.3 13.1 13.6 2.8 181.6 830.5
1.0 1 36.0 12.1 13.6 1.8 68.1 437.8
1.0 2 25.6 13.2 14.2 2.9 76.5 339.7
1.0 3 22.7 14.0 14.6 3.8 86.7 319.9
1.0 4 329 14.2 14.8 39 131.6 469.8
1.3 1 32.6 12.5 13.7 22 74.1 408.7
1.3 2 24.9 13.3 14.1 3.0 76.8 332.6
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Table 2 continued

Architecture Frequency #Cores Time Payg Prmax Pret Enet Eot
(GHz)
1.3 3 22.8 14.0 14.6 37 86.4 320.3
1.3 4 26.4 14.4 15.1 4.1 109.7 380.7

KEP 0.85 1 0.7 13.5 154 1.7 1.2 9.6

ISB 1.2 1 5.0 109.2 111.5 13.7 69.0 549.0
1.2 2 2.5 114.2 118.3 18.7 47.2 288.7
1.2 4 1.3 123.6 126.1 28.1 38.6 169.6
1.2 6 1.0 128.6 130.2 33.1 335 130.3
1.9 1 3.1 118.9 121.5 234 74.8 379.8
1.9 2 1.6 127.2 130.6 31.7 51.1 204.6
1.9 4 0.9 141.8 144.9 46.3 42.0 128.7
1.9 [§ 0.7 149.6 153.0 54.1 39.1 108.1
2.5 1 24 128.5 130.2 33.0 81.2 316.1
2.5 2 1.2 140.1 143.2 44.6 55.6 174.4
2.5 4 0.7 165.3 171.0 69.8 49.5 117.3
2.5 6 0.6 175.5 180.2 80.0 49.5 108.5
32 1 1.9 141.9 144.4 46.4 90.1 275.6
32 2 0.9 161.8 167.3 66.3 65.9 160.8
3.2 4 0.5 207.6 217.2 112.1 65.1 120.5
32 6 0.5 2222 231.1 126.7 69.6 122.2

The values in bold face highlight, for each architecture, the best option from the point of views of perfor-
mance, (average, maximum, net) power and (net, total) energy. The net values are obtained after substracting
the idle power/energy from the total values

Let us discuss next the power dissipation. The average, maximum and net power
have the opposite behavior to performance, with values that increase linearly with the
frequency, and more irregularly with the number of cores for all three variants of the
power metric. If we analyze the systems, the best platform from this point of view is
A7, which only dissipates 3.1-4.1 W on average, and 3.3—4.1 W at most. Compare
this, for example, with the 109.2-222.2 W drawn by ISB. Even if we subtract the idle
power, to gain a better perspective of the effective (i.e., net) power that is dissipated
while performing the actual work, the differences between A7 and ISB are impressive.
Looking into the results of IAT we can observe that, although being characterized
as a low-power processor, there is a large gap between the dissipation rates of this
architecture compared with the alternative power efficient designs.

Finally, consider the energy consumption. Here the variability is high and the opti-
mal pair (number of cores, frequency) depends on the target architecture. Focussing,
for example, on the total energy, the optimal on A15 employs 3 cores and the lowest
frequency. (Remember that, on this processor, the performance attained using 3 cores
was actually higher than that obtained with 4 cores.) On A7 and TAT, the best option
is to employ the highest number of cores and set the frequency to the highest. Finally,
for A9 and ISB, the optimal is somewhat in the middle; in the ARM case, 3 cores offer

@ Springer



1904 G. Le6n et al.

better results than 4; and in the Intel processor it is more beneficial to employ the
largest number of cores. In a global comparison, if we consider the total energy, the
most efficient system is KEP, with QDR in second place. They are next followed by
Al5, and then both A7, ISB close together. If the reference metric is the net energy,
then A15 and A7 simply swap their positions. IAT suffers from the bad combination
of long execution time and relatively high power dissipation rate in both net and total
energy.

6 Concluding remarks

We have analyzed the performance as well as the power and energy consumption
of a collection of recent low-power architectures using the RX algorithm for anom-
aly detection as a case study. Our experimental results demonstrate the potential of
low-power GPUs to deliver reasonable performance and high power/energy gains.
In addition, the low-power general-purpose processors from ARM considered in this
study offer a lower performance—power ratio than the graphics accelerators, but a
more familiar programming interface. In general, the performance of both types of
low-power systems is far from that of a current Intel Xeon processor. Nevertheless,
whether this is relevant for remote sensing depends on the application scenario, which
may enforce either performance, power or energy as the primary goal. The RX detector
is composed of basic dense linear algebra operations (matrix—matrix products, vec-
tor operations, matrix factorizations) which are also present in other remote sensing
algorithms such as, e.g., estimation of the number of endmembers, dimensionality
reduction, end-member extraction or abundance estimation. A close inspection to the
list of operations that compose the RX Algorithm (see Sect. 3) reveals that all of them,
except the computation of the inner products, are compute-bound kernels. On the
other hand, the contribution of the inner products to the total theoretical cost is minor
(e.g., one order of magnitude lower than the triangular system solve). Therefore, we
can expect that the global RX Algorithm is a compute-bound method and, provided
reasonably tuned implementations of the underlying kernels are leveraged, memory
bandwidth will not play a major role on its performance. We believe that the results
from our experimental analysis with low-power architectures carry beyond the RX
detector, and they are extensible to many remote sensing algorithms and, in general,
any other algorithm that can be decomposed into compute-bound kernels.
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