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Abstract—Hyperspectral imaging relies on sophisticated acqui-
sition and data processing systems able to acquire, process, store,
and transmit hundreds or thousands of image bands from a given
area of interest. In this paper, we exploit the high correlation
existing among the components of the hyperspectral data sets
to introduce a new compressive sensing methodology, termed
hyperspectral coded aperture (HYCA), which largely reduces the
number of measurements necessary to correctly reconstruct the
original data. HYCA relies on two central properties of most
hyperspectral images, usually termed data cubes: 1) the spectral
vectors live on a low-dimensional subspace; and 2) the spec-
tral bands present high correlation in both the spatial and the
spectral domain. The former property allows to represent the data
vectors using a small number of coordinates. In this paper, we par-
ticularly exploit the high spatial correlation mentioned in the latter
property, which implies that each coordinate is piecewise smooth
and thus compressible using local differences. The measurement
matrix computes a small number of random projections for every
spectral vector, which is connected with coded aperture schemes.
The reconstruction of the data cube is obtained by solving a
convex optimization problem containing a data term linked to
the measurement matrix and a total variation regularizer. The
solution of this optimization problem is obtained by an instance
of the alternating direction method of multipliers that decomposes
very hard problems into a cyclic sequence of simpler problems. In
order to address the need to set up the parameters involved in the
HYCA algorithm, we also develop a constrained version of HY CA
(C-HYCA), in which all the parameters can be automatically
estimated, which is an important aspect for practical application
of the algorithm. A series of experiments with simulated and real
data shows the effectiveness of HYCA and C-HYCA, indicating
their potential in real-world applications.

Index Terms—Coded aperture, compressive sensing (CS),
hyperspectral imaging, optimization, signal subspace, total vari-
ation (TV).
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I. INTRODUCTION

YPERSPECTRAL imaging spectrometers collect hun-

dreds or thousands of bands (at different wavelength
channels) for the same area on the surface of the Earth [1].
For instance, the NASA Jet Propulsion Laboratory’s Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS) covers the
wavelength region from 0.4 to 2.5 pm using 224 spectral
channels at nominal spectral resolution of 10 nm [2]. The re-
sulting multidimensional data cube! typically comprises several
gigabytes per flight.

Due to the extremely large volumes of data collected by
imaging spectrometers, hyperspectral data compression has
received considerable interest in recent years [3], [4]. These
data are usually acquired by a satellite or an airborne instrument
and sent to a ground station on Earth for subsequent process-
ing. Usually the bandwidth connection between the satellite/
airborne platform and the ground station is reduced, which
limits the amount of data that can be transmitted. As a result,
there is a clear need for (either lossless or lossy) hyperspectral
data compression techniques that can be applied onboard the
imaging instrument [5]-[7].

A. Proposed Approach and Contributions

In this paper, we develop a new compressive sensing (CS)
framework [8], [9] for hyperspectral images, termed hyperspec-
tral coded aperture (HYCA), which exploits two characteristics
of hyperspectral images:

(I) Hyperspectral vectors generally belong to a low-
dimensional subspace.

(IT) The data cube components display very high correlation
in both the spatial and the spectral domain.

These two characteristics imply that the hyperspectral data
cubes are compressible, i.e., they admit a representation in a
given base or frame, in which most of the coefficients are small
and, thus, the data can be well approximated with just a small
number of large coefficients. In turn, conventional compression
techniques based on transform coding are subject to potential
drawbacks (e.g., all transform coefficients must be computed,
and the locations of the large coefficients must be encoded, thus
introducing an overhead).

Compressibility, or sparsity,” is a necessary condition for
the success of CS. In our approach, and having in mind

'The concept of a cube comes from envisaging the hyperspectral image as a
stack of square images, one per channel.
2 A vector is k-sparse if only & of its components are different from zero.
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the properties (I) and (II), we represent the spectral vectors
using a basis of the signal subspace and particularly model
the high spatial correlation present in hyperspectral scenes by
promoting small local differences on the images of coefficients
by minimizing their 2-D total variation (TV) [10]. Under the
linear mixing model assumption that has been widely used in
hyperspectral imaging [11], if the we use the spectral signatures
of the pure spectral components (called endmembers) to repre-
sent the spectral vectors, then, the representation coefficients
are the abundance fractions of the pure materials. This way,
the proposed approach is strongly connected with spectral
unmixing. To be more precise, and assuming that we use the
spectral signatures of the endmembers to represent the spectral
vectors, our methodology implements hyperspectral unmixing
in addition to hyperspectral CS.

1) Measurement Strategy: Contrarily to conventional com-
pression schemes, which first acquire the full data set and
then implement some compressing technique, CS acquires di-
rectly the compressed signal. This is achieved by computing
inner products, also termed measurements, between known
vectors and the original data. This process is sometimes called
“coded aperture” because we can conceive the inner products
as the total light that is transmitted trough masks acting on
the aperture of the instrument. The single-pixel camera [12]
is a paradigmatic illustration of this concept. The number of
measurements is usually much smaller than the number of
components of the original data. In our approach, we compute
for each spectral vector a few random projections using Gaus-
sian independent identically distributed (i.i.d.) vectors. Among
the many possible strategies to obtain the measurements from
hyperspectral data cubes, ours has two desirable characteristics:
1) it decouples the spectral and spatial domains, which greatly
simplifies the reconstruction algorithms; and 2) the use of Gaus-
sian i.i.d. vectors to compute the inner products yields incoher-
ent CS matrices, a desirable property for the success of data
recovery [9].

2) Reconstruction Algorithm: In order to reconstruct the
original data from the compressed measurements, we minimize
a convex objective function containing a quadratic data misfit
term and the 2-D TV regularizer. The minimization of this
objective function is a hard optimization problem owing to its
large-dimensionality and the presence of nonsmooth terms. To
solve it, we adopt the alternating direction method of multi-
pliers (ADMMs) introduced in [13], which allows to convert
a hard optimization problem into a cyclic sequence of simpler
problems.

B. Related Work

The application of CS to hyperspectral images is an active
area of research, both in terms of the hardware and the signal
processing algorithms [14]-[19]. Works [14], [15] introduce
two variants of the coded aperture snapshot spectral imager
(CASSI). In [14], the measurement of the input scene is equiv-
alent to projective measurement in the spectral domain. The
reconstruction algorithm computes an optimal solution to this
CS underdetermined problem using the expectation maximiza-
tion algorithm, combined with a wavelet-based denoising tech-
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nique. In [15] the measurement is a sum over the wavelength
dimension of a mask-modulated and later sheared data cube.
The reconstruction algorithm solves an ¢, — ¢; optimization
problem to determine the wavelet coefficients of the original
data cube.

The CASSI systems take only a single snapshot from which
the original hyperspectral image is inferred. In most cases, even
assuming that the reconstructed image is sparse in some basis
or frame, this inference is a highly underdetermined and ill-
posed inverse problem. Aiming at improving the conditioning
of that inverse problem, this paper [17] adopts the linear mixing
model and proposes a joint segmentation and reconstruction of
the original dual disperser CASSI measurements described in
[14]. In addition, the mixing matrix containing the signatures
of the spectral endmembers is also estimated.

In [18], the authors reconstruct the hyperspectral data cube
by minimizing a convex functional that penalizes both the trace
norm and the sum TV norms of the all image bands. These
two regularizers promote, respectively, low-rank and piecewise
smoothness on the reconstructed data cube. The measurement
matrix acts independently over the channels.

Last but not least, the works [16], [19] introduce a method-
ology with similarities to the one described in this work, but
with two major differences: our subspace representation is more
flexible, in the sense that we just need to infer a basis for
it and not necessarily the mixing matrix. On the other hand,
our measurement matrix acts on the spectral domain, whereas
[16] acts on the spatial domain. This has strong implications
on the reconstruction algorithm and in the quality of the re-
constructions. The main ideas of our presented technique were
discussed in [20] and [21]. Here, we significantly expand these
ideas to present in full detail our new CS-based approach for
hyperspectral data compression.

C. Paper Organization

The remainder of this paper is organized as follows. Section II
formulates the problem. Section III describes a new CS method-
ology, termed HYCA and its constrained version (C-HYCA),
in which all the parameters can be automatically estimated.
Section IV presents a series of experiments with simulated and
real data intended to show the effectiveness of HYCA and
C-HYCA in real-world applications. Finally, Section V con-
cludes the paper with some remarks and hints at plausible future
research lines.

II. PROBLEM FORMULATION

Let X € R™*™» represent, in matrix format, a hyperspectral
image with n, spectral bands and n,, := n,. x n. pixels where
n, and n. denote, respectively, the number of rows and columns
of the hyperspectral image in the spatial domain. The columns
of X correspond to a column-wise ordering of the spectral
vectors, one per image pixel. Let x” represent the transposed of
X, ||x|| represent the standard Euclidean norm of x, || X|| ¢ :=

trace{XX”'} represent the Frobenius norm of the matrix X,
and I represent the identity matrix of suitable size. With all
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these definitions in place, the CS measurements vector y € R™
is modeled as

y=AX)+w (1)

where A : R™*"» — R™ is a linear operator that computes m
inner products between m known vectors and the elements of
X and w model additive perturbation, hereinafter termed noise,
accounting for, e.g., modeling errors and system noise. Since
A is a linear operator, then we have A(X) = Ax, where x :=
vec(X) is the vectorization of matrix X obtained by stacking
its columns and A € R™*", with n := n; X n,, is the matrix
representation of the linear operator A.

The objective of CS is to recover x from y with m < n,
in order to have compression in the acquisition. Without any
further information, this recovering is impossible even in the
absence of noise because the matrix A is undetermined. If,
however, vector x admits a sparse representation with respect
to a given frame ®, i.e., x = ®60 with 0 being sparse, then the
solution of the optimization problem

min [l subject to: [y — A®O|| <4 2)

yields, in given conditions, a good approximation of x. In
(2), the notation ||x||o, abusively termed the ¢, norm of x,
denotes the number on non-null components of x and § > 0
is a parameter depending on the “size” of the noise.

For 6 = 0, if the system of linear equations y = A®6 has
a solution satisfying 2||0||o < spark(A®), where spark(A) <
rank(A) + 1 is the smallest number of linearly dependent
columns of A®, it is necessarily the unique solution of (2)
[22], [23]. For § > 0, the concept of uniqueness of the sparsest
solution is now replaced with the concept of stability [24]-[26].
For example, in [25], it is shown that, given a solution vector
6 of the noiseless (6 = 0) problem (2), satisfying the sparsity
constraint ||0]|o < (1/u(A®)+1)/2, where u(A®) is the
mutual coherence of matrix ;(A®), then 6 is unique and any
solution B° of (2) for a given § > 0 such that ||y — A®E°|| < &
satisfies

462
1—p(A®)(2]6l0 — 1)

16° — 0] <

A. Optimization Strategies

The problem (2) is NP-hard [27], and therefore, there is
little hope in solving it in a straightforward way. Currently,
there are two possible approaches to solve (2). The first one is
given by convex relaxation methods, and the second one is
given by approximation algorithms. Examples of convex relax-
ation methods are basis pursuit (BP) and BP denoising [28],
which replace the ¢, norm with the ¢; norm in order to solve
the problem. Another example of a convex relaxation method is
the well-known least absolute shrinkage and selection operator
(LASSO) method [29]. On the other hand, approximation
algorithms try to solve the /5 — ¢y problem directly. In this
group, we can mention the Bayesian CS [30], iterative signal
recovery from incomplete and inaccurate samples [31], itera-
tive hard thresholding [32], gradient descent sparsification [33],
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TABLE 1
RATIOS BETWEEN ¢ AND 0, FOR DIFFERENT ALGORITHMS
IN THE LITERATURE (REPRODUCED FROM [34])
Algorithm [HT GDS CoSaMP HTP BP
ot <o 035 <05 02, <0.3333 045 <0.384  03s <0.5777 025 < 0.465
(t/s)/o? 12 18 27.08 9 9.243

and hard thresholding pursuit (HTP) [34]. The solution of our
problem is guaranteed if the restricted isometric property
is satisfied, which happens if there is a restricted isometric
constant o4(A), which satisfies the following inequality (see
[34] and [35] for details):

(1 —o)lx|* < [|Ax]* < (1 + o) ||| 3)

where s denotes the level of sparsity of x, so that ||x||g <'s.
Many of the aforementioned algorithms guarantee the exact
recovery for some values of o(A) < o,, for a given value of
t related to s and for some specific value of o,. In the specific
case of i.i.d. random matrices, the condition o+(A) < o, holds
true provided that the number of measurements scale as

m = Caif log (n/t) 4)
for a given constant ¢ [34]. Since our aim is to make as few
measurements as possible, we may heuristically assess a
sufficient condition by the smallness of the ratio (t/s)/o?.
Table I (reproduced from [34]) shows this ratio for the different
algorithms used to solve the problem. Here, we can see that
although the HTP algorithm provides the best results, the BP
algorithm is still competitive. In addition, there are some works,
which have demonstrated that relaxation methods solving the
{5 — {1 problem perform much better than the approximation
algorithms in the specific case of hyperspectral data sets.

In this paper, we use convex relaxation via analysis-based
regularization. In other words, we use the ¢; norm instead of
the ¢y due to the fact that it is computationally simpler to solve
the problem with ¢; than with £;. Specifically, the problem that
we aim to solve is the following one:

min |0 subject to: |y — A®O| < 4. (5)

Note that this problem is in reality a synthesis one due to
the fact that, in this case, we are synthesizing x = ®0 from
the coefficients of #. However, there is empirical evidence
of the superiority of analysis-based approaches [36]-[38]. A
synthesis prior represents the sought signal as a weighted sum
of atoms. On the other hand, an analysis prior models the
coefficients obtained by applying the forward transform to the
signal. In [37], analysis and synthesis ¢;-norm regularization
with overcomplete transforms are compared, and evidence is
given for the superiority of algorithms based on analysis instead
of synthesis. As a result, we adopt an analysis-based approach,
i.e., we use an analysis operator W to transform our synthesis
problem into an analysis problem, so that the transformed
coefficients ¥x are sparse, thus obtaining

min [|[¥x||; subject to: |ly — Ax|| < 4. (6)
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Specifically, we use 2-D TV regularization [10] so that the ¥
operator computes the horizontal and vertical differences, as
indicated in Section II-D.

B. Measurement Strategy

Measuring instruments generally acquire data in an uncom-
pressed form and then perform compression for improved stor-
age or communication. However, CS involves the acquisition
of the data in an already compressed way, reducing the amount
of data that needs to be measured in the first place. In order to
compress the data at the acquisition time, CS computes inner
products (also termed measurements) between known vectors
and the original data, so that the number of measurements ob-
tained is less than the number of measurements for the original
data. There are many possible strategies for performing CS in
hyperspectral imaging problems. For instance, we can apply
CS in the spectral domain by performing inner products to the
image pixels. Another possibility is to perform CS in the spatial
domain by performing inner products to the image bands [19],
[16]. Finally, we can also develop a hybrid strategy by perform-
ing CS in both the spectral and the spatial domain. In this paper,
we perform CS in the spectral domain, which means that the in-
ner products are related to the image pixels. In our approach we
use matrices with Gaussian i.i.d. entries (Bernoulli i.i.d. entries
would work as well [39]) for the compression. Specifically, we
use different compression matrices A; € R?9*™ for each pixel,
where ¢ is the number of measurements to be performed at each
pixel. This way, we can express our compression matrix as a
block diagonal one A, which contains the matrices A; used to
perform CS measurements at each pixel

A :=bdiag(A4,...,A,) (7)
where bdiag(-) stands for block diagonal. The different matrices
A, € R?™ act on each spectral vector x; by computing ¢
projections. This way, we obtain ¢ X n, measurements and a
compression ratio of n;/q.

Itis worth noting that the collection of matrices Ay, ..., A,
have g x ny, x n,, elements, which corresponds to ¢ data cubes.
Owing to the stringent hardware requisites of the typical on-
board systems, the use and the manipulation of such amount of
data would raise serious problems. In order to address this issue,
instead of using a different matrix A; for each pixel, we use a
small subset of matrices H;, so that A; € {Hy,...,H,, }.ie.,
we will have only ny, different matrices A,;.

As aforementioned, we perform CS in the spectral domain. In
order to exploit the usual high correlation of hyperspectral data
cubes in the spatial domain, we select the compression matrices
A, € {Hy,...,H,, }, as illustrated in Fig. 1: the data cube is
split into nonoverlapping square windows of size nj, 1= ws x
ws, where ws denotes the window size, and the CS measure-
ments on each pixel in the window are performed via matrices
H,,...,H,,. Given that inside each window, the spectral
vectors tend to be piecewise smooth, and therefore most of them
are similar, the proposed measurement strategy yields a number
of independent measures per spectral vector larger than ¢q. More
details on this issue will be provided in Section II-E.
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Measurement strategy illustrated using a toy hyperspectral data cube.

Fig. 1.

C. Exploiting the Low Dimensionality of the
Hyperspectral Data

Hyperspectral imagers collect the reflectance of the surface
of the Earth at different “narrow” channels; thus, the resulting
bands of the hyperspectral data cube are highly correlated. The
high correlation of the hyperspectral bands make the data sets
live systematically in low-dimensional subspaces [40]. We can
model this situation using the following expression:

X =EZ (®)

where E € R™*P is any full column rank matrix, possibly
orthogonal, which spans the signal subspace. It is important
to note that, owing to the smoothness of the spectral vectors,
model (8) is a good approximation, with p < ny, even in the
presence of nonlinear mixing effects. Of course, if the linear
mixing model is a good approximation for the cube under con-
sideration, then E may be taken as the mixing matrix containing
a number columns equal to the number of endmembers [11].
More on this in the following.

In this paper, we work under the assumption that E is known
or may be estimated from the original data. In the later case,
we assume that the sensor acquires the complete image cube
X, and then, we can run a fast algorithm for estimating E and
compute the CS measurements. We are aware that we are not
implementing a canonical CS strategy. We believe, however,
that our line of attack is feasible and effective in most real
applications. In fact, if we assume that the bottleneck is mainly
in the data transmission stage, the application of CS tech-
niques makes perfect sense in this scenario, since we can send
m = q X n, samples with ¢ < p < ngp.

The main advantage of working in a low-dimensional sub-
space instead of with the original data cube is the fact that, in
the former case, we have p x n,, optimization variables instead
of n = ny X n,. As aforementioned, in hyperspectral data the
spectral bands are often highly correlated; thus, the size of
the subspace p is much lower than the original number of
bands p < np.

If we assume that the linear mixture model is valid in our
case, we have that E is the mixing matrix containing the end-
members of the image by columns, and the coefficients Z are
the fractional abundances maps associated to the endmembers
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[11]. During the last few years, there have been many ad-
vances in the development of endmember extraction techniques
onboard the imaging instrument (in other words, the trend is
to have the capacity onboard to compute the mixing matrix);
thus, it is reasonable to assume that we can estimate E before
compressing the data. As a result, when we reconstruct the
coefficients Z on the Earth station, we are performing unmixing
and CS at the same time. In the unmixing process, usually the
nonnegativity constraint is enforced to impose the abundances
to be greater or equal than zero, i.e., Z > 0.

D. Proposed Recovery Criteria

Given that x = vec(X) = vec(EZ) = (I ® E)z, with z :=
vec(Z), then we have

Ax=A(I®E)z ©)
=bdiag(A1E, ..., A, E)z (10)
—Kz (11)

where
K := bdiag(A1E,..., A, E).

Similarly to criteria (6), we propose the following convex
optimization problem to recover z:

min || Pz|; subjectto: |y — Kz < 4. (12)

Our regularizer ||®zl|; is the sum of TVs of the p images of
coefficients Z

P
|z, =) TV(Z) (13)
—TV(2) (14)

where Z is the ith image of representation coefficients with
respect to matrix E. Therefore, ¥ is the discrete gradient
operating over the images Z’. By minimizing TV(z), we are
promoting piecewise-smooth images of coefficients. When E is
the mixing matrix, we can interpret the aforementioned results
in terms of abundance fractions.

A convenient way to write TV(z), in terms of the algorithms
introduced in the next section, is as follows:

TV(z) = ¢(Dz)

where D := [D¥ DT and D, D, denote (pn,) x (pn,)
matrices computing, respectively, the horizontal and ver-
tical backward differences, assuming a cyclic boundary;
ie,Dpz:= Dy j(z),i=1,...,np j=1,...,p]", where
Dy, (;,5)(z) is the horizontal backward difference computed at
pixel i € {i=1,...,n,} and image of coefficients j € {i =
1,...,p}. The action of D, parallels that of D replacing
the operator Dy,(; jy(2z) by D, ;) (z), which computes vertical
backward differences at pixels i € {¢ = 1,...,n,} and image
of coefficients j € {i = 1,...,p}. In addition, we define

(D7) =3 /Doy ) + Doy (). (15)

j=14i=1
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The regularizer (15) is the sum of the _so—called isotropic
TV [41] of the images of coefficients Z*, for i =1,...,p.
Variations of the isotropic TV are the nonisotropic TV [41]

¢(Dz) := ZZ Dhij(2)] + Do gy (2)]

j=11i=1

(16)

which promotes horizontal and vertical discontinuities, and the
vector TV (see, e.g., [42] and [43])

np P

$(Dz) =3 |3 (Dyij)(2)" + (Diiy)(2)*

i=1 i=1

A7)

which promotes aligned discontinuities over all bands.

The three variations of TV just presented are convex and lead
to very similar algorithms. In this paper, we use the isotropic
TV regularizer (15), as it is the more flexible regarding the type
of discontinuities present in the hyperspectral data cubes.

Based on the aforementioned considerations, we address the
following two criteria:

1) C-HYCA

min TV(z) subjectto: [y —Kz| <4, z>0. (18)

2) HYCA
min (1/2)|ly — Kz|* + A\TV(z) subjectto:z > 0. (19)

E. Brief Note About the Measurement Rate

TV minimization, similar to (18) or (19), has been widely
used in compressed sensing applications with remarkable em-
pirical results (see e.g., [9], [16], [19]-[21], and [44]). However,
because the operator ¥ in (13) is not unitary, the standard
theory of compressed sensing does not apply to the analysis
formulations (18) and (19).

The research on provable guarantees that the TV-based CS is
robust has just started. We refer to the work [45] that provides
near-optimal guarantees for stable and robust image recovery
from undersampled noisy measurements using TV minimiza-
tion. More specifically, it is proved that an image can be re-
constructed from O(slogn,) CS measurements within the best
s-term approximation of its gradient up to a logarithmic factor.
We remark that our imaging problem is multidimensional and
therefore not covered by the results introduced in [45].

A detailed treatment of the recovering guaranties for our CS
problem scenario is beyond the reach of this paper. We develop,
however, a few guidelines. Let us consider the cases: 1) ¢ >
p, i.e., the number of CS measurements per pixel is greater or
equal than the rank of X; and 2) ¢ < p, the other way around.
Here, we address the two cases.

1) q¢ > p: In this regime, the matrices A;E € R7*P, for
1 =1,...,np, are full column rank and therefore, in the ab-
sence of noise, we have

z =K'y

where

K' := bdiag (A1E)',..., (A, E)")
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where the symbol B! stands for the pseudoinverse of B.
Clearly, in this case, we do not need TV regularization. How-
ever, this is not the case in the presence of noise, where the
TV regularization helps to stabilize the estimates of z, as
empirically illustrated in Section IV.

2) q < p: This case is much more complex, and its detailed
treatment is object of current research efforts. Herein, we just
provide motivation for the adopted CS measurement strategy.
Let us focus our attention on the optimization variables associ-
ated with a given acquisition window of size n;, = ws X ws,
as schematized in Fig. 1, and define the optimization vari-
ables linked with the pixels inside the window as z; € R?, for
1 =1,...,ny. Since the TV regularization promotes piecewise
smooth images Z%, for i = 1,...,p, it is expectable, therefore,
that a number of vectors z;, for ¢ = 1,...,ny, are similar.
Let Sp,...,S,, be a partition of the index set {1,...,np}
and a; € RP, for Kk =1,...,n,, such that z;, = a; if i € S}.
With this construction, recovering the set z;, forv = 1,...,np,
is equivalent to recover the set aj, for k =1,... n.. It is
not hard to prove that the linear system linking the ¢ x ny,
CS measurements in the window with the variables aj, for
k=1,...,n, has full column rank if

(rnljn [Sk]) xqg>0p (20)

where | S| stands for the number of elements of Sj. Condition
(20) provides a guideline concerning the size of the windows: it
should be large enough to have miny, |Sy| as large as possible,
and thus allowing for smaller values of ¢ and consequently
higher compression rates. However, there should be no clear
advantage in increasing the size of the window beyond a given
limit because, for most real-world images, is not expectable that
miny, |Sk| keep increasing with the size of the window.

III. HYCA AND C-HYCA ALGORITHMS

Here, we introduce HYCA and C-HYCAAalgorithms. In
both cases, the objective is to compute z, or Z in the matrix
format, and then, we infer the original hyperspectral data set by
computing X = EZ.

A. HYCA Optimization

To solve the problem in (19), we follow closely the methodol-
ogy introduced in [13]. The core idea is to introduce a set of new
variables per regularizer and then use the ADMM [46] to solve
the resulting constrained optimization problem. By a careful
choice of the new variables, the initial problem is converted
into a sequence of much simpler problems. With this in mind,
an equivalent way of writing the optimization problem (19) is

1
min 5”)’ — Kz|* + Arv ¢(Dz) + tr 1 (2) 21

where tg(z) =Y 0% gy (2;) is the indicator function (2;

represents the ith element of z and ¢ g4 (2;) is zero if z; belongs
to the nonnegative orthant and +oo otherwise). Given the
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objective function in (21), we can write the following equivalent
formulation:

min
Z,V1,V2,V3

1
§||Y - KV1H2 + tr4(v2) + Ary ¢(Dz)

subjectto vy =1z
Vo = Z
vy = Dz (22)
which in compact form becomes
ming(v) subjectto v =Gz (23)
with
v = [vlT,vg,vg]T
1
9(v) =5 ly = Kvil[* + tri (v2) + Arv $(vs) (24
1
G=|1 (25)
D

Algorithm 1 ADMM pseudocode for solving problem (23).

1. Initialization: set & = 0, choose ;& > 0, z(?), v(9), d(©)
2. repeat:

3.z« argmin, £(z, v(®,d*)

4. v argmin, L£(z*FHD v, d®)

5.d*+D)  dk) — (G D) — y(k+1)]
6. until some stopping criterion is satisfied.

The ADMM for solving (23) is shown in Algorithm 1, where
(see [13] and [47])

Lizv,d)=g(zv) + 5llGz —v—d|* (@6
is the augmented Lagrangian for problem (23), iz > 0 is a pos-
itive constant, and d /. denotes the Lagrange multipliers asso-
ciated to the constraint Gz = v. In each iteration, Algorithm 1
sequentially optimizes £ with respect to z (step 3) and v (step 4),
and then updates the Lagrange multipliers (step 5).

Expanding the augmented Lagrangian introduced in (26), we
obtain

L(z,v1,V2,v3,d;,da,d3)

1

= §||y —Kvi|? + tre(v2) + Arv (vs)

+ Sllz = vi = di]]? + Sllz = vo — do?

L
+%||DZ—V3—d3||2. 27)
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Algorithm 2 Pseudocode of HYCA algorithm.

1. Initialization: set k = 0, choose 1 > 0, z(®, v{?, v{?,

VéO)’ d(10)’ déO)’ ng)
2. repeat:
3. 24D arg min, £(z,v{? v v
(1ék),(1gk)
4. vng) —argminy, £(z*tD vy, vék), vgk))
5. v argming, £(zF+D v v, v
6. v () 0D ()L

® g

<-argmin L(z
3
7. Update Lagrange multipliers:

dngrl) - dgk) _ S (et1) +V§k+1)
d§k+1) - dék) _ kD) Vék+1)
dngrl) - dék) _ @,z +v§k+1)

8. Update iteration: k < k + 1
9. until some stopping criterion is satisfied.

The pseudocode of HYCA is shown in Algorithm 2. It is the
expansion of the ADMM algorithm presented in Algorithm 1.
The goal of step 3 in Algorithm 2 is to determine the value of
the variable z at each iteration. This is a quadratic problem with
a block circulant system matrix, thus effectively solved in the
Fourier domain

7 (F+1)

71(51 +&,+D7¢y) (28)

+— (DTD +21)
where §; = ng) + d(lk), & = vék) + dék), &y = V:(Sk) + dgk).

Steps 4-6 of HYCA compute the minimization of the aug-
mented Lagrangian with respect to v, which is decoupled with
respect to vi, vg, and v3. The minimization with respect
to vy 1S

ngﬂ)

7 (1) H

(29)

1
+ argmin —||ly — Kv1||2
Vi 2

whose solution is
v e (KTK D) (K Ty (20 —al?)). G0)

The inverse of the matrix (K7K + uI), given the block diag-
onal structure of K, is the block diagonal and can be easily
precomputed. We remark that we just need to save the diagonal
blocks.

To compute vo, the optimization problem to be solved is

(k+ ) Z(k+1)

2
va— dg’“)H 31)

eargmm tr+(ve)+ ) H

which is the projection the z(*+1) — dék) onto the nonnegative

orthant, i.e.,
v max (0, 2B +D) _ dé’“’) (32)

where the max operation is to be understood componentwise.
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Finally, the minimization with respect to v3, amounts to
compute

(k+1) 2

vy +— arg H‘IIISD Arv d(vs) + _ dgk) H

(33)

whose solution is the well-known vect-soft threshold (see,
e.g., [48])

v D Vect-soft (Dz(kH) — d(k)>
36d) AR

Arv/ M) (34)
where (a); ;:=[a} al l6i.j) = (An(ig)» Av(iyjy ) fori=1,...,n,
and j=1,...,p, and vect-soft(-,7) denotes the application
of the vect-soft-threshold function b — b(max{|/bl|s — 7,0}/
max{[[b]lz — 7,0} + 7).

The convergence conditions from [46, Theorem 1] are met:
matrix G is full column rank and function g introduced in (23)
is closed, proper, and convex. Under these conditions, the same
theorem states that, for any p > 0, if (23) has a solution, e.g., z*,
then the sequence {z(*)} converges to z*. If (23) does not have
a solution, then, at least one of the sequences {z(*)} or {d(*)}
diverges. The stopping criterion adopted in the algorithm is k =
200. The practical justification will be provided in Section I'V.

In the ADMM scheme, the setting of the parameter i has a
strong impact over the convergence speed. In our case we set
the p parameter by hand tuning for optimal performance.

B. C-HYCA Optimization

Asin HYCA, we also used the ADMM methodology to solve

the C-HYCA minimization problem
m>i(1)1 TV(z) subjectto: |y —Kz|?<§ (35)
where 9 is a scalar value linked to the noise statistics.

As mentioned before in the case of HYCA, here we also
introduce a set of new variables per term of the objective
function and then use the ADMM [46] previously described to
solve the resulting convex constrained optimization problem.
By a careful choice of the new variables, the initial problem
is converted into a sequence of much simpler problems. With
this in mind, let us define tp() as the indicator on a ball
of radius ¢, i.e., tp(¢)(2z) = 0 if [|z|| < e and 400 otherwise.
With these definition in place, an equivalent way of writing the
optimization problem in (35) is

min ¢(Dz) + tp5)(y — K2) + tr(2). (36)

Given the objective function (36), we now write the follow-

ing convex constrained equivalent formulation:

min d(v1) + 1) (V2) + trt(vs)
Z,V1,V2,V3,Vyq
subject to: =Dz
=y —-Kvy
V3 = Z
V4 =12 37

which we solve via ADMM in a way similar to Algorithm 1.
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Here, notice that the constraint vo =y — Kv, is asymmetric
with regard to the other constraints. This asymmetry underlies
a great improvement from the computational point of view, due
to the fact that we decouple the optimization in the spatial
domain from the optimization in the spectral domain. If we
had followed [13] exactly, we would have vo = Kz instead of
the couple (vo =y — Kvy, v4 = z). However, in that case, the
optimization with regard to z would be much more complex, as
we would have matrix K acting over the spectral dimension and
matrix D acting over the spatial domain in the same system.

Expanding the augmented Lagrangian in this case, we obtain

E(Z,Vl,V27V3,V4,d17d2,d3,d4)
= ¢(v1) + %HDZ —v1—di[]* + 1p(5)(va)
H 2
+ 5 [va — (y — Kvg) — dz|” + try(v3)
gl va = dsl” + Sllz —va - % (38)

The minimization of the augmented Lagrangian with respect
to z is a quadratic problem with a block circulant system matrix,
thus effectively solved in the Fourier domain

2D (DD +20) 1(DT¢ + €5+ &) (39)
where {1:v§k)+ d§k>,£3=v§’“>+ dék),and §4zvflk)+ dflk).
The minimization with respect to vy is similar to the mini-
mization with respect to v3 in (34) yielding
vi’(cjjl)) + vect-soft ((z(kﬂ) - d(k))l(} 5’ 1//t> . (40)
. i

The minimization with respect to v is a projection on a ball
of radius &

(41)

<9
g (G, Nl

2 otherwise
[[€-1]

where £, =y — Kvik) + dék).
The minimization with respect to v3 is a component-wise
projection on the nonnegative orthant yielding

v max (0, 2(F+D) _ dgk)) . (42)

The minimization with respect to v, is a quadratic problem
involving the inverse of the operator (K7 K + I) which, given
the structure of the matrix K, can be precomputed

VY e (KTK 1) [ (200 — )

+ KT (—vé’““’ tz+ dé’”)] . (43)

The optimizations with respect to vy alone and to v, alone
are very light. Therefore, a very simple way to achieve joint
optimization with respect to (v, vy4) is to cycle over these
two optimizations until convergence. However, in this case, we
cycle only once due to having observed systematically faster
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convergence with just one step than with more steps. A proof
of the convergence of C-HYCA with just one step is, however,
beyond the scope of this paper.

We remark that C-HYCA does not use any regularization
parameter. It uses instead the parameter &, which is linked to the
noise statistics of the image and thus much easier to infer than
the 2-D TV regularization parameter Ay present in HYCA.

IV. EXPERIMENTAL RESULTS

Here, we conduct a series of experiments using different ver-
sions of HYCA and C-HYCA algorithms on real and simulated
data. Specifically, we have addressed three cases. In the first
case, we have not enforced the nonnegativity constraint and E
is an orthonormal matrix. In the second case, we have used
the sampling matrix H; = A,E", where A;R?%? is a random
matrix following a Gaussian i.i.d. and E' is the pseudoinverse
of the matrix E. In the third case, we have enforced the non-
negativity constraint and assumed that E is the mixing matrix,
which contains the endmembers.

A. Synthetic Data

The synthetic data set used in this experiments were gener-
ated from spectral signatures randomly selected from the U.S.
Geological Survey (USGS).? The simulated images consist of a
set of 5 x 5 squares of 10 x 10 pixels each one, for a total
size of 110 x 110 pixels. The first row of squares contains
the endmembers; the second row contains mixtures of two end-
members; the third row contains mixtures of three endmembers,
and so on. Zero-mean Gaussian noise was added to the synthetic
scenes with signal-to-noise ratios (SNRs) defined as SNR :=
10 - log,o(E||EZ||%/E||N||%), where E denotes mean value
and N is a matrix version of the noise vector w shown in (1),
to simulate contributions from ambient and instrumental noise
sources. Fig. 2 displays the ground-truth abundances maps used
for generating the simulated imagery.

In order to evaluate the performance of the HYCA and
C-HYCA, we use as performance indicator the normalized
mean-squared error (NMSE) of the reconstruction given by

NMSE = |[(Z - 2)||%/I1Z]|% (44)
where Z and Z denote the original and reconstructed abundance
fraction images, respectively. We set the window size ws = 2
so that m = 4. In the first case, we disabled the nonnegativity
constraint and we assume that the mixing matrix E* an or-
thogonal matrix computed as E* := orth(E) where E denotes
the original mixing matrix used to generate the data set and
E* denotes the matrix used in the reconstruction algorithm. In
the second case, we used for sampling H; = A;E! without the
nonnegativity constraint; and finally, in the third case, we used
the nonnegativity constraint considering the original mixing
matrix used for the data set generation.

In this experiment, we set ¢ = 3. Since the original data
set has [ = 224 bands, the compression ratio is I/q = 74.67.

3http://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 2. True abundance maps of endmembers in the synthetic hyperspectral data. (a) Endmember #1. (b) Endmember #2. (c) Endmember #3. (d) Endmember #4.

(e) Endmember #5.

TABLE II
SIMULATED DATA. AVERAGE NMSE BETWEEN THE ORIGINAL AND
THE RECONSTRUCTED DATASET FOR ¢ = 3 AND DIFFERENT
SNR VALUES AFTER 10 MONTE CARLO RUNS

TABLE III
CUPRITE DATA SET. AVERAGED NMSE BETWEEN THE ORIGINAL AND
THE RECONSTRUCTED DATA SET OVER 10 MONTE CARLO RUNS,
FOR DIFFERENT VERSIONS OF THE ALGORITHM
WITH DIFFERENT COMPRESSIONS RATIOS

Version SNR=30db SNR=50db SNR=70db SNR=0c0
- Version qg=>5 qg=9 qg=13 q=17
HYCA * 827-107% 0.52-10~* 0.52-107* 0.30-10~* -
: Z Z Z ” HYCA 98.13. 101 5211074 2.59.10~14 4.54-10~4
. - 5 . - . - . -
HYCA 0.44-10 0.45-10 0.40-10 0.37-10 HYCA T 376.83-10"% 200.39-10~* 108.80-10~*  34.56-10*
—4 —4 —4 —4
HYCAS ~ 21.08-10 0.68 - 10 0.33-10 0.20-10 HYCAS 4661074 25010~  128-1074  1.05-10~*
C-HYCA™  227-107%  3.35-107* 3.24-107% 3.36-10*  CHYCA® 2405.10%  577.10- 4 354104 263 . 102
C-HYCA T 273.107%  200-107* 1.31-107% 1.59-107*%  cHYCAT 590.82-10~% 351.57-10~* 268.54-10~% 225.88-10~4
C-HYCA S  726-107* 051-107% 029-107% 028-10"* C-HYCAS  3.84.107% 2.24.104 1.74-10~% 1.31-107%

* First case without non-negativity and E* := orth(E)T. Second case with
H; = A;E". § Third case using the non-negativity constraint.

Table II shows the NMSE for both versions in different cases.
We performed 10 Monte Carlo runs, sampling not only the
noise but also the elements of the matrix H;. The regularization
parameter Ay in (19) was hand tuned for optimal performance
in the case of the HYCA algorithm. Having in mind the linear
model (8), the parameter ¢ in (18) is set to ¢ := ||A(N)|| 7.

As shown in Table II by disabling the nonnegativity con-
straint, the algorithm is more robust to noise; however, with
the nonnegativity constraint, it provides the better results when
there is no noise. This is expected because the noise introduces
outliers in the model, which may give rise to errors in the
reconstruction when we use the nonnegativity constraint. In
addition, we can see that in the second case, the results are
very good even with SNR = 30 db, which indicates that, in this
case, the algorithm is more robust to noise. If we compare the
HYCA and C-HYCA criteria, we can see that both versions
provide very good results with very low errors. We can also
see that HYCA outperforms C-HYCA, which is due to all the
parameters were hand tuned for optimal performance in the
case of HYCA.

B. Cuprite

In this experiment, we use the well-known AVIRIS Cuprite
data set, available online in reflectance units after atmospheric
correction. This scene has been widely used to validate the
performance of endmember extraction algorithms. The portion
used in experiments corresponds to a 250x 190 pixels subset
of the sector labeled as f970619t01p02_r02_scO3a.rfl in the
online data. The scene comprises 224 spectral bands between
0.4 and 2.5 pm, with full-width at half-maximum of 10 nm and

" First case without non-negativity and E* := orth(E). T Second case with H; =
AET. § Third case using the non-negativity constraint.

spatial resolution of 20 m per pixel. Prior to the analysis, several
bands were removed due to water absorption and low SNR in
those bands, leaving a total of 188 reflectance channels to be
used in the experiments. We used a window size of ws = 2, so
that m = 4 and estimated the number of endmembers with the
Hysime algorithm [40].

Here, we have also considered the same three cases as
before. However, in this case, the mixing matrix was estimated
from the original real data using the VCA algorithm [49], so
that in the first case, we use E* := orth(E) where E is the
mixing matrix estimated by VCA algorithm. In the second case
H, = A,Et and E* .= E. Finally, in the third case, due to the
nonlinear mixtures and outliers present in the real images, the
nonnegativity constraint may be violated. In order to ensure
that the mixing matrix encloses the whole data-set and then the
nonnegativity constraint is satisfied, we open the cone defined
the mixing matrix E* as follows:

E':=E+A-(E-E) (45)
where A is a scalar that defines how much the cone is opened,
and E is a matrix containing the mean spectrum of the endmem-
bers. By choosing a value of A large enough, then all observed
spectral vectors are inside the cone implying that Z > 0. In the
current data set, A = 6 ensures this constraint.

In order to evaluate the performance of HYCA and
C-HYCA with the real data set, we perform experiments with
the compression ratios 188/¢ with ¢ = 5,9, 13, 17. In all cases,
we used a window size of ws = 2, so that m = 4.

In Table III, we show the value of NMSE over 10 Monte
Carlo runs for several versions of the algorithm with different
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Fig. 3. (a) Worst, (b) mean, and (c) best reconstructed pixel in the Cuprite scene for values of ¢ = 5 and the same in the case of ¢ = 15 (d, e, f). (a) ¢ = 5, worst

case. (b) ¢ = 5, mean case and (c) g = 5, best case (d) ¢ = 15, worst case and (¢) ¢ = 15, mean case and (f) ¢ = 15, best case.

compression ratios over the Cuprite data set. In this experiment,
we can see that the version with the nonnegativity constraint
provide better results than the other versions. Here, the second
case is not working, as well as with the synthetic data set,
because here, we are using an estimation of the endmembers
instead of the original ones in order to compress the data, which
introduces a penalty in this case.

Fig. 3 shows the reconstructed and the original signatures
with highest, mean and lowest error for the C-HYCA algorithm
with the nonnegativity constraint for different compression
ratios. In this figure, we can see that even in the worst case
although there is a scale error between the original and the
reconstructed signature, the reconstructed pixel preserves the
shape of the original pixel, which means that the features of
the signature are preserved. In the average case and the better
case the reconstructed and the original pixel are extremely
similar.

Fig. 4 shows the NMSE between the original and the recon-
structed images by the C-HYCA algorithm with the nonneg-
ativity constraint for different compression ratios in the case
of the Cuprite data set. Note that the scale of these figures is
between 0 and 2 - 1072, Most of errors are in the transitions
areas between different land-cover classes. This was expected
as the 2-D TV regularizer promotes smoothness in the smooth
regions. Furthermore, we can see that the most of pixels have
a very low error, which means that the reconstructed and the
original spectrum will be very similar in most of the cases. Note
that the spectra showed in Fig. 3(a) and (d) correspond to the
worst case situation, in which the error is much higher than the
errors of the large majority of the pixels in the image.

Table IV shows the NMSE values after the Cuprite data set
reconstruction by the C-HYCA algorithm with the nonnegativ-
ity constraint with different windows sizes ws = [4, 6, 8] and
the compression ratio of I/q with ¢ = 5. As we can see the
results are very similar for the different windows sizes. They
can, however, improve a little bit by choosing an adequate
window size; in this case the optimum window size of ws = 4.
This is in line with the analysis provided in Section II-E.

Finally, in order to conclude this section, Table V shows
the execution time of the reconstruction algorithms for the real
Cuprite data set running the algorithms during 200 iterations.
This experiment was performed in a desktop computer Intel
Core i7 920 CPU AT 2.67 GHz with 4 GB of RAM. The
table shows that both algorithms spend a similar time, although
C-HYCA outperforms in a few seconds the HYCA algorithm.
However, although these times have been obtained with a
serial implementation, these algorithms can be implemented
in high-performance computing architectures such as clusters
or graphics processing units (GPUs), which could outperform
drastically the execution time.

V. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, we have developed a new framework for hy-
perspectral CS called HYCA and its C-HYCA. This approach
takes advantage of two main properties of hyperspectral data,
namely the high spatial correlation of abundance fractions and
the low number of endmembers that are generally required to
explain the observed data. While HYCA depends on the tuning
of a regularization parameter controlling the relative weight
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Fig. 4. NMSE between the original and the reconstructed Cuprite data set for different compression ratios (a)—(f). (a) g = 5.(b) g =7.(c) ¢ =9.(d) ¢ = 11.

(©)g=13.(H) ¢ =15.

TABLE IV
NMSE BETWEEN THE ORIGINAL AND THE RECONSTRUCTED
CUPRITE DATASET OVER 10 MONTE CARLO RUNS AND
VALUES OF ws = [4, 6, 8] WITH A COMPRESSION
RATIO OF 188/q WITH ¢ = 5

Version ws =4 ws =6 ws =38
C-HYCA 2.95-10% 3.01-10% 3.01-10°%
TABLE V

HYCA AND C-HYCA EXECUTION TIMES FOR THE
RECONSTRUCTION OF CUPRITE SCENE WITH 48 000 PIXELS
RUNNING 200 ITERATIONS IN AN INTEL CORE 17
920 CPU AT 2.67 GHZ WITH 4 GB OF RAM

Version Time (secs)  Time/#pixels
HYCA 319.78 6.662- 1073
C-HYCA 303.78 6.633-1073

between the TV regularizer and the data term, C-HYCA does
not depend on any regularization parameters. This represents an
important contribution since reference information is generally
difficult to obtain a priori in real applications. An exhaustive
quantitative and comparative assessment has been performed in
order to evaluate the accuracy and computational performance
of these methods. The experiments have been conducted using
both synthetic and real data. The obtained results show that
both approaches provide good results in the task of compressing
remotely sensed hyperspectral data sets, which is mainly due
to the fact that they exploit the aforementioned properties,
which are intrinsic of remotely sensed hyperspectral data sets.
In other words, the proposed approaches can achieve high

compression ratios with very small errors. In fact, most of the
errors are located in the transition areas between different land-
cover classes, but even in these cases, the reconstructed pixels
preserve the shape of the original pixel quite accurately. This is
very important due to the fact that most hyperspectral imaging
applications require high fidelity in the reconstruction of the
shape of the spectral signatures in order to discriminate between
different materials.

An important requirement of the proposed algorithms is the
need to know the endmember mixing matrix in advance in order
to accurately reconstruct the original hyperspectral data set. In
the future, we want to relax this requirement by resorting to
spectral libraries and sparse techniques. Spectral library signa-
tures could be used instead in order to reconstruct the image.
A more detailed analysis of the sensitivity of the method to the
size of the window used in the proposed measurement strategy
is also a topic deserving future research. From a computational
point of view, and although the presented algorithms are not
expensive, the ideal scenario would to be able to perform the re-
construction process in real time. Currently, we need to measure
the original image, then estimate matrix E and after that, we
compress and transmit the data to the Earth station jointly with
the estimated matrix. In applications requiring strict real-time
processing, the ideal scenario would to be able to perform the
full reconstruction process in real time. For this purpose, we are
currently developing high-performance implementations of the
proposed approaches in clusters of computers and commodity
GPUs. Due to the inherently parallel nature of the discussed
algorithms, we believe that the development of parallel versions
can considerably reduce the processing time needed to perform
the reconstruction process.
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