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Abstract—Change detection (CD) is an active research topic
in remote sensing applications including urban studies, disaster
assessment, and deforestation monitoring. In this paper, we pro-
pose an automatic method for CD in high-resolution remote sens-
ing images that uses a novel strategy for the selection of training
samples and an ensemble of multiple classifiers. As for the selec-
tion of training samples, our proposed method uses two groups of
thresholds instead of just one threshold to enhance the quality of
the selected training samples by allowing for their selection in an
intelligent manner. In order to achieve high CD accuracy, spatial
information such as texture and morphological profiles are utilized
in conjunction with spectral information. Our multiple classi-
fier system (MCS) exploits the extreme learning machine (ELM),
multinomial logistic regression (MLR), and K-nearest neighbor
(KNN) classifiers. To validate our newly proposed approach, we
conduct experiments using multispectral images collected by ZY-
3. The proposed method provides state-of-the-art CD accuracies
as compared with other approaches widely used in the literature
for CD purposes.

Index Terms—Change detection (CD), extreme learning
machines (ELMs), multiple classifier, spatial information.

1. INTRODUCTION

HE DETECTION of changes occurred over a region of
interest is a challenging goal for Earth observation appli-
cations. In remote sensing, change detection (CD) generally

Manuscript received October 25, 2015; revised February 29, 2016; accepted
March 07, 2016. Date of publication May 02, 2016; date of current version
August 24, 2016. This work was supported in part by the Natural Science
Foundation of China under Grant 41471356), in part by the Fundamental
Research Funds for the Central Universities (2014ZDPY 14), and in part by
the Priority Academic Program Development of Jiangsu Higher Education
Institutions and Jiangsu Key Laboratory of Spectral Imaging and Intelligence
Sense.

K. Tan and X. Jin are with Jiangsu Key Laboratory of Resources
and Environment Information Engineering, and School of Information and
Electrical Engineering, China University of Mining and Technology, Xuzhou
221116, China.

A. Plaza is with the Hyperspectral Computing Laboratory, Department
of Technology of Computers and Communications, Escuela Politecnica,
University of Exremadura, Caceres 10003, Spain.

X. Wang is with the School of Information and Electrical Engineering, China
University of Mining and Technology, Xuzhou 221116, China.

L. Xiao is with the Key Laboratory for Satellite Mapping Technology
and Applications of State Administration of Surveying, Mapping, and
Geoinformation of China, Nanjing University, Nanjing 210094, China.

P. Du is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210023, China (e-mail:
tankuncu@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2016.2541678

focuses on extracting change information by analyzing multi-
temporal images of the same geographical area [1]. CD tech-
niques are often applied in natural disaster evaluation, urban
sprawl assessment, and environmental monitoring [2]-[5].

According to the availability of the training samples, CD
methods can be broadly grouped into two categories: 1) super-
vised [6]-[10] and 2) unsupervised [11]-[14]. Supervised
CD methods exploit the learning capacity of classifiers to
extract change information, and are generally robust to dif-
ferent atmospheric conditions and acquisition dates. In turn,
supervised techniques generally require ground-truth informa-
tion, which limits their application and reduces the degree
of automation. Supervised CD methods include postclassifica-
tion comparison [15], [16] and direct classification [9], [17],
[18]. Postclassification comparison identifies class transitions
by comparing multiple maps, which are widely applied to
Landsat imagery and VHR imagery. However, the accuracy
of change map is entirely dependent on the quality of the
input maps. Direct classification just requires one classification
stage and provides an effective framework to mine a compli-
cated time series [19]. On the contrary, unsupervised methods
can obtain change information without any other additional
information [17]. This makes these methods widely used such
as CVA, thresholding (Otsu algorithm [20] and expectation
maximization (EM) algorithm [21]), and Markov random field-
based methods [22], [23]. This paper focuses on the direct
classification approach.

To improve the accuracy of supervised CD techniques, a
new set of methods for sample selection was proposed by Huo
et al. [18]. These methods identify a threshold to select train-
ing samples based on change vector analysis (CVA). Cao et al.
also used this method to select training samples for automatic
CD in high-resolution remote sensing images [9]. However,
the samples are often concentrated in one single area and the
number of samples for different classes is the same, which
does not meet the actual distribution of pixels in different
classes of the scene. Moreover, with the rich spatial resolution
now available in remote sensing images, CD has been notably
developed for high- and very high-resolution (VHR) images
in recent years. Normally, in VHR images spectral informa-
tion is scarce and spatial information is very rich [24]. As a
result, making full use of the spatial information has become
an exploitation goal for these data. The most commonly used
methods for extracting information from VHR images is object-
based image analysis [2], [25], [26]. However, this approach
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heavily depends on the accuracy of the initial segmentation [9],
[19], [27]. Another important method is the fusion of multi-
ple features. Murray et al. extracted texture features with the
gray level co-occurrence matrix (GLCM) and combined them
with spectral features to classify vegetation groups by using
high-resolution IKONOS imagery [28]. Tuia et al. employed
morphological features and support vector machines (SVMs) to
investigate the relevance of morphological operators for clas-
sification performed on QuickBird panchromatic images [29].
Volpi et al. stacked spectral features, texture features, and mor-
phological features to perform supervised CD in VHR images
[10]. Above all, these studies prove that the inclusion of tex-
ture features and morphological features can compensate for
the lack of detailed spectral information.

On the other hand, traditional supervised CD methods usu-
ally utilize one classifier to extract change information [9], [10],
[18]. But a single classifier cannot detect all kinds of changes
that may happen in the image effectively. To address this issue,
ensemble learning has been applied to the research and appli-
cation of CD and classification. Ensemble learning is to solve
the same problem by using multiple classifiers (also called base
classifiers), which can effectively improve its generalization. In
general, the construction of a classifier ensemble consists of two
stages: 1) the generation of base classifiers and 2) the combina-
tion of their outputs. For the first stage, one possible strategy
relies on using the same training data and different learning
algorithms to build the base classifiers. Another approach is
to build a set of base classifiers by using a single learning
method and different training sets [30]. The main issue of this
approach is the conversion of the original training set to obtain
different training sets. Commonly used methods for this pur-
pose are bagging [31]-[33], boosting [34], [35], and random
subspace [36]. The second step is to combine the outputs of
base classifiers to provide a final decision. There are a num-
ber of different methods, such as weighting methods [37], [38],
probabilistic methods [39], evidential reasoning-based methods
[40], and meta-learning methods [41], which can be used for
this purpose. Many studies have proved that ensemble learn-
ing can improve the accuracy of CD and classification. For
example, Roy ef al. used ensemble learning for CD purposes
[17], showing that CD using semisupervised multiple classifier
systems (MCSs) generally performs better than other state-
of-the-art techniques; Yang et al. constructed three MCSs for
remote sensing image classification and the results show that
MCS is superior to base classifiers [42].

In order to avoid the problems related with traditional meth-
ods for sample selection and take advantage of ensemble
learning, we propose in this work a new automatic CD method
for high-resolution remote sensing images. Here, according to
the characteristics of data distribution, we use two groups of
threshold ranges in order to replace the single threshold value
that is commonly used to select training samples. Then, the
extreme learning machine (ELM) [43]-[45], multinomial logis-
tic regression (MLR) [46]-[48], and K-nearest neighbor (KNN)
[49], [50] are used to build a serial-distributed MCS, in which
each classifier uses the random subspace method (RSM) [30],
[51]-[53] to produce different base classifiers. To make full
use of the rich spatial information present in VHR images, the
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Fig. 1. Flowchart of the proposed method.

method not only extracts the texture features and morphological
features to fill the lack of spectral information, but also uti-
lizes the objects and spatial-contextual information to impose
constraints on the obtained change map.

In order to test the effectiveness of the proposed method,
experiments are carried out on two multitemporal and VHR
images. The proposed method is compared with a variety of
methods such as ELM, MLR, KNN, ELM ensemble with RSM
(ELM-RSM), MCS, pixel-based CVA, and object-based CVA
(CVA-OB). This paper is organized as follows. Section II
presents the proposed methodology. A brief introduction to the
considered data sets is given in Section III. The experimental
results are discussed in Section IV. Finally, Section V con-
cludes with some remarks and hints at plausible future research
lines.

II. PROPOSED METHOD

The main contributions of the present work are twofold: 1) a
new method for sample selection is designed based on CVA and
2) a serial-distributed MCS is used for CD purposes. The new
sample selection method uses two groups of threshold ranges
in order to obtain more evenly distributed training samples. In
addition, the RSM is used to increase the diversity of the base
classifiers. As already mentioned, our MCS consists of three
learning algorithms: 1) ELM; 2) MLR; and 3) KNN. Last but
not least, we employ objects and spatial-contextual informa-
tion to impose constraints in the initial change information. A
detailed description of the proposed CD method is presented in
subsequent sections. A flowchart of the proposed algorithm is
given in Fig. 1.
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A. Generation of Input Dataset

The input dataset consists of the difference images of three
features: 1) spectral features; 2) texture features; and 3) mor-
phological features. The GLCM is a conventional method of
extracting texture features effectively, and it provides compre-
hensive information about the gray level of the image from
the viewpoints of direction, distance, and amplitude of varia-
tion [54], [55]. In this paper, five second-moment descriptors
are adopted: 1) mean; 2) variance; 3) homogeneity; 4) contrast;
and 5) dissimilarity. The mathematical morphology framework
defines a series of operators to emphasize homogeneous spatial
structures in a gray-level image [10], [S6]-[58]. The opening
by reconstruction has a good inhibitory effect on the brighter
elements that are smaller than structuring element. The clos-
ing by reconstruction can filter out the darker elements smaller
than structuring element. The opening and closing by recon-
struction inherits the advantages of the aforementioned methods
regarding their capacity to preserve original shapes of spatial
structures. Therefore, these three morphological reconstruction
filters are used to construct the input dataset.

The difference image X is produced from two superimposed
images. If we suppose that the original images have r spectral
bands and can be represented by 2! and 22, then X is calculated
as follows:

X = |x1 — xQ‘ )

X =XsUXrUX)
where X g represents the r-dimensional spectral features, X
is the S5r-dimensional texture feature, and X, is the 3r-
dimensional morphological feature. Therefore, the dimension-
ality of the input dataset X is 9r. Each band of X must be
normalized in the range [0, 1], and the ith dimensional input data
X; is normalized as follows:

Xi - Vmin

Xi - )
Vmax - Vmin

i=(1,...,9%r) 2)
where V,in and V. are the minimum and maximum of the

i-dimensional input data.

B. Selection of Training Samples

A common method of sample selection is based on the
assumption that the greater the value of a pixel in the differ-
ence image, the greater the possibility of the pixel belonging to
the change category. So, the samples corresponding to the first
a x N largest portion of the pixels in the difference image are
regarded as positive samples and the samples corresponding to
the first & x NN smallest portion of the pixels in the difference
image are regarded as negative samples [18]. IV is the number
of pixels and « is the threshold. However, the training sam-
ples selected by this method are distributed unevenly, which
may reduce the accuracy of CD. The error of samples increases
with the increase in . When the value of « is too large, the
training samples are too many, which reduces the speed of the
training process. When the value of « is too small, the samples
are concentrated in one or several areas, which cannot provide
accurate classification results for the whole image. In addition,
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the number of samples belonging to different categories is the
same, which may not meet the actual distribution of pixels from
different classes.

To solve this problem, an improved sampling method is
proposed in this paper. The new method uses two groups of
threshold ranges to replace one threshold value to get more
evenly distributed training samples. The general procedure of
the new method is given as follows:

Step 1) Extract the change feature with CVA [18]. The

change feature map can be represented by

D ={dij,1<i<m,1<j<n}, which is
usually termed as “difference image”
9r 2
di; ¢Z ) ©

where z} 4, and xl , are the gray values of the pix-
els at the position (z j) in the Ith band of the two
images, and m and n are the number of row and
column of the images.

Calculate the minimum (minv) and maximum
(maxv) and an adaptive threshold (7') of the change
feature map. For details on how to calculate the
adaptive threshold 7', we refer to [59]. The pro-
cess of calculating the adaptive threshold T can be
summarized as follows.

Randomly determine a value
{0,1,...,maxv}, and divide
image into two sections

de, 0,<d¢ <T
%z{””‘”‘“ 4)

di’J, 0,< di-’j < maxv

Step 2)

1

~

Ty, Ty €
the difference

2) Calculate the average of the two sections
5 d
M = = (5)
> dy
Mb _ b=0 6
= (6)

where m is the number of d; and n is the number of
di—’j. If the value of m or n is 0, then M® or M? is
made equal to 0.

3) Determine a terminal value e and compare the aver-

a rb
age of M? and M? to T‘).If‘(M—i_M) —To| <e,

output the final threshold. If this condition is
false, return to (1) and restart the convergence
iteration computation, and get the threshold

Tast = M According to Wei et al. [59],
the only Tzast can be obtained when the terminal
value e is excessively large. But, Tj,s; is not the
optimal threshold of the whole image but the
optimal threshold of the largest change area. When
value e is small enough, there will be two Tjqs¢
values through an iteration computation, which is
named as Tjq5¢1 and Tyqst2

Thastrs 0, < T < Tia
T'last:{ lastl 0 lastl (7)

T‘last27 CZ—‘lastla <T < maxv
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4) The preliminary threshold scope of the change fea-
ture map is {7jqst1, Tiast2; and divided the change
feature map outside the preliminary threshold scope
into two parts

l di;7
di; = dqi2

15

07 S d% S Tlastl
Tiast2, < dif < maxv

®)

5) Calculate the standard deviation S; and S, of the

two parts
ml " 2
%: (dU - Tlastl)
Sy = o (€))
m2 . 2
122: (d” - Tlast2)
Sy = - (10)

where m1 is the number of the pixels that belong

to d%, m?2 is the number of the pixels that belong to
di? Then, the final threshold scope can be presented
as {Tlastl - Sla Tlast2 + SQ}

6) Calculate the final threshold 7 as follows:

m2

%(dlﬁ _T‘lastg2

m2

LR 2
Z@”_Tlastl)
11

ml

ﬂastl_ + CZ-‘last2_

T=

3 .

(11)

Step 3) Divide the change feature map into two parts by
using 7, and calculate their standard deviation
(S_c and S_nc) and the ratio of the number of two
parts (P).

Step 4) Identify two groups of threshold ranges. The thresh-

old range of change category C' = (C1,Co, ..., ()
can be represented as follows:
Ci=[T+Sc,T+(1+al/L—1)x5_¢
Co=[T+2%S ¢, T+ 24+ a2/L—1)%S_(]
Cp=[T+ L*S_c,max v]
(12)

On the other hand, the threshold range of unchanged
category U = (U, Us,...,Uy) can be represented
as follows:

a2=al/P

Up=[T-5ncT—-(1-a2/K —1)]

Uy=[T—-2%xS_ne,T—-(2-a2/K-1)] (3)
Uk = [miny, T — K % S_nc]
where L = fix ((maxv —T) /S_c), K=

fixz (T — minwv) /S_nc). The value of al can be
set between 0 and 1 based on the number of training
samples selected. As the original sample selection,
the parameter values of the new method are set in
this work empirically, through trial and error.
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Step 5) Select the training samples from the change feature
map by two groups of threshold ranges.

C. Construction of MCS

The ELM, MLR, and KNN are chosen to construct our MCS.
ELM is proposed for single-hidden layer feedforward neural
network (SLFN) in [60]. Unlike other traditional approaches
(such as back-propagation algorithms), in the ELM the input
weights and hidden biases are randomly chosen, and the out-
put weights are analytically determined by using the Moore—
Penrose generalized inverse. This makes ELM learn much
faster than the traditional gradient-based learning algorithms
and helps avoiding many difficulties faced by gradient-based
learning methods, such as stopping criteria, learning rate,
learning epochs, and local minima [43]. Multinomial logis-
tic regression estimates the probability of each class and the
algorithm of the odds ratio is assumed to be a linear function
of the influencing variables. For a more detailed introduction
of MLR, we refer to Bourennane et al. [61].The MLR model
is relatively simple and, contrary to conventional linear dis-
criminant analysis, it requires few restrictive assumptions [62].
Specifically, the features for classification do not need to be
normally distributed and linearly related to the classes of inter-
est. KNN determines the category of a pixel based on the
categories of the nearest k samples, and it is a nonparamet-
ric classification technique based on learning by analogy [49].
This algorithm is robust and simple to implement, and it is
frequently used in pattern recognition. However, all three learn-
ing algorithms have their limits, so ensemble learning can be
used to improve their performance. For example, Samat et al.
proposed two novel algorithms for ensemble ELMs (bagging-
based and AdaBoost-based ELMs) for the classification task,
which can improve the stability of ELM [63]. Xia er al.
presented a classification scheme based on ELMs and KNN
for cloud classification [64]; Tan proposed a new algorithm
for hyperspectral image semisupervised classification, which
combined with MLR and KNN [65]. These examples demon-
strate the reasonableness of the combination of ELM, MLR,
and KNN.

In this work, ELM is used to classify the pixels of the input
dataset first. Thus, a large part of the pixels in the input image
can be quickly labeled and the speed of MCS will be increased
because of the high computational efficiency of the ELM.
Then, the remaining unlabeled pixels are further classified by
MLR and KNN in sequence with a certain rule. The spe-
cific process for constructing our MCS can be summarized as
follows.

1) After selecting the training samples, the RSM is
employed for ELM to produce N base classifiers, which
are used to classify all the pixels of the input dataset,
and their outputs for each pixel will be counted. A large
part of pixels can be labeled using the following rule.
Each pixel has N labels (changed class and unchanged
class) after classification, and n_c + n_nc = IN, where
n_c is the number of labels for the changed class and
n_nc is the number of labels for the unchanged class.
If In_c—n_nc|> % the pixel can be labeled by
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Fig. 3. True color images of the second dataset. High-resolution images acquired in (a) November 2013 and October 2014.
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(a)

(b)

Fig. 6. Sample sets for the first dataset which were selected by different sample selection methods (red samples represent changed class and green pixels represent
unchanged class). (a) Sample set for &« = 0.01 with original method. (b) Sample set for a1 = 0.3 with new method.

(b)

Fig. 7. Sample sets for the second dataset, which were selected by different sample selection methods (red samples represent changed class and green pixels
represent unchanged class). (a) Sample set for with original method. (b) Sample set for with new method.

ELM. When n_c > n_nc, the pixel is labeled as changed
class. Otherwise, the pixel is labeled as unchanged
class.

2) Pixels that cannot be labeled by ELM are further classi-
fied by MLR and RSM, which are also used for producing
base classifiers. Then, a part of pixels can be labeled
following the strategy described in (1).

3) KNN employs the same ensemble strategy and rules
to label the remaining pixels as the other two learning
algorithms.

4) The pixels that could not be labeled by the three learning
algorithms separately are subsequently labeled by taking
into account the results of all the three learning algorithms
with voting. Then, the change information is extracted
initially by the MCS.

D. Change Mapping With the Constraint

Information

of Spatial

In order to make full use of spatial information in high-
resolution remote sensing images, we employ objects and
spatial-contextual information to constrain the initial change
information, which can eliminate some salt-and-pepper noise
and reduce the omission ratio and commission ratio. First, we
segment the multitemporal images with the mean shift algo-
rithm. Then, the objects for CD are obtained by split and merge,
according to the rules proposed by Huo et al. [18]. The change
ratio for each object is computed, and if the ratio is greater
than a threshold (R), then the changed pixels are identified;
otherwise, they are regarded as unchanged pixels. After that,
the labels of each pixel and its eight spatial neighbors are
counted. If the number of labels represented in the changed
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class is greater than four, the pixel is identified as a changed
one; otherwise, it will be labeled as unchanged.

III. DESCRIPTION OF DATASETS

To establish the effectiveness of the proposed methodology,
we used two multitemporal and high-resolution remote sensed
images collected by ZY-3 for experiments. ZY-3 satellite is
a civilian high-resolution remote sensing satellite, which was
launched in China on January 2012. The multispectral images
collected by ZY-3 have four bands and their spatial resolution is
5.8 m. The first dataset consists of two high-resolution images
captured by a multispectral camera over an area of Xuzhou
(Jiangsu Province, China) on November 5, 2012 and November
4, 2013, respectively. The test site comprises 450 x 450 pixels
and includes part of Yunlong district. During the two acqui-
sition dates, some new buildings were constructed and some
grassland turned into barren. Fig. 2(a) and (b) shows the two
true color images of the first dataset. The two high-resolution
images of second dataset were acquired in November 2013
and October 2014, respectively. A section of 450 x 450 pix-
els is selected as test site. The test site covers part of Tongshan
District, which is also located in Xuzhou, Jiangsu Province in
China. Some changes are some new buildings and crop growth
in farmland. Fig. 3(a) and (b) shows the true color images of
2013 and 2014, respectively.

IV. RESULTS AND ANALYSIS

To evaluate the effectiveness of the proposed method,
experiments were conducted on two multitemporal and
high-resolution remote sensing images. The performance of
the proposed method is compared with those of some super-
vised methods based on ELM, MLR, KNN, ELM-RSM, SVM,
the MCS (MCS), three unsupervised methods based on CVA
(including the pixel-based CVA, the object-based CVA and
CVA combined with EM algorithm), and Markov random field-
based method. For the supervised methods, the training samples
are the same sample set selected by the newly developed
method for sample selection.

First, geometric correction and atmospheric correction were
performed for the multitemporal image dataset. Then, texture
features and morphological features were extracted to make
up the input dataset with spectral features, as mentioned in
Section II-A. For the first dataset, the window size for comput-
ing GLCM is set to 5 x 5 and the direction is set to 0°, which
are selected according to the resolution of objects represented
in the sense and empirical experience. For the second dataset,
the texture features are extracted by computing the GLCM
with a 7 x 7-pixel window and 0° orientation. Morphological
operations are defined with disk-shaped structuring elements
and radius 5 pixels for the first dataset, and with disk-shaped
structuring elements and radius 7 pixels for the second
dataset.

In order to obtain appropriate training samples, we set the
parameter values with a series of experiments. To keep the size
of the training samples in a reasonable range, parameter « in
Huo’s method for sample selection was limited in the range
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Fig. 8. Plots for different numbers of base classifiers. (a) First dataset.
(b) Second dataset.

[0.01, 0.09], and parameter «1 in the new method was limited
in the range [0.1, 0.9]. ELM was applied to find the values of
parameters for each experiment because of its high speed of
training. As illustrated in Fig. 4, using the image pair in Fig. 2,
the new method can obtain good performance when a1 was set
at 0.3 and Huo’s method performs best when o was set at 0.01.
So, we set &l = 0.3 and o = 0.01 in the experiments with the
first dataset. Fig. 5 shows the overall error for different values
of al and « in the experiments with the second dataset. From
Fig. 5, we can see that the value of a1 and « should be set at
0.15 and 0.02 separately.

Fig. 6 shows the sample sets for the first dataset that were
selected by different sample selection methods. The sample
sets that were selected by the proposed method (distributed
more evenly) are shown in Fig. 6(b), while the samples were
selected by the original method were concentrated in some
regions as shown in Fig. 6(a). Moreover, the number of posi-
tive samples (changed pixels) and negative samples (unchanged
pixels) were almost the same in Fig. 6(a) and the numbers of
samples in Fig. 6(b) are proportional to the actual distribution
of pixels in the first dataset. From Fig. 4, the overall error for
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TABLE 1
ACCURACY OF CD BY DIFFERENT METHODS FOR THE FIRST DATASET

ELM- CVA- Proposed
Method ~ ELM ~ MLR  KNN  SVM L MCS CVA OB MRF EM mathod
Kappa  0.6037 0.6158  0.6002 0.6175 0.6566  0.6950 0.5740  0.6226  0.5339  0.6010 0.7107
OA 0.9418 09334 09292  0.9369 0.9475  0.9517 09171 09454  0.8975 0.9291 0.9587
(lj;’l‘lnr’;'lj 03314 04204 04423 03942 03115 03017 0.4966 03008  0.5580  0.4426 0.1991
(')"[I‘l?i')““ 00358  0.0239  0.0332  0.0273 0.0291  0.0234 00190 00352 00132 00236  0.0292
TABLE II
ACCURACY OF CD BY DIFFERENT METHODS FOR THE SECOND DATASET
ELM- CVA- Proposed
Method ~ ELM ~ MLR  KNN = SVM Lo MCS CVA oB MRF EM o hed
Kappa  0.6978 0.6986  0.6970  0.7467  0.7607  0.7963 0.6266  0.6702  0.5546 0.7298 0.8230
OA 0.9543 09495 09496 09640 09657  0.9724 0.9130  0.9550  0.9059 0.9658 0.9776
(1(:‘]“;3:: 03590 04046 04031 02824 02762  0.2039 04930 03227  0.5684 0.2072 0.1143
I Overall error I Overall error
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Fig. 9. Bar charts for the first dataset showing the overall error for different
methods.

sample set is 12 456 in Fig. 6(a) and just 11 600 in Fig. 6(b).
Fig. 7 displays the sample sets for the second dataset that were
selected by different sample selection methods. It is shown that
the new method could obtain more evenly distributed sample
sets. Similar to the experiment with the first dataset, the over-
all error for the sample set is 8963 in Fig. 7(a) and is less than
7700 in Fig. 7(b). This implies that the new sample selection
method presented in this work performs better than the original
one. In the following experiments, the sample sets were always
selected by the newly proposed method.

As mentioned in Section II-C, the RSM was employed for
the three learning algorithms to produce N base classifiers.
Considering the computational complexity of the method, we
set N in the range of [3], [13] and we experimentally get the
value of N. From Fig. 8, it can be observed that the overall error

Fig. 10. Bar charts for the second dataset showing the overall error for different
methods.

for the two datasets was the smallest separately when the num-
bers of base classifiers (V) were set to 7 and 13 separately. So,
we set N = 7 for the first dataset and N = 13 for the second
dataset in the following experiments.

The object-based CVA was used for comparison with the
proposed method and the objects information was extracted
and used to constrain the change information, so objects were
obtained with the method described Section II-D. The threshold
r in Section II-D was empirically set to 0.25 for the first dataset
and to 0.3 for the second dataset. The parameters of the other
methods such as the number of neural networks for ELM and
the number of base classifiers for the ELM-RSM were deter-
mined by several groups of empirical experiments. The value
k of KNN was set to three because the number of available
training samples is large evenly distributed.
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Fig. 11. CD maps obtained for the first dataset by: (a) ELM; (b) MLR; (c) KNN; (d) SVM; (e) ELM-RSM; (f) MCS; (g) CVA; (h) CVA-OB; (i) MRF; (j) EM;

(k) proposed method; and (1) reference map.

To assess the effectiveness of the proposed methodology,
various performance metrics were considered as follows: over-
all accuracy (OA); kappa coefficient; commission ratio; and
omission ratio. For ELM, ELM_RSM, MCS, and the proposed
method, each experiment was run 10 times because of the insta-
bility of ELM. The accuracy of those methods is reported as
the average of ten experiments. The accuracy of CD for the
two datasets is shown in Tables I and II, respectively. The
charts of the number of overall error for CD are also shown
in Figs. 9 and 10. As shown in Table I, the proposed method

outperforms the other methods for the first dataset. The mean
kappa and mean OA computed are equal to 0.7107 and 0.9587,
which are the highest among the methods. The mean commis-
sion ratio and mean omission ratio of the proposed method
are 0.1991 and 0.0292, respectively. For the first dataset, over-
all accuracies are ranging from 0.9580 to 0.9598 at the 95%
confidence interval and kappa coefficients are ranging from
0.7024 to 0.7219 at the 95% confidence interval. For the sec-
ond dataset, the proposed method has better performance as
illustrated in Table II. The overall accuracies of the proposed
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Fig. 12. CD maps obtained for the second dataset by: (a) ELM; (b) MLR; (c) KNN; (d) SVM; (e) ELM-RSM; (f) MCS; (g) CVA; (h) CVA-OB; (i) MRF; (j) EM;

(k) proposed method; and (1) reference map.

method are ranging from 0.9801 to 0.9828 at the 95% confi-
dence interval and kappa coefficients are ranging from 0.8205
to 0.8582 at the 95% confidence interval. The mean kappa
and mean OA are 0.8230 and 0.9776, which are the highest,
while the mean commission ratio and mean omission ratio are
0.1143 and 0.0160. From Tables I and II, it can be noticed that
the performance of the individual base classifiers is improved
by the ensemble algorithm. For example, the kappa and OA
of ELM are 0.6037 and 0.9418 for the first dataset, but the

same factors for the ensemble ELM are 0.6566 and 0.9475.
The kappa and OA of ELM-RSM for the second dataset are
increased by 0.0629 and 0.0114, respectively, compared with
ELM. In addition, the performance of MCS is significantly
better than that of ELM, MLR, and KNN. The unsupervised
method based on CVA exhibits poor performance when com-
pared with other supervised methods. The commission ratio
of CVA is equal to 0.4966 and 0.4930 for the first dataset
and second dataset respectively. The unit for analysis in the



TAN et al.: AUTOMATIC CD IN HIGH-RESOLUTION REMOTE SENSING IMAGES

object-based CVA is an image object, which contains abun-
dant spatial information. Therefore, the accuracy of CVA-OB is
higher than the pixel based CVA. However, due to the impact of
image segmentation error, a large number of pixels are omitted
or falsely detected. The EM algorithm can provide the change
threshold for difference image to extract change information.
The OA of EM-based method is increased by 0.012 for the first
dataset, and by 0.0528 for the second dataset when compared
with CVA. The result of MRF-based method is the worst and
its commission ratio is the highest among all methods. From
Figs. 9 and 10, it can be observed that the overall error of the
proposed method when analyzing the two datasets is less than
that obtained by other methods. The proposed method exhibits
superiority in CD.

For visual comparison purposes, the change maps obtained
for the two considered datasets are displayed in Figs. 11 and
12, respectively. The changes shown in Fig. 11 are mainly
about the increase in impervious (road and building) areas
and decrease of vegetation and barren. The main reason is the
urban sprawl and construction of Xuzhou in recent years. From
Fig. 11, it can be observed that a lot of unchanged pixels present
in the leftmost part of the reference map [in Fig. 11(1)] are
wrongly identified as changed pixels in the maps obtained by
the supervised methods such as ELM [in Fig. 11(a)], MLR [in
Fig. 11(b)], KNN [in Fig. 11(c)], SVM [in Fig. 11(d)], ELM-
RSM [in Fig. 11(e)], and MCS [in Fig. 11(f)], whereas the
pixels belonging to false detection class are significantly less
in the map [in Fig. 11(k)] obtained by the proposed method.
Meanwhile, as compared with the reference map [in Fig. 11(1)],
some changed regions of the maps obtained by object-based
CVA [Fig. 11(g)] are wrongly identified as unchanged regions,
whereas the regions can be detected by the proposed method
accurately. Compared with other change maps, a large num-
ber of unchanged pixels are erroneously detected as changed
pixels by the methods of pixel based CVA [see Fig. 11(g)],
EM [see Fig. 11(j)], and MRF [see Fig. 11(i)]. The change
map obtained by the proposed method [in Fig. 11(k)] is more
consistent across the reference map [in Fig. 11(1)] compared
with the change map obtained by MCS [in Fig. 11(f)], which
benefits from the spatial constraint. For the second dataset,
many buildings were constructed and some crops were grow-
ing out in farmland during the acquisition date. From the
Fig. 12, it could be seen that small changed regions are scat-
tered all over the maps [in Figs. 12(a)-(j)]. These scattered
and wrongly identified changed regions in the change map
are comparatively less than those obtained by the other seven
methods. In addition, it has also been found that the changed
region in the middle left of Fig. 12(k) is totally absent in the
maps obtained by some methods such as ELM, MLR, KNN,
SVM, and CVA-OB, whereas this changed region is identified
in Fig. 12(k) obtained by the proposed method. The MRF-
based method in this paper uses the result of CVA as the
initial change map, and the relatively bad performance of CVA
[see Fig. 12(f)] affects the result of MRF-based method [see
Fig. 12(h)], which considers the spatial-contextual informa-
tion. All these results illustrate that the proposed method can
obtain more accurate change maps as compared with other
methods.
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V. CONCLUSION AND FUTURE LINES

In this paper, we have developed a new automatic CD method
that combines a new method of sample selection and an MCS.
In order to obtain more evenly distributed training samples, the
new method of sample selection uses two groups of thresh-
old ranges to replace one threshold value. Then, ELM, MLR,
and KNN are used to build a distributed MCS. The MCS
performs a classification of the input dataset using spectral fea-
tures, texture features, and morphological features. After that,
the objects and spatial-contextual information are utilized to
constraint the change map. Experiments are carried out on two
multitemporal and high-resolution images to confirm the effec-
tiveness of the proposed method. From the results obtained, it
has been demonstrated that the proposed method has a better
performance on CD for high-resolution remote sensing images.
However, parameter settings still depend on trial and error in
the current version. In future, we will perform a detailed study
about the relationship between the parameters and the dataset
to find more intelligent methods for parameter settings.
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