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Abstract—Spectral unmixing pursues the identification of spec-
trally pure constituents, called endmembers, and their correspond-
ing abundances in each pixel of a hyperspectral image. Most
unmixing techniques have focused on the exploitation of spectral
information alone. Recently, some techniques have been developed
to take advantage of the complementary information provided by
the spatial correlation of the pixels in the image. Computational
complexity represents a major problem in these spatial-spectral
techniques, as hyperspectral images contain very rich information
in both the spatial and spectral domains. In this letter, we develop a
computationally efficient implementation of a spatial-spectral pro-
cessing algorithm that has been successfully applied prior to the
spectral unmixing of the hyperspectral data. Our implementation
has been optimized for the commodity graphics processing units
(GPUs) and is evaluated (using both synthetic and real data) using
different GPU architectures. Significant speedups can be achieved
when processing hyperspectral images of different sizes. This allows
for the inclusion of the proposed parallel preprocessing module in
a full hyperspectral unmixing chain able to operate in real time.

Index Terms—Graphics processing units (GPUs), hyperspectral
unmixing, spatial-spectral preprocessing (SSPP).

1. INTRODUCTION

HE wealth of spectral information provided by imaging

spectrometers has promoted the application of hyperspec-
tral imaging techniques in many different areas of interest [1]. In
hyperspectral unmixing, endmember extraction is the process
of collecting pure signature spectra of the materials present in a
remotely sensed hyperspectral scene. These pure signatures are
then used to decompose the scene into a set of so-called abun-
dance fractions, representing the coverage of each endmember
in each image pixel.

Several algorithms have been developed for automatic or semi-
automatic identification of endmembers over the last decade [2].
A majority of the algorithms have been developed under the pure
pixel assumption, i.e., they assume that the remotely sensed data
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contain one pure observation for each different material in the
scene [3]. These algorithms often rely exclusively on the exploi-
tation of spectral information in order to select the final set of end-
members. However, spatial information can greatly assist in the
unmixing task by considering local structures latent in the data [4].

In order to also include the spatial information, several
techniques have been proposed in the literature, such as the au-
tomatic morphological endmember extraction [5] or the spatial—
spectral endmember extraction [6]. Furthermore, several spatial
preprocessing algorithms have been developed that can be
applied prior to any spectral-based endmember extraction tech-
nique. Techniques include the spatial preprocessing (SPP)
[7], region-based SPP [8], and spatial-spectral preprocessing
(SSPP) [9]. The goal of these preprocessing methods is to guide
the search for endmembers using not only spectral but also
spatial information, which can greatly assist in the selection
of more spatially representative endmembers without the need
to modify the endmember identification algorithm (the pre-
processing can be applied as an optional step). Such SPP adds
some extra computational cost to the full spectral unmixing
chain. As aresult, the development of efficient implementations
for SPP techniques has become an important goal.

In this letter, we present a new parallel implementation of the
SSPP algorithm, which has been shown to be one of the most
successful SPP techniques available in the literature [9]. Our
implementation has been developed for commodity graphics
processing units (GPUs) [10] and tested on several GPU archi-
tectures. Synthetic scenes are used to validate the efficacy of the
implementation, whereas real hyperspectral data are used to eval-
uate a full unmixing chain that includes our efficient preprocess-
ing module. The results indicate that significant speedups can be
achieved, allowing us to embed the SSPP into a full unmixing
chain that performs in real time after including the SPP module.

The remainder of this letter is organized as follows. Section I1
enumerates and describes the different steps of the SSPP
method. Section III describes the proposed parallel implementa-
tion for GPUs. Section IV describes the experiments conducted
using synthetic data, as well as the real data experiments
intended to evaluate the acceleration achieved by our parallel
implementation in the context of a full hyperspectral unmixing
chain. Section V concludes this letter with some remarks and
hints at plausible future research lines.

II. SSPP

This section briefly outlines the SSPP algorithm in [9]. As
shown in the flowchart given in Fig. 1, the SSPP method
consists of the following steps.

1) Multiscale Gaussian filtering. This step takes as input

the original hyperspectral image Y7*/* 5 where I is the
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Fig. 1. Block diagram illustrating the SSPP method.

number of rows, J is the number of columns, and B is
the number of bands, and returns a filtered version of the
image. To perform this step, we first apply Gaussian filter-
ing to each of the B spectral bands of the hyperspectral
image. According to the results in [9], we use 0 = 1.2
for defining the Gaussian filter. This results in a filtered
version Y i of the original hyperspectral image. Let us
denote by y(ZaJ) = [yl(zvj)v yQ(ivj)v s 7y3(17])] the
B-dimensional pixel vector at spatial coordinates (i, j) of
the hyperspectral image Y, which can now be defined as
asetY = {y(?,7)}ie1,....r- Equation (1) shows the pixel-
level operation that we perform for each kth spectral band
of the hyperspectral image, with 1 < k < B, i.e.,

Fely(i, )] =YY Gl—i,j—j) yl(,5)
ir=1j'=1

. g L e el

with G(7', j') = 552¢

2) Spatial homogeneity calculation. This step takes as input

the filtered hyperspectral image obtained in the previous

step and produces a spatial homogeneity index for each

pixel in the original image Y. To perform this step, we

first calculate the root-mean-square error (RMSE) [11]

between the original hyperspectral image and the filtered

image. Equation (2) indicates the operation to calculate

the RMSE between the pixel y (i, ) in the original im-

age and the pixel at the same spatial coordinates, i.e.,
vr(i,7), in the filtered image

ey

B 2
k=1
2

The lower the RMSE score, the higher the similarity
between the pixels in the original image and its neighbors.
Quite the opposite, the higher the RMSE, the lower the
similarity of the pixel in the original image with regard to
its neighbors. As a result, the RMSE in (2) can be used as
a spatial homogeneity index for each pixel y (4, j) in the
hyperspectral image Y.
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3) Spectral purity index calculation. For this step, we first
use the principal component analysis (PCA) [12] to re-
duce the dimensionality of the hyperspectral image, re-
taining the first p principal components (PCs) containing
most of the variance in the data. Then, we use the first
PCs as the skewers for which we identify the pixels with
maxima and minima projection values, following a proce-
dure similar to the one adopted by the pixel purity index
algorithm in [13]. The pixels with maxima and minima
projection values are assigned a weight of 1. The weight
of the mean value between the maxima and minima pro-
jection value is 0. A threshold value, set empirically to
6 = 0.7 in this work [9], is also applied so that the weights
lower than this threshold are assigned the value 0. Finally,
the spectral purity is calculated as the sum of all the
weights over the first p PCs.

4) Spectral clustering. At this point, we perform a spectral-
based unsupervised clustering of the original hyperspec-
tral image. This step, which is separately applied from the
previous steps, uses the K -means algorithm [12] in order
to identify p clusters in the hyperspectral image.

5) Fusion of spatial and spectral information. This step
takes as input the spatial homogeneity index calculated
in the second step and the clusters calculated in the fourth
step and returns a subset of candidate pixels in the original
hyperspectral image which will be used for endmember
identification purposes. For each cluster, a subset of spa-
tially homogeneous and spectrally pure pixels is selected.
To do so, pixels in each cluster are ranked according to
the increasing values of their spatial homogeneity and
spectral purity.

Finally, an endmember extraction algorithm can be applied
to the pixels retained after the aforementioned procedure. The
outcome of the process is a set of p endmembers and their cor-
responding fractional abundance maps (one per endmember).

III. GPU IMPLEMENTATION OF SSPP

The parallel implementation of the SPP has been devel-
oped using the NVidia Compute Unified Device Architecture
(CUDA)! version 6.5.12 for Unix platforms, which uses the
GNU Compiler Collection (GCC) compiler version 4.8.2. Our
implementation is in fact a hybrid CPU/GPU one, in the sense
that the tasks are allocated to either the CPU or the GPU de-
pending on their nature, with overlapping CPU/GPU computa-
tions, as indicated in Fig. 2. This strategy aims at optimizing the
performance as much as possible. As shown in Fig. 2, there are
some synchronization points due to inherent data dependencies.
The most computationally expensive task executed in the CPU
is the singular value decomposition (SVD) calculation required
for the PCA reduction, whereas the reduced image calculation
is the most computationally expensive part in the GPU. In order
to obtain the reduced image in the GPU, the SVD execution in
the CPU must have finished, thus a first synchronization point is
required. A second synchronization point is required at the end,
just before the fusion of spectral and spatial information takes
place in the CPU (see Fig. 2). This is due to the fact that the
transfer of the required data to the GPU would penalize the per-
formance beyond the execution of this step in the CPU. In our

Thttps://developer.nvidia.com/cuda-zone


https://developer.nvidia.com/cuda-zone

JIMENEZ et al.: GPU IMPLEMENTATION OF SSPP FOR HYPERSPECTRAL UNMIXING

Count pixels
each class

Filtering
cru [l . convolution

cru [

mage
normalization

Spatial index
sort

Time

- 5
/ . 5 A\
| synchronization |
N £

Reduced image
calculation

Spectral purity
Index calculation

Spectral index
sort

(/"' i \
| synchronization |
. A

\J

Fig. 2. CPU/GPU hybrid implementation of SSPP.

implementation, we also use some predefined cuBLAS? func-
tions for efficient matrix operations, which represent around
55% of the total computation time in the GPU, and a simple
kernel that counts the number of pixels that belong to each
cluster (called countingPixelsClusters). In addition,
we use the following CUDA kernels.

1) Kernels convolutionRowSymmGPU and
convolutionColSymmGPU perform the multiscale
Gaussian filtering step. They accomplish the symmetric
Gaussian filtering using the convolution of two 1-D
filters implemented in each kernel. Here, the number of
processing threads in the GPU is set to 128 empirically
after analyzing the optimal configuration in terms of the
number of blocks in the GPU (a block is defined as a
group of threads that share a local cache memory). We
have empirically tested that, if the number of threads is
set to a smaller value, the number of blocks is increased,
and this results in worse computational times (the number
of blocks is equal to the number of pixels divided by the
number of threads). Both kernels allocate the filter (with
size s = 15) in the shared memory. Gaussian filtering is
applied to each of the spectral bands of the image; thus,
each of the two kernels needs to be executed B times.

2https://developer.nvidia.com/cublas
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Speedup of the GPU version of the SSPP algorithm applied to synthetic

images with different sizes and numbers of endmembers (10, 20, and 30) on
Architecture 1. The values reported are the average after ten Monte Carlo runs.

2)

3)

4)

Kernel AvgXCUDA calculates the normalized image ob-
tained by subtracting the average of all pixels in the scene
to each pixel in the original image, using a reduction oper-
ation. This kernel is part of the PCA operation required to
calculate the spectral purity index. The number of blocks
is set to the number of bands, i.e., B; and the number
of threads is set to the maximum value allowed by the
considered GPU architecture.

We have also developed a kernel called BitonicSort
that replaces the Quicksort algorithm (which is com-
monly executed in the CPU). This kernel is used to
accelerate the sorting processes. Specifically, we use the
bitonic algorithm for both spectral- and spatial-based
sorting operations. In order to increase the overlapping
factor between the GPU and the CPU, the calls to this
kernel are always performed from different blocks. Here,
the number of threads is empirically set to 256 and the
number of blocks is calculated, according to

ixel
nblocks = exp (1% [ﬁJ) RS

After executing the PCA reduction step, the rest of the
spectral purity index calculation is implemented through
kernels, i.e., maxminbands and weights. The first
kernel calculates the maxima and minima projections
in the PCA domain, using two reduction operations in
each case. The second kernel obtains the weights of each
minima and maxima projection on each PC. The grid
dimension of the maxminbands kernel (where the grid
is defined as a logical structure that contains a number
of blocks) is set to the number of PCs, whereas the grid
dimension in the we ight s kernel is obtained by dividing
the number of pixels by the block size, which, in both
cases, is set to the maximum value by the considered GPU
architecture.

IV. EXPERIMENTAL RESULTS

The parallel version of SSPP exactly achieves the same
results as the serial implementation in [9]. Therefore, we focus
on the analysis of the parallel performance of the proposed
implementation. First, a set of experiments were conducted
using a collection of 24 synthetic hyperspectral images sim-
ulated with different sizes and numbers of endmembers. In
this case, we focus on analyzing the performance of the SSPP
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TABLE 1
MEAN EXECUTION TIMES (IN SECONDS) AND SPEEDUPS (IN THE PARENTHESES) AFTER EXECUTING THE PARALLEL SSPP (MULTICPU AND GPU
VERSIONS) USING SYNTHETIC HYPERSPECTRAL IMAGES. THE VALUES REPORTED ARE THE AVERAGE AFTER TEN MONTE CARLO RUNS

MEAN EXECUTION TIMES (IN SECONDS) AND SPEEDUPS (IN THE PARENTHESES) AFTER EXECUTING A FULL GPU UNMIXING CHAIN

Architecture 1
10 endmembers 20 endmembers 30 endmembers
Image size MultiCPU GPU MultiCPU GPU MultiCPU GPU
100 x 100 | 0.243 (1.723) | 0.231 (1.809) | 0.150 (2.781) | 0.225 (1.856) | 0.148 (2.847) | 0.222 (1.899)
100 x 200 | 0.249 (3.044) 0.269 (2.82) 0.304 (2.502) 0.261 (2.91) 0.275 (2.791) | 0.260 (2.952)
100 x 300 | 0.345 (3.162) | 0.302 (3.615) | 0.354 (3.119) | 0.296 (3.729) | 0.442 (2.508) | 0.292 (3.797)
100 x 400 | 0.444 (3.239) | 0.343 (4.192) | 0.535 (2.709) 0.334 (4.34) 0.456 (3.206) | 0.329 (4.444)
100 x 500 | 0.586 (3.039) | 0.376 (4.737) | 0.541 (3.346) | 0.372 (4.868) | 0.589 (3.111) | 0.366 (5.003)
500 x 200 | 1.072 (3.271) | 0.542 (6.467) | 1.061 (3.393) | 0.533 (6.752) | 1.122 (3.196) | 0.538 (6.665)
500 x 300 | 1.506 (3.478) | 0.706 (7.417) | 1.639 (3.213) | 0.713 (7.387) | 1.516 (3.488) | 0.702 (7.533)
500 x 400 | 1.917 (3.563) 0.870 (7.85) 2.101 (3.355) | 0.878 (8.028) | 2.149 (3.294) | 0.869 (8.145)
TABLE II

USING REAL HYPERSPECTRAL DATA. THE VALUES REPORTED ARE THE AVERAGE AFTER TEN MONTE CARLO RUNS

Architecture 1

Architecture 2

Architecture 3

Algorithm

Cuprite

WTC

Cuprite

WTC

Cuprite

WTC

VD
K-MEANS
SSPP
N-FINDR
LSU

0.393 (1.831)
1.035 (3.274)
0.485 (7.110)

0.050 (3.371)

0.702 (3.226)
3.512 (5.946)
1.341 (8.212)
0.265 (9.748)
0.164 (3.489)

0.260 (1.745
0.513 (4.998

0.021 (0.968
0.045 (2.108

0.573 (2.736)
1.502 (10.119)
0.990 (7.126)
0.175 (7.550

0.450 (12.765)
1.553 (2.524)
0.670 (13.234)
0.028 (1.250)
0.067 (9.160)

0.949 (22.877)
8.420 (2.681)
1.744 (18.70)
0.160 (16.481)
0.210 (14.152)

TOTAL

(
(
0.035 (2.589)
(
(

1.998 (3.912)

5.983 (6.236)

)
)
0.352 (6.113)
)
)
)

1.191 (4.437

)
0.140 (2.633)
3.381 (7.548)

2.768 (6.927)

11.483 (7.104)

algorithm alone. On the other hand, a second set of experiments
is designed to evaluate a full parallel unmixing chain, including
the newly designed parallel SPP module. The full chain is
applied to the two different hyperspectral data sets. Three
different architectures have been considered.

1) Architecture 1: A desktop computer (Intel corei7 920 CPU
at 2.67 GHz and 6 GB of RAM) with an NVidia GTX
580 GPU equipped with 512 processor cores operating at
1.54 GHz and 1536 MB of RAM memory.

2) Architecture 2: A quad-core desktop computer (Intel
i-7 4790 at 3.6 GHz and 32 GB of RAM) with a NVidia
GeForce GTX 980 GPU equipped with 16 multiproces-
sors containing 128 CUDA cores each (2048 CUDA cores
in total) at 1.33 GHz and 4 GB of RAM memory.

3) Architecture 3: A compute cluster’ with 44 Nvidia
TESLA S2070 GPU nodes (2 M2075 per node), each
with an Intel Xeon CPU E5645 at 2.40 GHz and a total of
24 GB of RAM, divided in 12 modules of 2 GB each.

In all cases, the serial algorithm was executed in one of the
available cores, and the parallel times were measured using
all the cores in each GPU platform. The speedups are calcu-
lated between each CPU/GPU pair. For each experiment, ten
Monte Carlo runs were performed (the times were very similar,
with differences on the order of a few milliseconds only).

A. Synthetic Data Experiments

A collection of 24 synthetic hyperspectral images were first
used for validation. The procedure for constructing the images
is fully described in [3] and [9]. The images contain clusters
of (10, 20, 30) endmembers randomly selected from the U.S.

3http://www.ceta-ciemat.es/

SECONDS

CPU GPU CPU GPU CPU GPU

Architecture 1 Architecture 2 Architecture 3

VD K-MEANS S5PP N-FINDR Lsu Real Time

Fig. 4. Execution time for each step of the full unmixing chain for the WTC
data set. The red line shows the real-time performance threshold.

Geological Survey library,* and comprise 221 narrow spectral
bands between 0.4 and 2.5 ym. Fig. 3 shows the speedups ob-
tained by the GPU implementation of SSPP on Architecture 1
for synthetic images with different sizes and numbers of
endmembers. For comparative purposes, Table I also includes
the execution times and speedups obtained by a multiple
threads version (MultiCPU) implemented using OpenMP and
the Intel ICC compiler version 14.0.2 with —O3 and —restrict
flags. Table I reveals better performance of both the GPU and

“http://speclab.cr.usgs.gov
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MultiCPU versions as the number of endmember increases. In
the GPU case, this is a consequence of the implementation
strategy considered for maxminbands and weights kernels.
Last but not least, the linear trend of the results suggests that
real data sets with larger sizes may allow for the inclusion of
SSPP in a full unmixing chain able to operate in real time.

B. Real Data Experiments

We have used two real hyperspectral data sets. The first
one was collected by the Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) instrument, which is operated by the
NASA’s Jet Propulsion Laboratory, over the Cuprite mining
district in Nevada in the summer of 1997 (these data are avail-
able online).’ The portion used in the experiments corresponds
to a 350 x 350 pixel subset with 188 spectral bands in the range
from 400 to 2500 um, and a total size of 50 MB (several bands
were removed due to water absorption and low signal to noise
ratio in those bands). The second hyperspectral scene was also
collected by AVIRIS over the World Trade Center (WTC) area
in New York City on September 16, 2001 just five days after the
terrorist attacks that collapsed the two main towers and other
buildings in the WTC complex.® The full data set selected for
experiments consists of 614 x 512 pixels, 224 spectral bands,
and a total size of ~140 MB.

The unmixing chain used in these experiments is composed
of five different parallel steps (see Fig. 5). The GPU imple-
mentation of the different parts of the chain is described in
[14]. The estimated number of endmembers is p = 25 for the
Cuprite scene and p = 31 for the WTC scene. Table II shows
the time for each step of the parallel unmixing chain (with our
GPU version of SSPP embedded) and the obtained speedups
in three different GPU architectures. Architectures 1 and 2
(based on NVidia GTX devices) obtain better performance than
Architecture 3 (based on NVidia TESLA GPU devices). This
is because the NVidia TESLA includes error checking and
correction that guarantees more stable results at the expense
of a slightly reduced performance. Fig. 4 shows the execution
times of each step of the unmixing chain for the WTC data
set. The time taken by data transfers between the CPU and the
GPU is included in the execution times reported in Fig. 4. Such
overhead represents 16.63%, 21.94%, and 9.4% of the total
execution time for Architectures 1, 2, and 3, respectively. In the
case of AVIRIS (a pushbroom instrument), the cross-track line
scan time is quite fast (8.3 ms to collect 512 full pixel vectors).
For real-time performance, the WTC image (512 x 614 pixel

Shttp://aviris.jpl.nasa.gov
Shttp://speclab.cr.usgs.gov/wtc/

Abundance maps

vectors) needs to be processed in approximately 5.2 s, which
results from a data collection rate of approximately 27 MB/s.
As shown in Table II, the execution of the SSPP algorithm
is always below this threshold. In addition, the full unmixing
chain is below the threshold in the case of Architecture 2.

V. CONCLUSIONS AND FUTURE LINES

In this letter, we have developed a new GPU implementation
of the SSPP algorithm. The obtained results indicate that it
is possible to achieve significant speedups by overlapping the
execution of the algorithm in the CPU/GPU. The parallel SSPP
has been embedded into a full real-time unmixing chain. Future
work will focus on improving this implementation by studying
different clustering and endmember extraction algorithms.
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