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FPGA Implementation of an Algorithm for
Automatically Detecting Targets in Remotely

Sensed Hyperspectral Images
Carlos González, Sergio Bernabé, Daniel Mozos, and Antonio Plaza

Abstract—Timely detection of targets continues to be a relevant
challenge for hyperspectral remote sensing capability. The
automatic target-generation process using an orthogonal projec-
tion operator (ATGP-OSP) has been widely used for this pur-
pose. Hyperspectral target-detection applications require timely
responses for swift decisions, which depend upon (near) real-
time performance of algorithm analysis. Reconfigurable field-
programmable gate arrays (FPGAs) are promising platforms that
allow hardware/software codesign and the potential to provide
powerful onboard computing capabilities and flexibility at the
same time. In this paper, we present an FPGA implementation
for the ATGP-OSP algorithm. Our system includes a direct mem-
ory access module and implements a prefetching technique to hide
the latency of the input/output communications. The proposed
method has been implemented on a Virtex-7 XC7VX690T FPGA
and tested using real hyperspectral data collected by NASA’s
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over
the Cuprite mining district in Nevada and the World Trade Center
in New York. Experimental results demonstrate that our hardware
version of the ATGP-OSP algorithm can significantly outper-
form a software version, which makes our reconfigurable system
appealing for onboard hyperspectral data processing.

Index Terms—Automatic target-generation process (ATGP),
field-programmable gate arrays (FPGAs), hyperspectral imaging,
reconfigurable hardware.

I. INTRODUCTION

H YPERSPECTRAL imaging, also known as imaging
spectroscopy, is a technique that has been widely used

during recent years in Earth and planetary remote sensing [1]. It
generates hundreds of images, corresponding to different wave-
length channels, for the same area on the surface of the Earth.
The concept of hyperspectral imaging originated at NASA’s Jet
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Propulsion Laboratory in California, which developed instru-
ments such as the airborne imaging spectrometer, then called
airborne visible infrared imaging spectrometer (AVIRIS) [2].
This system is now able to cover the wavelength region from
400 to 2500 nm using 224 spectral channels, at nominal spec-
tral resolution of 10 nm. As a result, each pixel (considered as
a vector) collected by a hyperspectral instrument can be seen as
a spectral signature or “fingerprint” of the underlying materials
within the pixel (see Fig. 1).

The wealth of spectral information available from latest-
generation hyperspectral imaging instruments, which has sub-
stantially increased their spatial, spectral, and temporal reso-
lutions, has quickly introduced new challenges in the analysis
and interpretation of hyperspectral data sets. This often leads
to the requirement of hardware accelerators to speedup com-
putations, in particular, in analysis scenarios with real-time
constraints in which onboard processing is generally required
[3]. It is expected that, in future, hyperspectral sensors will con-
tinue increasing their spatial, spectral, and temporal resolutions
(images with thousands of spectral bands are currently in opera-
tion or under development [4]). Such wealth of information has
opened ground-breaking perspectives in several applications [5]
(many of which with real-time processing requirements) such
as environmental modeling and assessment for Earth-based
and atmospheric studies, risk/hazard prevention and response
including wildland fire tracking, biological threat detection,
monitoring of oil spills and other types of chemical contamina-
tion, target detection for military and defense/security purposes,
urban planning and management studies [6].

Reconfigurable hardware solutions such as field-
programmable gate arrays (FPGAs) have consolidated
during the past years as one of the preferred choices for the fast
processing of hyperspectral remotely sensed images [9]–[14]
due to the following three main reasons. First, because of their
smaller size, weight, and power consumption when compared
with other high-performance computing systems, such as
clusters of computers, multicore processors, and/or graphi-
cal processing units (GPUs) [15], [16]. The second reason
becomes motivated by the current availability of FPGA devices
with increased levels of tolerance to ionizing radiation in
space, which converts them into the—nowadays—most widely
used solution for onboard processing at earth observation
satellites [17]. The last but never the least reason comes from
the fact that FPGAs have the inherent ability to change their
functionality through partial or full reconfiguration [18]. As
an example, we have recently published the implementation of
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Fig. 1. Concept of hyperspectral imaging.

the HySime algorithm to estimate the number of endmembers
[19], in which we parallel the most of every stage of the
algorithm and apply reconfiguration between each stage. Thus,
this last characteristic extends the useful life of remote sensing
autonomous systems, since FPGAs permit changes to the usage
model and the data-processing paradigm in space rather than
hard-coding of all components prior to launch.

The special properties of hyperspectral data have signifi-
cantly expanded the domain of many analysis techniques. In
particular, algorithms for detecting (moving or static) targets,
or targets that could expand their size (such as propagating
fires) often require timely responses for swift decisions that
depend upon high computing performance of algorithm anal-
ysis [7]. These algorithms are considered very important tasks
for hyperspectral data exploitation in defense and security
applications [8]. In the past, there have been several develop-
ments toward the implementation of target-detection algorithms
in FPGA architectures [6]. Specifically, Chapter 15 in [6] gen-
erally discusses the use of FPGAs in detection applications and
provides specific application case studies. Chapter 16 in [6]
describes FPGA implementations of techniques for hyperspec-
tral target-detection applications. Chapter 17 in [6] describes
an on-board real-time processing technique for fast and accu-
rate target detection and discrimination in hyperspectral data.
Real-time implementations of several popular target detection
and classification algorithms for hyperspectral imagery have
also been discussed in [20]. Other implementations based on
software optimizations for target-detection algorithms have also
been explored in [21] and [22]. Although several techniques
such as the automatic target-generation process (ATGP) [23]
have been recurrently and successfully used for target-detection
purposes in hyperspectral imagery, a full FPGA implementa-
tion of this algorithm is not yet available to the community. In a
recent work [24], a comparison of different target and anomaly
detection algorithms for real-time hyperspectral imaging has
been conducted, but the ATGP algorithm was not included in
the comparison. In this paper, we develop an FPGA-based hard-
ware version of the automatic target-generation process based
on an orthogonal subspace projector (ATGP-OSP) [10] using
the pseudoinverse operation, which allows us to detect the nec-
essary number of targets in a hyperspectral image. The results
demonstrate that the proposed architecture, when mapped onto
a Xilinx Virtex-7 XC7VX690T FPGA device, can significantly
outperform a software version.

Algorithm 1. Pseudocode of ATGP-OSP

1: inputs: F ∈ Rn and t; // F denotes an n-dimensional hyper-
spectral image with r pixels, and t denotes the number of targets
to be detected
2: U = [x0|0|, · · · , |0]; // x0 is the pixel vector with maximum
length in F
3: for (i = 0; i < t; i++){
4: P⊥

U = I−U
(
UTU

)−1
UT ; // P⊥

U is a vector orthogo-
nal to the subspace spanned by the columns of U
5: v = P⊥

UF // F is projected onto the direction indicated
by P⊥

U

6: i = arg max{1,··· ,r}v [:, i]; // The maximum projection
value is found, where r denotes the total number of pixels in the
hyperspectral image and the operator ’:’ denotes ’all elements’
7: xi ≡ U [:, i+ 1] = F [:, i]; // The target matrix is updated
8: }end for
9: outputs: U = {x0, x1, · · · , xt−1}

The remainder of the paper is organized as follows.
Section II describes our implementation of the ATGP-OSP
algorithm. Section III describes its parallel implementation on
a Xilinx Virtex-7 XC7VFX690T FPGA. Section IV provides
an experimental assessment of both target-detection accuracy
and processing performance of the proposed FPGA-based
algorithm, using well-known hyperspectral data sets (with
quality ground-truth) collected by the NASA Jet Propulsion
Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) [2] over the Cuprite mining district in Nevada and
over the World Trace Center in New York. Finally, Section V
concludes with some remarks and hints at plausible future
research lines.

II. AUTOMATIC TARGET-GENERATION PROCESS

In this section, we briefly describe the original version of
the ATGP target-detection algorithm that will be efficiently
implemented using reconfigurable hardware in this work. This
version is the ATGP algorithm that uses an orthogonal sub-
space projector (ATGP-OSP) for calculating the orthogonal
projection using the pseudoinverse operation.

ATGP was initially developed to find spectral signatures
using orthogonal projections [25]. Let x0 be an initial tar-
get signature (i.e., the pixel vector with maximum length in
the original n-dimensional hyperspectral image F ∈ Rn). This
algorithm uses an orthogonal projection operator which is given
by the following expression:

P⊥
U = I−U

(
UTU

)−1
UT (1)

where U is a matrix of spectral signatures, UT is the transpose
of this matrix, and I is the identity matrix. This orthogonal pro-
jection operator is applied to all image pixels, with U = [x0].
It then finds a target signature, denoted by x1, with the maxi-
mum projection in 〈x0〉⊥, which is the orthogonal complement
space linearly spanned by x0. A second target signature x2 can
then be found by applying another orthogonal subspace pro-
jector P⊥

U with U = [x0, x1] to the original image, where the
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Fig. 2. Hardware architecture used to implement the complete system.

target signature that has the maximum orthogonal projection in
〈x0,x1〉⊥ is selected as x2. The above procedure is repeated
until a set of target pixels {x0, x1, . . . , xt−1} is extracted,
where t is an input parameter to the algorithm. This method
is summarized in Algorithm 1.

III. FPGA IMPLEMENTATION OF THE ATGP-OSP
ALGORITHM

Fig. 2 describes the general architecture of the hardware
used to implement the ATGP-OSP algorithm, along with the
I/O communications. For data input, we have used a DDR3
SDRAM and a direct memory access (DMA) controlled by
the MicroBlaze using a prefetching approach. The reconfig-
urable unit is used to implement our version of the ATGP-OSP
algorithm. Finally, an RS232 controller is used to send the esti-
mated number of endmembers via an RS232 port. During the
development, we have also used this port for debugging.

We have a general architecture to make hardware/software
codesign with a fixed part (MicroBlaze and its memory, PLB
bus, DMA and RS232 controller) and a reconfigurable part
(the reconfigurable unit). This reconfigurable unit can be used
to completely implement an algorithm or some parts of it
(the parts that are best suited to a hardware implementation).
MicroBlaze is a low-performance and low-consumption soft-
core embedded processor. The main advantage of having the
MicroBlaze is that it facilitates the reconfiguration process
and the adaptation of the system for different I/O (SD Card,
Ethernet, PCI bus, etc.).

Fig. 3 shows the modules used to implement the ATGP-
OSP algorithm together with the I/O communications toward
the PLB bus. In the following, we explain each of the mod-
ules and provide a step-by-step description of how the proposed
architecture performs the target detection from a hyperspectral
image.

The first decision that was taken about the ATGP-OSP algo-
rithm was how to calculate the inverse of the result of UTU
matrix multiplication. We tried to implement a method that
would take advantage of the hardware features, such as par-
allelization, i.e., the possibility of performing simultaneously

Fig. 3. Modules used to implement the ATGP-OSP algorithm.

separate and independent operations, to reduce the execution
time. Considering this, we tested several methods to calcu-
late the inverse of a matrix [26]: adjoint method, method
of partitions, frame’s method, Newton’s formula, and Gauss–
Jordan elimination. Gauss–Jordan elimination method was
finally selected to be used in the ATGP-OSP algorithm because
it has desirable features in terms of its ulterior hardware imple-
mentation (as we will see below, it is highly parallelizable).

The Gauss–Jordan method can be stated as follows: If we
have matrix A, and a sequence of elementary row operations
E1,E2, . . . ,Ek which will reduce A to I, then, the same
sequence of row operations will reduce I to A−1.

Thus, to calculate the inverse matrix, we need to accomplish
the following steps.

1) Set the matrix (must be square) and append the identity
matrix of the same dimension to it.

2) Reduce the left matrix to row echelon form using elemen-
tary row operations for the whole matrix (including the
right one).

3) As a result of this process, we obtain the inverse calcu-
lated on the right.

4) If a determinant of the main matrix is zero, inverse does
not exist.

This method is fully parallelizable considering that one ele-
mentary row operation can be done at once and different
elementary row operations can be done at the same time. Using
these parallel properties, we rewrite the Gauss–Jordan method
in the way shown in Algorithm 2.

Fig. 4 describes the architecture used to calculate the inverse
of a matrix using the Gauss–Jordan elimination method follow-
ing Algorithm 2. As we can see, it has two memories to store
a matrix and its inverse, two data paths to calculate the inverse
and two control units to read and write into the memories.

Fig. 5 shows the architecture of the data path used in our
design to implement the inverse process. Basically, this data
path stores the first row of each iteration in a register and sub-
sequently, for each of the remaining rows, calculates aji/aii,
multiplies the result by the stored row, and finally subtracts it to
the appropriate row.

Fig. 6 describes the architecture of the maximum length mod-
ule used in our design to find the initial target signature (in
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Algorithm 2. Pseudocode of the Gauss–Jordan method. In
this algorithmic description, we will assume for simplicity and
standard notation throughout the paper that A[i][j] ≡ aij .

row = [0, . . . ,n− 1] // n denotes the size of the square matrix
A
A−1 = I

//Forward Elimination to build an upper triangular matrix
for(i = 0; i < n; i++){

if(A[row[i]][i] == 0){
for(j = i+ 1; j < n; j ++){

if(A[row[j]][j]! = 0){
row [i] = row[j];
row[j] = row[i]; // This operation is done in parallel with
the previous one
break;

}end if
}end for

}end if
if(A[row [i]][i] == 0) error ”Matrix is singular”;
for(j = i+ 1; j < n; j ++){

A[row[j]] = A[row[j]]−A[row[i]] ∗ (A[row[j]][i]/
A[row[i]][i]);
A−1[row[j]]=A−1[row[j]]−A−1[row[i]]∗(A[row[j]][i]/
A[row[i]][i]); // This operation is done in parallel with the
previous one

}end for
}end for

//Backward Elimination to build a diagonal matrix
for(i = n− 1; i > 0; i−−){

for(j = i− 1; j >= 0; j −−){
A[[row[j]] = A[[row[j]]− [A[[row[i]] ∗ (A[[row[j]][i]/
A[[row[i]][i]);
A−1[[row[j]]=A−1[[row[j]]−A−1[[row[i]]∗(A[[row[j]]
[i]/A[[row[i]][i]); // This operation is done in parallel with
the previous one

}end for
}end for

//Last division to build an identity matrix
for(i = 0; i < n; i++){

A−1 [row[i]] = A−1 [row[i]] ∗ (1/A[row[i]][i]);
\}end for

our case, the pixel vector with maximum length in the orig-
inal n-dimensional hyperspectral image) and the pixel vector
with maximum length after applying the orthogonal projection
operator in each iteration. To find the length of a pixel fi, we
calculate the dot-product of fi with itself using the expression∑N

k=1 fi(k)× fi(k). Taking into account that we can read from
external memory two-pixel components at the same time and
the multiplication P⊥

Ufi are performed in a way that we also
obtain two-pixel components at the same time (it is explained
later), the hardware needed to compute the dot-product which is
composed of two multipliers, two adders, and a register. When
the length of a new pixel is calculated (control unit knows the

Fig. 4. Hardware architecture used to calculate the inverse of a matrix by
Gauss–Jordan elimination.

Fig. 5. Data path to implement the inverse process.

Fig. 6. Hardware architecture used to find the pixel with maximum length.

number of bands n), the result of the dot-product is compared
with the previous maximum value. If the result is a new maxi-
mum, it will be stored for future comparisons together with its
corresponding index into the hyperspectral image.

Fig. 7 shows the architecture of the multiplier used in
our design to perform the dot-product of two given vec-
tors. It is composed of a row of multipliers and a tree of
adders so that for two vectors A = [a0, a1, . . . , an] and
B = [b0, b1, . . . , bn], we first calculate the product element
by element resulting [a0 × b0, a1 × b1, . . . , an × bn]. Then,
each of these multiplications is added together 2 to 2, result-
ing [a0 × b0 + a1 × b1, a2 × b2 + a3 × b3, . . . , an−1 × bn−1
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Fig. 7. Hardware architecture used to multiply two vectors.

Fig. 8. Hardware arquitecture used to implement I-A operation.

+ an × bn] at the first level. The addition 2 to 2 is repeated
through different levels until we obtain the dot-product. Vectors
can be of any dimension less than or equal to a maximum. This
module is used for matrix multiplication so we have vectors
with size n (the maximun) and t (the number of targets). We
use a pipeline architecture so we can perform row by column
multiplications consecutively cycle by cycle.

Fig. 8 describes the module responsible to perform the
subtraction in the operation I−U

(
UTU

)−1
UT . When a

new element aij is calculated in the last multiplication

U
(
UTU

)−1
UT , this module calculates 1− aij when i = j,

i.e., it is a diagonal element, and 0− aij for the rest of the
matrix elements.

Another important aspect in our hardware implementation is
the issue of communications, which are often the main bottle-
neck of a parallel system. Hence, we have paid special attention
to this issue. To reduce the I/O overheads, we have included
DMA, and we have applied a prefetching approach to hide
the communication latency. Basically, while the ATGP-OSP
module is processing a set of data, the DMA is fetching the
following set and storing it in the FIFO.

Fig. 9 describes the architecture used for pixel input, com-
posed of n FIFOs and a control unit. With this architecture,
pixel components are written by twos (we can read from exter-
nal memory two pixel components at the same time) and we can
read one complete pixel. We implement a prefetching technique
to hide the latency of the input communication.

Following the same idea, we implement the rest of the mem-
ories but with only one data input. Therefore, we write the
elements of a matrix one by one but we can read one com-
plete row or column (two in the case of the P⊥

U memory).
Memories U and UT are really implemented using two physical
memories, one accesible by rows and the other by columns, to
cover all matrix multiplications of the algorithm.

Fig. 9. Hardware architecture used for pixel input.

To conclude this section, we provide a step-by-step descrip-
tion of how the proposed architecture performs the target
detection from a hyperspectral image.

1) We read from the write FIFO all pixels and calculate the
pixel with maximun length in the original hyperspectral
image.

2) The index of the pixel with maximun length is written in
the read FIFO.

3) Microblaze reads this index and writes the pixel in the
write FIFO. Then, it is read and stored in U and UT

memories. Henceforth, all pixels are written in write FIFO
using a prefetching approach and stored in the data FIFO.

4) We multiply UTU storing the result in the A memory
of the inverse module and in parallel we initialize A−1

matrix with the identity matrix.
5) We calculate the inverse of UTU following Algorithm 2.
6) We multiply

(
UTU

)−1
UT storing the result in the

(
UTU

)−1
UT memory.

7) We multiply U
(
UTU

)−1
UT , perform I −

U
(
UTU

)−1
UT , and store the result in the P⊥

U

memory.
8) We read a complete pixel from the data FIFO, multiply

P⊥
Uf , and calculate its length. When the length of all pix-

els is calculated, we iterate from step 2) until all targets
are detected.

IV. EXPERIMENTAL RESULTS

This section is organized as follows. In Section IV-A, we
describe the FPGA board used in our experiments. Section IV-
B describes the hyperspectral data sets that will be used for
demonstration purposes. Section IV-C evaluates the target-
detection accuracy of the considered implementation. Finally,
Section IV-D shows the resources used for our hardware imple-
mentation and performs a comparison of our proposed FPGA
design with an equivalent software version.

A. FPGA Architecture

The hardware architecture described in Section III has
been implemented using VHDL language for the specification
of the ATGP-OSP algorithm. Moreover, we have used the
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Fig. 10. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada. (b) U.S. Geological Survey mineral spectral signatures
used for validation purposes.

Fig. 11. (a) False color composition of an AVIRIS hyperspectral image collected by NASAs Jet Propulsion Laboratory over lower Manhattan on September
16, 2001. (b) Location of thermal hot spots in the fires observed in World Trade Center area, available [online]: http://pubs.usgs.gov/of/2001/ofr-01-
0429/hotspot.key.tgif.gif.

Xilinx ISE environment and the Embedded Development Kit
(EDK) environment1 to specify the complete system. The full
system has been implemented on a VC709 board, a reconfig-
urable board with a single Virtex-7 XC7VX690T, two DDR3
SDRAM DIMM slots which holds up to 4 GB each one, an
RS232 port, and some additional components not used by our
implementation.

B. Hyperspectral Image Data Sets

The hyperspectral data sets used in these experiments are
the well-known AVIRIS Cuprite scene [see Fig. 10(a)], avail-
able online in reflectance units,2 and the AVIRIS World Trade
Center (WTC) scene [see Fig. 11(a)]. These scenes have been

1Available: [Online] http://www.xilinx.com/ise/embedded/edk\_pstudio.htm
2Available: [Online] http://aviris.jpl.nasa.gov

widely used to validate the accuracy and performance of target-
detection algorithms.

The AVIRIS Cuprite scene comprises a relatively large area
(350 lines by 350 samples and 20-m pixels) and 224 spectral
bands between 0.4 and 2.5 µm, with nominal spectral resolu-
tion of 10 nm. Bands 1–3, 105–115, and 150–170 were removed
prior to the analysis due to water absorption and low SNR
in those bands. The site is well understood mineralogically
and has several exposed minerals of interest including alu-
nite, buddingtonite, calcite, kaolinite, and muscovite. Reference
ground-signatures of the above minerals [see Fig. 10(b)], avail-
able in the form of a U.S. Geological Survey library (USGS),3

will be used to assess ATGP-OSP algorithm in this paper.
For the second image, the instrument was flown by NASA’s

Jet Propulsion Laboratory over the World Trade Center

3Available: [Online] http://speclab.cr.usgs.gov/spectral-lib.html
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TABLE I
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN TARGET PIXELS

AND KNOWN GROUND TARGETS FOR ATGP-OSP ALGORITHM OVER THE

WTC SCENE

(WTC) area in New York City on September 16, 2001, just
5 days after the terrorist attacks that collapsed the two main
towers and other buildings in the WTC complex. The data
set consists of 614× 512 pixels, 224 spectral bands, and a
total size of (approximately) 140 MB. The spatial resolution is
1.7 m/pixel. The leftmost part of Fig. 11 shows a false color
composite of the data set selected for experiments using the
1682, 1107, and 655 nm channels, displayed as red, green,
and blue, respectively. Vegetated areas appear green in the left-
most part of Fig. 11, while burned areas appear dark gray.
Smoke coming from the WTC area (in the red rectangle) and
going down to south Manhattan appears bright blue due to high
spectral reflectance in the 655 nm channel. Extensive refer-
ence information, collected by U.S. Geological Survey (USGS),
is available for the WTC scene. In this work, we use a U.S.
Geological Survey thermal map which shows the target loca-
tions of the thermal hot spots at the WTC area, displayed as
bright red, orange, and yellow spots at the rightmost part of
Fig. 11 and labeled as capital letters (A–H) in the same figure.
Here, some of the targets are full-pixel in nature (meaning that
they occupy several pixels, such as A and C) while other tar-
gets are subpixel in nature and, hence, more difficult to detect.
The map is centered at the region where the towers collapsed,
and the temperatures of the targets range from 700 to 1300
F. The thermal map displayed in the rightmost part of Fig. 11
will be used in this work as ground-truth to validate the target-
detection accuracy of the proposed parallel algorithms and their
respective serial versions.

C. Target-Detection Accuracy Evaluation

It is important to emphasize that our hardware version of the
ATGP-OSP algorithm provides exactly the same results as a
software version of the algorithm, implemented using the Intel
ICC compiler and optimized via compilation flags to exploit
data locality and avoid redundant computations [29].

Table I shows the spectral angle distance (SAD) [27] values
(in degrees) between the most similar target pixels detected by
ATGP-OSP algorithm, and the pixel vectors at the known target
positions, labeled from “A” to “H,” in the AVIRIS World Trade
Center image. It should be noted that the SAD between a target
ti detected by the ATGP-OSP and a reference spectral signa-
ture sj is given by SAD(ti, sj) = cos−1(ti · sj/ ‖ti‖ · ‖sj‖).
For this scene, the number of target pixels to be detected
was set to t = 30 after calculating the virtual dimensionality
(VD) of the data [28]. As shown in Table I, the ATGP-OSP
algorithm extracted targets that were similar, spectrally, to the
known ground-truth targets (these versions were able to per-
fectly detect the targets labeled as “A” and “C,” and had more
difficulties in detecting very small targets).

TABLE II
SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN TARGET PIXELS

AND KNOWN GROUND TARGETS FOR ATGP-OSP ALGORITHM OVER THE

CUPRITE SCENE

Table II shows the SAD values (in degrees) between the most
similar target pixels detected by ATGP-OSP algorithm, and the
pixel vectors at the known positions of the target minerals in
the AVIRIS Cuprite image. In all cases, the number of target
pixels to be detected was set to t = 19 after calculating the VD.
As shown in Table II, SAD values are low, so again the ATGP-
OSP-algorithm-extracted targets were similar, spectrally, to the
known ground-truth targets. Here, it should be noted that the
target detection performance in this example is uneven for dif-
ferent minerals. This is related to different aspects such as the
atmospheric correction conducted on the Cuprite scene and the
spectral similarity between the reference (ground) signatures
and the endmembers extracted from the image. However, in all
cases, the SAD values are quite low, indicating good detection
performance for all considered targets.

D. Performance Evaluation

In this section, we conduct an experimental evaluation of the
computational performance of our proposed FPGA implemen-
tation. For illustrative purposes, Table III shows the resources
used for our proposed hardware implementation of the ATGP-
OSP algorithm. The FPGA design was implemented on the
Xilinx Virtex-7 XC7VX690T FPGA of the VC709 board. This
FPGA has a total of 866 400 slice registers, 433 200 slice look-
up tables (LUTs), and 134 381 LUT-FF pairs. In addition, the
FPGA includes some heterogeneous resources such as 3600
DSP48E1s and 1470 distributed block RAMs. In our imple-
mentation, we took advantage of these resources to optimize
the design. Block RAMs are used to implement the FIFOs and
the memories, so a vast majority of the slices are used for the
implementation of the ATGP-OSP algorithm together with the
DSP48E1s.

Finally, Table IV reports the processing times obtained for
the hardware implementation of the ATGP-OSP algorithm on
the considered FPGA architecture and for the two considered
hyperspectral scenes. Software version was executed in the Intel
Xeon CPU E5-2695 v3 processor with 14 cores running at
2.30 GHz, with 64 GB of DDR3 RAM memory and imple-
mented using the Intel ICC compiler with optimization flag
–O3 to exploit data locality and avoid redundant computations.
This software version have been implemented using a modified
strategy performed in [29] and OpenMP. In previous versions,
the potential bottleneck in the implementation was to calculate
the projections, where the reduction process was included. In
this paper, the projections are calculated without using locking
routine (omp_set_lock) and (omp_unset_lock) improving the
scalability of the algorithm with regard to [29]. In all cases,
we report the total size of the image in megabytes and the
speedup of the hardware implementation with regard to the
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TABLE III
SUMMARY OF RESOURCE UTILIZATION FOR THE FPGA-BASED IMPLEMENTATION OF THE ATGP-OSP ALGORITHM TO PROCESS UP TO 256 BANDS

AND 32 TARGETS

TABLE IV
PROCESSING TIMES MEASURED FOR THE HARDWARE IMPLEMENTATION

AND FOR OUR OPENMP SOFTWARE IMPLEMENTATION OF THE

ATGP-OSP ALGORITHM

software version using eight threats. In our experiments, the
processing times achieved in the FPGA board show a similar
time when processing the AVIRIS Cuprite scene and a speedup
over 4.6 when it comes to the WTC AVIRIS scene. It is also
remarkable that the obtained speedups increase with the image
size.

To conclude this section, we emphasize that our reported
FPGA processing times are still quite far from real-time perfor-
mance. For instance, the cross-track line scan time in AVIRIS,
a push-broom instrument, is quite fast (8.3 ms to collect 512
full-pixel vectors). This introduces the need to process the
WTC scene in less than 5.09 s (and the cuprite scene in less
than 1.98 s) to fully achieve real-time performance. In future
developments, we will also focus on improving our proposed
implementation to achieve a better utilization of hardware
resources and reduce the reported processing times, which in
any event are considered to be acceptable in many remote
sensing applications.

V. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, we have developed an FPGA implementation
of the automatic target-generation process using an orthogonal
subspace projector (ATGP-OSP), a popular approach to detect
targets in remotely sensed hyperspectral data. Our experimental

results, conducted on a Virtex-7 XC7VX690T FPGA, demon-
strate that our hardware implementation can significantly out-
perform (in terms of computation time) a software version, with
compact size, which make our reconfigurable system appeal-
ing for onboard hyperspectral data processing. Furthermore,
the existence of radiation-hardened FPGAs offers the appealing
possibility of adaptively selecting a hyperspectral processing
algorithm to be applied onboard (out of a pool of available
algorithms) from a control station on Earth.

In future developments, we will also focus on improving our
proposed implementation to achieve a better utilization of hard-
ware resources and reduce the reported processing times, which
in any event are considered to be acceptable in many remote
sensing applications. As future work, we will study the imple-
mentation on FPGA of an automatic target-generation process
including Gram–Schmidt method (ATGP-GS) for calculating
orthogonal projections instead of using an orthogonal subspace
projector that includes a very expensive operation, i.e., the cal-
culation of the inverse, in the traditional implementation of this
algorithm, to obtain real-time performance. Power consump-
tion is also an important issue. Since FPGA tools currently do
not provide accurate results in terms of power at the synthesis
stage [30], [31], we have considered as a future issue to develop
a measurement system that allows us to determine, once a
complete hyperspectral unmixing has been physically mapped
onto a FPGA device, not only the power consumption of the
whole board but also the power consumption of its individual
constituents.
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