
952 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fast Spatial Preprocessing for Spectral Unmixing of
Hyperspectral Data on Graphics Processing Units
Jaime Delgado, Gabriel Martín, Javier Plaza, Member, IEEE, Luis Ignacio Jiménez, Student Member, IEEE,

and Antonio Plaza, Fellow, IEEE

Abstract—Spectral unmixing is an important technique for
hyperspectral data exploitation. It amounts at finding a set of
pure spectral signatures (endmembers) of the most representative
materials in the scene, and estimating their abundance fractions.
The integration of spatial information prior to spectral unmix-
ing of hyperspectral data has attracted much attention in recent
years. Several approaches have been developed for the purpose
of guiding endmember identification algorithms to spatially rep-
resentative, yet spectrally pure endmembers. In particular, the
spatial preprocessing (SPP) algorithm can be used prior to most
existing spectral-based endmember identification techniques, thus
promoting the selection of endmembers in spatially represen-
tative areas of the scene. However, most SPP techniques are
computationally expensive, which adds significant burden to the
spectral unmixing process. In this paper, we present three paral-
lel implementations of SPP that have been specifically developed
for commodity graphics processing units (GPUs). We perform an
evaluation of these techniques using two GPU architectures from
NVidia: GeForce GTX 580 andGeForce GTX 870M, which reveals
that real-time processing performance can be obtained for real
hyperspectral data sets collected by the airborne visible infra-red
imaging spectrometer (AVIRIS).

Index Terms—Endmember identification, graphics processing
units (GPUs), hyperspectral imaging, spectral unmixing, spatial
preprocessing (SPP).

I. INTRODUCTION

S PECTRAL unmixing amounts at estimating the abundance
of pure spectral signatures (called endmembers) in each

mixed pixel of a hyperspectral image. Mixed pixels arise due
to insufficient spatial resolution and other phenomena [1], [2].
A challenging problem is how to automatically identify end-
members, as the presence of mixed pixels generally prevents
the localization of pure spectral signatures in transition areas
between different land-cover classes. A possible strategy to
address this problem is to guide the endmember identification
process to spatially homogeneous areas, expected to contain the
purest signatures available in the scene [3]–[5].

Manuscript received April 22, 2015; revised September 11, 2015; accepted
October 15, 2015. Date of publication November 24, 2015; date of current
version February 09, 2016. This work was supported by the Portuguese
Science and Technology Foundation under Project UID/EEA/50008/2013,
Project PTDC/EEI-PRO/1470/2012, and Project SFRH/BPD/94160/2013.
J. Delgado, J. Plaza, L. I. Jiménez, and A. Plaza are with the Hyperspectral

Computing Laboratory, Department of Computer Technology and
Communications, University of Extremadura, Cáceres E-10071, Spain (e-mail:
jplaza@unex.es; luijimenez@unex.es; aplaza@unex.es).
G. Martín is with the Instituto de Telecomunicações, Lisbon 1049-1, Portugal

(e-mail: gabriel.hernandez@lx.it.pt).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSTARS.2015.2495128

For this purpose, several spatial preprocessing (SPP) meth-
ods have been used prior to endmember identification [6]–[8].
The SPP in [6] introduces the spatial information in the end-
member extraction process, so that the preprocessing can be
combined with classic methods for endmember identification
[9]. In this way, the endmembers can be obtained based on
spatial and spectral features. An extension of this concept was
presented in [7], in which the use of fixed spatial neighborhoods
adopted by SPP was replaced by the incorporation of regions
intended to better characterize the spatial context. However, the
RBSPP strongly depends on a prior region growing algorithm
that makes the procedure sensitive to the selected technique
for region segmentation. Also, region growing algorithms are
difficult to implement in parallel due to their irregular nature.
Another technique is the spatial and spectral preprocessing
(SSPP) presented in [8], which integrates both spatial and spec-
tral information at the preprocessing level. This technique also
includes a clustering step that makes the parallelization dif-
ficult. Out of the techniques discussed in [6]–[8], the most
amenable one for parallel implementation is the SPP in [6] due
to the regularity of its computations, which can be exploited
in latest-generation hardware accelerators such as commodity
graphics processing units (GPUs).
Despite the availability of several techniques to accelerate the

performance of spectral unmixing algorithms on GPUs [10]–
[13], no efficient implementations of SPP techniques to be used
prior to spectral unmixing have been presented thus far in the
literature. In this paper we present, for the first time in the
literature, three different parallel implementations of the SPP
algorithm in [6] using GPUs (with different memory manage-
ment strategies). These versions have been implemented using
NVidia’s compute device unified architecture (CUDA),1 and
tested on two different NVidia GPU architectures: GeForce
GTX 580 and GeForce GTX870M, using two different images
collected by NASA’s AVIRIS over the Cuprite mining district in
Nevada and the World Trade Center in New York City. We also
presented an exhaustive assessment of the performance of these
different versions in terms of memory stalls and cache hit rates.
Our experimental validation shows that a significant reduction
in the execution time can be achieved allowing the integration
of this preprocessing step in a fully operational unmixing chain,
which exhibits real-time performance with regards to the time
that the AVIRIS sensor takes to collect the data.
This paper is structured as follows. Section II outlines the

SPP technique considered in this work. Section III describes

1[Online]. Available: http://www.nvidia.com/cudazone

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

DELGADO et al.: FAST SPP FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA ON GPUs 953

the GPU implementations of the SPP algorithm. Section IV
presents an experimental evaluation of the proposed imple-
mentation in terms of both accuracy and parallel performance.
Section V concludes this paper with some remarks and hints at
plausible future research lines.

II. SPATIAL PREPROCESSING

The main idea behind the SPP framework is to estimate, for
each input pixel vector in the hyperspectral image, a scalar fac-
tor ρwhich is intimately related to the spatial similarity between
the pixel and its spatial neighbors, and then use this scalar fac-
tor to spatially weight the spectral information associated to the
pixel [6]. Let yi,j represent the pixel in spatial coordinates i, j.
With this notation in mind, the scalar factor is calculated as
follows:

α(i, j) =

i+d∑
r=i−d

j+d∑
s=j−d

β[r − i, s− j] · γ[yi,j ,yr,s] (1)

where yi,j is the pixel for which we are calculating the scalar
factor, and yr,s is the spatial neighbors. Here, d represents half
of the window size, so that the full window size is ws = 2 ·
d+ 1. The γ function computes the spectral angle between
the pixel and its neighbors, and the β function computes a
weight factor based on the distance between the pixel and the
neighbors. The spectral angle is computed as follows:

γ[yi,j ,yr,s] = arccos
< yi,j ,yr,s >

‖yi,j‖ · ‖yr,s‖ (2)

where< ·, · > denotes the dot product between two vectors and
‖ · ‖ denotes the euclidean norm of a vector. As we can see in
(3), the closest neighbors are given more relevance. Also, the β
function is normalized to sum to one as follows:

β(a, b) ∝ 1

a2 + b2
. (3)

Once the scalar factor has been computed, every pixel is dis-
placed to the simplex centroid depending on the scalar factor.
Expressions (4) and (5) show how to displace the image pixels
depending on the scalar factor, as detailed in [6]

ρ(i, j) =
(
1 + 2

√
α(i, j)

)2

(4)

yi,j
′ =

1

ρ(i, j)
(yi,j − c) + c (5)

where c is the simplex centroid, computed as the average of all
the image pixels; yi,j

′ is the new displaced pixel; and yi,j is the
original pixel at the spatial coordinates i, j. Finally, nl and nc

are the number of lines and columns of the hyperspectral image,
respectively.
Fig. 1 provides a graphical representation of how the SPP

technique works. This figure illustrates a toy example in which
only two bands of an input hyperspectral image are represented
against each other for visualization purposes. As Fig. 1 illus-
trates, the idea behind SPP is to center each spectral feature in
the data cloud around its mean value, and then shift each feature

Fig. 1. Graphical illustration of the SPP technique.

toward the centroid of the data cloud. The shift of each spec-
tral feature is proportional to a similarity measure calculated
using both the spatial neighborhood around the pixel under
consideration and the spectral information of the pixel. The
correction is performed so that pixels located in spatially homo-
geneous areas (such as pixel 1 in Fig. 1) are expected to have a
smaller displacement with regards to their original location in
the data cloud than pure pixels surrounded by spectrally distinct
substances (such as pixels 2 and 3 in Fig. 1). Resulting from
the above operation, a modified simplex is formed (in blue in
Fig. 1) with regards to the original one (in red in Fig. 1), using
not only spectral but also spatial information.

III. GPU ARCHITECTURE

In this section, we provide a description of the NVidia CUDA
architecture, which can be seen as a set of multiprocessors
(MPs), where each one is characterized by a single instruc-
tion multiple data (SIMD) architecture, i.e., in each clock cycle
each processor executes the same instruction but operating on
multiple data streams. Each processor has access to a local
shared memory and also to local cache memories in the MP,
whereas the MPs have access to the global GPU (device) mem-
ory (see Fig. 2). Unsurprisingly, the programming model for
these devices is similar to the architecture lying underneath.
GPUs can be abstracted in terms of a stream model, under
which all data sets are represented as streams (i.e., ordered data
sets). Algorithms are constructed by chaining so-called kernels,
which operate on entire streams and which are executed by an
MP, taking one or more streams as inputs and producing one
or more streams as outputs. Thereby, data-level parallelism is
exposed to hardware, and kernels can be concurrently applied
without any sort of synchronization. As shown in Fig. 3, ker-
nels can perform a kind of batch processing arranged in the

954 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fig. 2. GPU architecture, where the GPU can be seen as a set of MPs.

Fig. 3. GPU batch processing in the GPU: grids of blocks, where each block is
composed by a group of threads.

form of a grid of blocks, where each block is composed by a
group of threads that share data efficiently through the shared
local memory and synchronize their execution for coordinating
accesses to memory.

IV. GPU IMPLEMENTATIONS

In this section, we describe the parallel implementations of
SPP in the GPU. The implementation is based on four main
kernels as follows.
1) The first kernel computes the centroid of the simplex c as

the average of all the image pixels. Here, the number of

blocks is equal to the number of bands and each block
computes the average of each band using a reduction
operation as described in [14].

2) The second kernel computes the euclidean norms of each
image pixel. The output of this kernel will be used in the
following kernel to compute the γ function in (2). Here,
the number of threads T is set to the maximum value
supported by the GPU. Each thread will compute the
euclidean norm of a vector, thus the number of blocks B
will be the number of image pixels divided by the number
of threads: B = �(nl · nc)/T �.

3) The third kernel computes the similarity factor α(i, j) for
each pixel as given by the expression (1). In this ker-
nel, there are as many blocks as pixels: B = nl · nc, and
there are as many threads as the window size: T = ws2 =
(2d+ 1)

2. Here, each thread computes the dot prod-
uct between the central and the corresponding neighbor
pixel in the window: < yi,j ,yr,s >. Then, it computes
γ[yi,j ,yr,s] as in (2). After that, the kernel weights this
value using the β function (precomputed on the CPU).
Finally, the kernel performs a reduction [14] to sum all the
values inside the window. As a result, the kernel obtains
α(i, j).

4) The fourth kernel computes the displacement to the cen-
troid for each pixel as described in (5). In this kernel,
each thread computes the displacement of one pixel. The
number of threads used T is the maximum allowed by
the GPU. The number of blocks used is the number of
image pixels divided by the number of threads: B =
�(nl · nc)/T �.

In the following, we mainly focus on how to improve the per-
formance of the third kernel (the most time-consuming one).
Specifically, we developed different parallel implementations
of the SPP that mainly differ on the adopted strategy to effi-
ciently compute the similarity factor α(i, j) for each pixel and
the memory management performed during this process.
In Algorithm 1, we show a pseudocode description of the

third kernel. This kernel is based on the outputs provided by
previous kernels. Here, Y denotes the hyperspectral image; Φ
corresponds to the the euclidean norms of each pixel computed
in the second kernel, thus Φx,y = ‖yx,y‖; β represents the
scale factor described in (3); Bx, By for x = 1, . . . , nl and y =
1, . . . , nc indexes the block which will compute the α value
for the central pixel of the window; Ti, Tj for i = 1, . . . , ws
and j = 1, . . . , ws correspond with the relative position of the
threads in the window; nl, nc, nb represent the number of lines,
columns, and bands of the hyperspectral image, respectively;
and finally ws represents the window size. Lines 1–4 from
Algorithm 1 compute the dot product between the central pixel
of the window YBx,By

and the relative pixel in the window
YTi,Tj

. Line 5 computes the γ function in (2) and line 6 com-
putes the product between β and γ in (1). Finally, lines 8–13
perform the sum of all the values for all the pixels inside the
window. Here, the sum of all values is performed in parallel
between all the threads belonging to each block in an accu-
mulative way, using a reduction as described in [14]. As a
result, we obtain the α value as described in (1). In Sections

DELGADO et al.: FAST SPP FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA ON GPUs 955

Algorithm 1. Similarity factor calculation CUDA kernel

Input:Y,Φ, β, Bx, By, Ti, Tj , nl, nc, nb, ws
Output: α

Initialisation:
1: ΔTi,Tj

:= 0
Dot product:

2: for k = 1 to nbdo
3: ΔTi,Tj

= ΔTi,Tj
+YBx,By,k ·YTi,Tj ,k

4: end for
Spectral angle distance:

5: ΔTi,Tj
= cos−1(ΔTi,Tj

/(ΦBx,By
· ΦTi,Tj

)
Weighting:

6: ΔTi,Tj
= βTi,Tj

·ΔTi,Tj

Sum of all values using a reduction:
7: l = Ti · ws+ Tj

8: for k = �log2(ws · ws)� − 1 to k = 1 step k = k/2 do
9: if (l < k) then
10: Δl = Δl +Δl+k

11: end if
12: end for

Final result:
13: αBx,By

= Δ0

14: return αBx,By

Section IV-A, Section IV-B, and Section IV-C, detailed descrip-
tions of the implemented versions of the kernel in Algorithm 1
are provided.

A. One Pixel Per Block

The first implementation (denoted hereinafter as 1M-SPP)
processes one pixel per each block using main memory to
store the required data. This kernel uses the shared memory
and the GPU registers to store the Δ values in Algorithm 1,
but Y, β, and Φ matrices are stored and read from the global
(video) memory of the GPU. In this case, the grid configura-
tion is a mesh of nl × nc blocks, each one containing ws× ws
threads. As we can see in Fig. 4, different blocks will access
the neighboring pixels to process the corresponding pixels (i.e.,
P1 and P2). As shown in Fig. 4(b), both of them need to pro-
cess their overlapping neighbors (represented in yellow color)
thus the memory access to those neighbors are duplicated. If we
extrapolate this issue to the case of several blocks, it results in
a significant decrease of parallel performance. With the aim of
optimizing the memory access to common neighboring pixels,
we propose the following alternative implementations.

B. Several Pixels Per Block

The second implementation (denoted hereinafter as NM-
SPP) processes several pixel per each block. The main goal of
this implementation is to use the first level of cache memory in
the GPU (hereinafter, L1-cache) to cache the memory accesses
toY. It should be noticed that both L1-cache and shared mem-
ory are much faster than the local and global memories, mainly
due to the fact that they are on-chip memories. In the previous

version (1M-SPP), each block is in charge of processing one
pixel (accessing also the pixels that are in the defined spatial
window). In the GPU architecture, different blocks are executed
in different MPs and, thus, they cannot use the shared memory
or the L1-cache to avoid several repeated memory accesses, as
illustrated in Fig. 4(b).
The main idea behind NM-SPP is to accelerate memory

accesses to common neighbors using the L1-cache. The latest
NVidia architectures: Kepler and Fermi include cache systems
and, therefore, if we process several pixels in the same block
[see red region in Fig. 4(d)], the access to the common neigh-
bors pixels in the block [see orange region in Fig. 4(d)] will
be effectively cached, thus improving the performance. For
instance in Fig. 4(c), when the pixel P1 is processed the mem-
ory in blue will be accessed, thus it is likely that, when the
pixel P2 (in green) is processed, the yellow memory positions
are already in the L1-cache [see Fig. 4(e)]. Furthermore, the
access to the β matrix can also be cached for the pixels pro-
cessed inside the same block. In this case, the number of pixels
processed by each block will be P = �Tmax/ws2�where Tmax is
the maximum number of threads supported by the architecture;
therefore, the number of blocks in NM-SPP will be B = �(nl ·
nc)/P � and each block will contain T = ws2 · P threads.

C. Several Pixels Per Block Using Shared Memory

Our third implementation (denoted hereinafter as NS-SPP)
again processes several pixels per each block, but this time we
use shared memory to store the Y data positions that must be
accessed by the kernel threads. As mentioned in Section IV-B,
L1-cache and shared memory are much faster than global and
local memories. The shared memory is allocated per thread
block, so that all threads in the same block can access the same
portion of shared memory. Therefore, a thread can access the
shared memory loaded from global memory by other threads
within the same thread block. This capability allow us to imple-
ment our algorithms using a user-managed data cache approach,
so that the portions of Y that the threads need to access are
stored in the shared memory. This means that each required data
position must be accessed just once. For instance, in Fig. 4(d),
the orange region denotes the image positions that are going
to be accessed. If we load these data in shared memory, as we
can see in Fig. 4(e), then the threads directly access the data in
a memory, which is much faster than the global memory, thus
significantly improving the performance.
However, in this case, the GPU cores have to perform all the

computations relative to the shared memory control (i.e., pre-
compute the index of the memory positions that must be loaded
and control when the loads must be performed). Due to this
requirement, and considering that both the shared and cache
memory effectively share the same physical memory (with the
same rate and latency of accesses), the performance of this ver-
sion has an overhead with regards to the NM-SPP version, in
which the L1-cache control is performed by dedicated hard-
ware of the GPU architecture. To conclude our description, we
emphasize that the grid configuration for NS-SPP is the same
than for NM-SPP.

956 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fig. 4. Memory accessed when there is one pixel per block (a) and (b) and when there are several pixels per block (c)–(e).

V. EXPERIMENTAL RESULTS

A. Hyperspectral Data Sets

In this work, we have used two different hyperspectral data
sets to illustrate the performance of our newly proposed paral-
lel implementations. The first data used in our experiments was
collected by the AVIRIS instrument, operated by the NASA’s
Jet Propulsion Laboratory, over the Cuprite mining district in
Nevada in the summer of 1997.2 The portion used in exper-
iments corresponds to a 350× 350-pixel subset, which com-
prises 188 spectral bands in the range from 400 to 2500 nm and
a total size of around 50 MB. Water absorption bands as well
as bands with low signal-to-noise ratio (SNR) were previously
removed. These data are well understood mineralogically.
The second hyperspectral image used for experiments in this

work was also collected by the AVIRIS sensor over the World
Trade Center area in New York City on September 16, 2001,
just 5 days after the terrorist attacks that collapsed the two main
towers and other buildings in the WTC complex. The full data
set selected for experiments consists of 614× 512 pixels, 224
spectral bands, and a total size of (approximately) 140 Mbytes.
The spatial resolution is 1.7 m/pixel. Fig. 5 shows a false color
composite of the two data sets selected for experiments.

B. Analysis of Algorithm Precision

In this section, we have focused on analyzing the accuracy of
the parallel versions with regards to the serial implementation
of the SPP algorithm. According to [15] and [16], the differ-
ences among compilers, libraries, and hardware architectures

2[Online]. Available: http://aviris.jpl.nasa.gov

Fig. 5. False color composition of the AVIRIS hyperspectral data collected by
NASA’s Jet Propulsion Laboratory over (a) Cuprite mining district in Nevada
and (b) World Trade Center complex in Manhattan.

generate some residual errors which, in a cumulative process,
result in a marginal difference between the serial and paral-
lel implementations. With the aim of measuring, this error and
evaluate the accuracy of the parallel implementation, we have
used two different metrics.
1) Normalized root-mean-squared error (NRMSE) uses the

mean value of the pixels to normalize. This metric quan-
tifies the differences between the reference si(x, y) (value
of the pixel preprocesed by the serial version) and the esti-
mated ones ŝi(x, y) (value of the pixel preprocessed by
the parallel GPU version) in one pixel of nb bands, being
s̄(x, y) the mean value of the reference pixel. Specifically,
the NRMSE expression that we have used in experiments
is the following one:

DELGADO et al.: FAST SPP FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA ON GPUs 957

TABLE I
NRMSE AND MAXSDE VALUES OBTAINED AFTER COMPARING THE

SERIAL IMPLEMENTATION OF SPP VERSUS THE GPU IMPLEMENTATIONS

NRMSE(x, y) =

√√√√∑nb
i=1(ŝi(x, y)− si(x, y))2∑nb
i=1(si(x, y)− s̄(x, y))2

(6)

with s̄(x, y) =
1

nb

nb∑
i=1

si(x, y). (7)

2) Maximum scaled absolute difference error
(MaxSDE) uses the mean of each pixel to normal-
ize the error [17]. This metric is computed as the ratio of
the maximum absolute difference between pixels of both
images [si(x, y) and ŝi(x, y)] and the average absolute
spectrum of that pixel using the following expression:

MaxSDE(x, y) = max
i

{
nb|si(x, y)− ŝi(x, y)|∑nb

i=1 |si(x, y)|

}
. (8)

Values of NRMSE andMaxSDE close to zero indicate higher
similarity between images and, as shown in Table I, we obtained
very low error scores after comparing the serial version against
the GPU implementations. It is worth noting that the difference
between the serial and the GPU versions is almost nonexisting,
and the output provided by the three parallel GPU versions can
be considered the same.
Figs. 6 and 7 show the spatial distribution of the NRMSE and

MaxSDE for the AVIRIS Cuprite and WTC data sets consider-
ing a spatial window of ws = 5. Again these plots indicate the
differences between the results obtained by the serial and GPU
implementations of SPP. As can be seen in Figs. 6 and 7, the
errors are almost zero for all pixels in the considered images.
In [6], the authors state that the original SPP algorithm is

used to preprocess the original hyperspectral data set prior to
the selection of the endmember. Actually, SPP is applied to
select the spatial coordinates of the endmembers (which are
extracted over the spatial/spectral preprocesed image), whereas
spectral signatures of the endmembers are finally selected from
the original data set, due to the fact that SPP introduces some
spectral distortion of the information. In this sense, the scores
of the errors showed in Table I will be negligible if the selected
endmembers are the same in the images obtained with the serial
and the GPU implementations. In order to analyze this, we
conducted the following experiment. We first applied the vir-
tual dimensionality (VD) [18] algorithm to estimate the number
of pure components in the two considered data sets. The esti-
mated number of pure components was 19 for Cuprite data
set and 31 for the WTC data set. Then, we used the orthogo-
nal subspace projection (OSP) algorithm [19] in order to select
the desired number of endmembers over the two preprocessed
images (considering the configuration of SPP which results in

a higher error in Table I, which is using ws = 3) and compared
the obtained results. As can be seen in Fig. 8, the coordinates
of the endmembers selected by ATGP algorithm over the two
spatial/spectral preprocessed images are exactly the same and,
therefore, we can assume that the difference between serial
and GPU implementations are negligible from the viewpoint
of SPP, which is the purpose of the SPP algorithm that we have
implemented in parallel in this work.

C. Analysis of Parallel Performance

The GPU implementations of SPP have been tested on two
different computers. 1) A desktop computer with a GPUNVidia
GTX 580, which features 512 processor cores operating at
1.54 GHz, with single precision floating point performance of
1581.1 Gflops, total dedicated memory of 1536 MB, 2004 MHz
memory (with 384-bit GDDR5 interface), and memory band-
width of 192.4 GB/s.3 The GPU is connected to an Intel core
i7 920 CPU at 2.67 GHz with eight cores, which uses a moth-
erboard Asus P6T7 WS SuperComputer. 2) A laptop computer
with a GPU NVidia GTX 870M, which features 1344 proces-
sor cores operating at 967 MHz, with single precision floating
point performance of 2599 Gflops, total dedicated memory of
3072MB, 5000MHzmemory (with 192-bit GDDR5 interface),
and memory bandwidth of 120 GB/s.4 The GPU is connected to
an Intel i7-4710MQ at 3.5 GHz with four cores. The serial ver-
sion has been compiled using the GCC C++ compiler (version
4.8.2), whereas the GPU has been compiled using the NVCC
(version 6.5.12).
As shown in Section V-B, it is important to emphasize that

our GPU versions of SPP provide almost the same results
as the serial version of the SPP algorithm. Hence, the only
relevant difference between the serial and parallel algorithms
is the time they need to complete their calculations. The serial
algorithm was executed in one of the available cores of the
desktop computer, and the parallel times were measured in the
considered GPU platform. For each experiment, 10 runs were
performed and the mean values are reported (these times were
always very similar, with differences on the order of a few
milliseconds only).
Considering that the NM-SPP implementation strongly

depends on the available L1-cache memory, several config-
urations of L1-cache and shared memory were explored to
achieve the best performance. On devices of compute capabil-
ity 2× and 3× (which is the case for the two GPUs considered
in the experiments), each MP has 64 kB of on-chip memory
that can be partitioned between L1-cache and shared memory.
We can select two settings: 1) 48 kB shared memory/16 kB
L1-cache and 2) 16 kB shared memory/48 kB L1-cache. By
default, the 48 kB shared memory setting is used. This can
be configured during runtime API from the host using func-
tions cudaDeviceSetCacheConfig (), which accepts one of
three options: 1) cudaFuncCachePreferNone; 2) cudaFunc
CachePreferShared; and 3) cudaFuncCachePreferL1.

3[Online]. Available: http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-580

4[Online]. Available: http://www.geforce.com/hardware/notebook-gpus/
geforce-gtx-870m

958 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fig. 6. Spatial distribution of the NRMSE (after comparing the serial and GPU implementations of SPP) for (a) Cuprite data set and (b) WTC data set, using a
spatial window with ws = 5.

Fig. 7. Spatial distribution of the MaxSDE (after comparing the serial and GPU implementations of SPP) for (a) Cuprite data set and (b) WTC data set, using a
spatial window with ws = 5.

Fig. 8. Spatial coordinates of the endmembers selected by OSP for the two preprocessed images (serial in green and GPU in red) over the (a) Cuprite data set
and (B) WTC data set. In all cases, the spatial coordinates of the endmembers selected by OSP from the preprocessed images obtained in serial and in parallel are
exactly the same, indicating that the parallel and the serial implementations are equivalent from a functional point of view.

DELGADO et al.: FAST SPP FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA ON GPUs 959

TABLE II
MEAN EXECUTION TIMES FOR THE PARALLEL NM-SPP

IMPLEMENTATIONS CONSIDERING DIFFERENT MEMORY RATIOS
BETWEEN L1-CACHE AND SHARED MEMORY, USING

cudaDeviceSetCacheConfig (), AFTER 10 MONTE-CARLO RUNS

TABLE III
MEAN EXECUTION TIMES FOR THE PARALLEL AND

SERIAL IMPLEMENTATIONS OF THE SPP ALGORITHM AFTER
10 MONTE-CARLO RUNS

Even though L1-cache and the shared memory are located in the
same on-chip hardware, there exist some differences between
them. The shared memory is accessed through 32 banks, while
L1-cache is accessed by cache line. With shared memory, the
programme has full control over what gets stored and how
(user-managed data cache), while with L1-cache, data evic-
tion is done by the hardware according to different heuristic
algorithms [20].
Table II shows the mean execution time of NM-SPP imple-

mentation considering the two possible memory settings. The
best execution times for each GPU and window size are shown
in bold typeface. As can be seen, increasing the size of L1-
cache results in an increase of the parallel performance of the
algorithm, which is able to finish execution in less than 1.8 s for
all considered window sizes. This is due to the fact that more
space is available to perform the data caching, thus allowing
more data to be accessed from the L1-cache and, therefore,
increasing the L1 hit rate, which results in less L2-cache and
global (video) memory accesses. Since these memories have
lower latencies, the performance is significantly improved.
Once determined that the best possible option for the NM-

SPP algorithm is to reserve 48 kB of the physically available
memory for the L1-cache, we continue by comparing the
execution times of this version with the rest of the parallel
implementations of SPP. Table III summarizes the obtained
results by the C implementation and by all the three GPU imple-
mentations. An optimization has been considered for the CPU
implementation, namely the inclusion of the –O3 optimization
flag in the compiler. The best execution times and speedups for
each GPU and window size are highlighted in bold typeface,
where the speedups are calculated regarding the execution of
the code over one single core of the considered architecture.

Fig. 9. Percentage of total stalls due to memory issues of parallel versions
executed in GTX580.

As revealed by Table III, both NM-SPP and NS-SPP perform
substantially better than 1M-SPP for reasonable window sizes.
At this point, it is worth noting that selection of very large win-
dow sizes make no sense due to the fact that pixels located far
away are still considered neighbors, but very low weights are
assigned to the pixels near the border of the window as defined
in (3). However, for very large windows sizes, 1M-SPP achieves
the best results. This is due to the fact that, when the window
sizes are large, the L1-cache and register capacities of the GPUs
are only able to process one or very few pixels per block in the
case of NM-SPP and NS-SPP, thus resulting in penalized ver-
sions of 1M-SPP. These results clearly indicate the importance
of efficiently using shared and cache memories in order the
best possible performance of GPU implementations. In our
approach, the L1-cache version performs in most of the cases
as well as the shared memory-based implementation, while the
shared memory-based implementation NS-SPP provides good
performance despite the extra calculations that it must tackle to
maintain a fully user-managed data cache approach.
Fig. 9 shows the percentage of total stalls (the lower this

number, the better) which are produced because a memory
operation cannot be performed when executing the parallel ver-
sions of SPP on GTX580. It can be seen that both NM-SPP
48 kB L1 and NS-SPP versions are able to significantly reduce
the percentage of memory stalls. It can also be seen that, for
window sizes from 3 to 7, the NM-SPP 16 kB L1 version is also
able to significantly reduce the percentage of memory stalls;
however, for larger window sizes, the percentage of memory
stalls increase significantly. This can be explained because the
L1 cache memory saturates when the window size is larger than
7. In addition, as it would be expected, the 1M-SPP version
presents a higher percentage of memory stalls.
Last but not least, Fig. 10 shows that the L1-cache hit rates

(the higher this number, the better) of all parallel versions exe-
cuted on GTX580. This figure shows that NM-SPP 48 kB L1
version maintain a high L1-cache hit rate through all window
sizes. However, the NM-SPP 16 kB L1 reduces the hit rate dras-
tically when the window size is larger than 7. This is expected
since, as mentioned in our discussion of the results in Fig. 9, at
this point the 16 kB L1 cache saturates. On the other hand, we
can see that NS-SPP provides a very reduced L1 hit rate. This

960 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fig. 10. L1-cache hit rate of parallel versions executed on GTX580.

is also expected because this version does not take advantage of
the L1 cache, but it uses the shared memory instead. In the case
of NS-SPP, most of the memory accesses are loads from global
memory to shared memory which are not likely to produce L1
hits. Finally, an unexpected high percentage hit rate is observed
in the 1M-SPP version, which for some windows sizes is higher
than the NM-SPP 48 kB L1 version. This phenomenon can be
only explained if we take into account the coalescence: in the
case of NM-SPP 48 kB L1 version, more cores are accessing
to the same memory positions in the same block and, thus, it
is more likely that these accesses are coalesced, resulting in a
lower number of memory loads. Due to the fact that Fig. 10
shows the results in relative terms (percentage of L1 hit rates), it
is possible that the 1M-SPP has a higher hit rate while the num-
ber of stalls is significantly lower for the NM-SPP. It can also
be seen that both metrics are inversely proportional for each
version, i.e., the higher percentage of stalls for a given window
size, the lower hit rate percentage for the same version with the
same window size and conversely.
Before concluding this section, we emphasize that the cross-

track line scan time in AVIRIS, a push-broom instrument, is
quite fast [21] (8.3 ms to collect 512 full pixel vectors). This
introduces the need to process the considered scene (614×512
pixels and 224 spectral bands) in less than 5.09 s to fully achieve
real-time performance. As we can see in Table III, the execution
times for the parallel versions of the SPP algorithm are in real
time for both GPUs and for all the considered window sizes. If
we analyze the results reported in [12] for full spectral unmix-
ing chains, we can conclude that the GPU implementation of
SPP can be added as the first step of such chains without sacri-
ficing real-time processing performance. Further, the speedups
reported for the GPU implementations of SPP increase with the
window size, which is expected due to the fact that the windows
are processed in parallel and the larger the windows the more
computations can be performed in parallel. In the best case,
a speedup of about 180× with regards to the serial version is
reported, which represents a significant improvement over the
(optimized) serial implementation of SPP.

VI. CONCLUSION AND FUTURE LINES

In this paper, we have presented three different GPU imple-
mentations of an SPP algorithm designed to include spatial

information in spectral unmixing of hyperspectral data. The
proposed implementations are based on different memory man-
agement policies and are highly scalable and efficient, achiev-
ing real-time results in two different GPU architectures from
NVidia, after processing widely used benchmark hyperspectral
scenes collected by AVIRIS. The proposed implementation can
be combined as a preprocessing module to other GPU imple-
mentations of spectral unmixing chains, thus achieving a full
operational procedure that provides an end-to-end approach to
process hyperspectral data in computationally efficient fashion.
Future work will be focused on the development of other imple-
mentations of the full spectral unmixing chain (including SPP)
on alternative hardware devices such as field programmable
gate arrays (FPGAs).

ACKNOWLEDGMENT

The authors gratefully acknowledge the associate editor and
the anonymous reviewers for their outstanding comments and
suggestions.

REFERENCES

[1] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview:
Geometrical, statistical and sparse regression-based approaches,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[2] J. Plaza, A. Plaza, R. Perez, and P. Martinez, “On the use of small
training sets for neural network-based characterization of mixed pixels
in remotely sensed hyperspectral images,” Pattern Recognit., vol. 42,
pp. 3032–3045, 2009.

[3] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral endmember
extraction by multidimensional morphological operations,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 2025–2041, Sep. 2002.

[4] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng,
“Integration of spatial–spectral information for the improved extraction
of endmembers,” Remote Sens. Environ., vol. 110, no. 3, pp. 287–303,
2007.

[5] S. Lopez, J. F. Moure, A. Plaza, G. M. Callico, J. F. Lopez, and
R. Sarmiento, “A new preprocessing technique for fast hyperspectral end-
member extraction,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5,
pp. 1070–1074, Sep. 2013.

[6] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679–2693,
Aug. 2009.

[7] G. Martin and A. Plaza, “Region-based spatial preprocessing for end-
member extraction and spectral unmixing,” IEEE Geosci. Remote Sens.
Lett., vol. 8, no. 4, pp. 745–749, Jul. 2011.

[8] G. Martin and A. Plaza, “Spatial-spectral preprocessing prior to endmem-
ber identification and unmixing of remotely sensed hyperspectral data,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2,
pp. 380–395, Apr. 2012.

[9] J. Plaza, E. M. T. Hendrix, I. Garcia, G. Martin, and A. Plaza, “On
endmember identification in hyperspectral images without pure pixels:
A comparison of algorithms,” J. Math. Imag. Vis., vol. 42, no. 2–3,
pp. 163–175, 2012.

[10] G. M. Gallicó, S. Lopez, B. Aguillar, J. F. López, and R. Sarmiento,
“Parallel implementation of the modified vertex component analysis algo-
rithm for hyperspectral parallel implementation of the modified vertex
component analysis algorithm for hyperspectral unmixing using opencl,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 8,
pp. 3650–3659, Aug. 2014.

[11] S. Sanchez, A. Paz, G. Martin, and A. Plaza, “Parallel unmixing of
remotely sensed hyperspectral images on commodity graphics processing
units,” Concurrency Comput.: Pract. Exp., vol. 23, no. 13, pp. 1538–
1557, 2011.

[12] S. Sánchez, R. Ramalho, L. Sousa, and A. Plaza, “Real-time implemen-
tation of remotely sensed hyperspectral image unmixing on GPUs,” J.
Real-Time Image Process., vol. 10, no. 3, pp. 469–483, 2015.

[13] J. M. P. Nascimento, J. M. Bioucas-Dias, J. M. Rodriguez Alves, V. Silva,
and A. Plaza, “Parallel hyperspectral unmixing on GPUs,” IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 3, pp. 666–670, Mar. 2013.

DELGADO et al.: FAST SPP FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA ON GPUs 961

[14] M. Harris et al., “Optimizing parallel reduction in CUDA,” NVIDIA
Corp., Santa Clara, CA, USA, Tech. Rep., vol. 2, no. 4, 2007.

[15] N. Whitehead and A. Fit-Florea, “NVIDIA’s white paper of precision
and performance: Floating point and IEEE 754 compliance for NVIDIA
GPUs,” NVIDIA corp., Santa Clara, CA, USA, Technical White Paper,
Tech. Rep., 2011.

[16] M. J. Corden and D. Kreitzer, “Consistency of floating-point results using
the intel compiler or why doesn’t my application always give the same
answer,” Intel Corp., Software Solutions Group, Santa Clara, CA, USA,
Tech. Rep., 2009.

[17] G. Motta, F. Rizzo, and J. A. Storer, Hyperspectral Data Compression.
New York, NY, USA: Springer, 2006.

[18] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal
sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 3, pp. 608–619, Mar. 2004.

[19] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[20] Cuda C Programming Guide, pg-02829-001 v7.0 ed., NVIDIA Corp.,
Santa Clara, CA, USA, Mar. 2015.

[21] R. O. Green et al., “Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ.,
vol. 65, pp. 227–248, 1998.

Jaime Delgado was born in Badajoz, Spain, in 1985.
He received the M.Sc. degree in computer engineer-
ing from the University of Extremadura, Caceres,
Spain, in 2014. He was an Exchange Student at the
Universidade de Aveiro, Aveiro, Portugal, and also at
Otto-Friedrich Universität, Bamberg, Germany.
He has developed his career as System Engineer

specialized in SAP Complex Systems based on Linux
OS and Oracle databases. He has been part of System
Engineering Team in companies like the Birchman
Group or SAP Basis Administrator with Indra.

Currently, he is working as a SAP Systems Administrator Chief with Imagina
Group, Barcelona, Spain. His research interests include high-level projects such
as system copies, upgrades, or system performance improvements.

Gabriel Martín received the degree in computer
engineering, in 2008, the M.Sc. and Ph.D. degrees
from the University of Extremadura, Cáceres, Spain,
in 2010 and 2013, respectively.
He was a Predoctoral Research Associate (funded

by the Spanish Ministry of Science and Innovation)
with the Hyperspectral Computing Laboratory and is
now a Postdoctoral Researcher (funded by FCT) with
the Instituto Superior Técnico, Technical University
of Lisbon, Lisbon, Portugal, where he is develop-
ing research on compressive sensing and efficient

hardware implementations for remotely sensed hyperspectral images. His
research interests include the development of new techniques for unmixing
remotely sensed hyperspectral data sets, as well as the efficient processing and
interpretation of these data in different types of high-performance computing
architectures.
Dr. Martín served as a Reviewer for the IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING and for
the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Javier Plaza (M’09) was born in Cáceres, Spain,
in 1979. He received the M.Sc. and Ph.D. degrees
in computer engineering from the University of
Extremadura, Cáceres, Spain, in 2004 and 2008,
respectively.
Currently, he is an Associate Professor with

the Department of Technology of Computers and
Communications, University of Extremadura. He has
authored or coauthored more than 100 scientific pub-
lications, including more than 30 journal papers, 10
book chapters, and over 60 peer-reviewed conference

proceeding papers. His research interests include remotely sensed hyperspec-
tral imaging, pattern recognition, signal and image processing, neural networks,

and efficient implementation of large-scale scientific problems on parallel and
distributed computer architectures.
Dr. Plaza has served as a Reviewer for more than 150 papers submit-

ted to more than 25 different journals, including the IEEE TRANSACTIONS
ON GEOSCIENCE AND REMOTE SENSING, IEEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH OBSERVATION AND REMOTE SENSING,
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, IEEE GEOSCIENCE
AND REMOTE SENSING MAGAZINE, IEEE TRANSACTIONS ON IMAGE
PROCESSING, IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE
JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, and IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS C. He was the
recipient of the Outstanding Ph.D. Dissertation Award from the University of
Extremadura in 2008.

Luis Ignacio Jiménez (S’15) received the B.S.
and M.Sc. degrees in computer engineering in
2011 and 2012, respectively, and is currently a
Ph.D. student with the Hyperspectral Computing
Laboratory, Department of Technology of Computers
and Communications, University of Extremadura,
Cáceres, Spain.
His research interests include hyperspectral image

analysis, research software development, and effi-
cient implementations of large-scale scientific prob-
lems on commodity graphical processing units

(GPUs). He was working with the Computer Vision Laboratory (LVC),
Department of Electrical Engineering, Catholic University of Rio de Janeiro,
Rio de Janeiro, RJ, Brazil, under the European project “Tools for Open
Multi-Risk Assessment Using Earth Observation Data” (TOLOMEO).

Antonio Plaza (M’05–SM’07–F’15) was born in
Caceres, Spain, in 1975.
He is an Associate Professor (with accreditation for

Full Professor) with the Department of Technology
of Computers and Communications, University of
Extremadura, Cáceres, Spain, where he is the
Head of the Hyperspectral Computing Laboratory
(HyperComp). He has been the Advisor of 12 Ph.D.
dissertations and more than 30 M.Sc. dissertations.
He was the Coordinator of the Hyperspectral Imaging
Network, a European project with total funding of

2.8 million Euro. He has authored more than 500 publications, including 159
journal papers (more than 100 in IEEE journals), 22 book chapters, and over
240 peer-reviewed conference proceeding papers (94 in IEEE conferences).
He has reviewed more than 500 manuscripts for over 50 different journals.
He has edited a book on High-Performance Computing in Remote Sensing
(CRC Press/Taylor and Francis) and guest edited nine special issues on hyper-
spectral remote sensing for different journals. His research interests include
hyperspectral data processing and parallel computing of remote sensing data.
Dr. Plaza was also a member of the steering committee of the IEEE

JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND
REMOTE SENSING (JSTARS). He is also an Associate Editor for IEEE
ACCESS, and was a member of the Editorial Board of the IEEE Geoscience
and Remote Sensing Newsletter (2011–2012) and the IEEE Geoscience and
Remote Sensing Magazine (2013). He has served as a Proposal Evaluator for
the European Commission, the National Science Foundation, the European
Space Agency, the Belgium Science Policy, the Israel Science Foundation, and
the Spanish Ministry of Science and Innovation. He is currently serving as the
Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING Journal. He is a recipient of the recognition of Best Reviewers of
the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (in 2009) and a
recipient of the recognition of Best Reviewers of the IEEE TRANSACTIONS
ON GEOSCIENCE AND REMOTE SENSING (in 2010), a journal for which he
served as Associate Editor in 2007–2012. He is a recipient of the 2013 Best
Paper Award of the JSTARS journal, and a recipient of the most highly cited
paper (2005–2010) in the Journal of Parallel and Distributed Computing. He
received the Best Paper Awards at the IEEE International Conference on Space
Technology and the IEEE Symposium on Signal Processing and Information
Technology. He is a recipient of the Best Ph.D. Dissertation Award at the
University of Extremadura. He served as the Director of Education Activities
for the IEEE Geoscience and Remote Sensing Society (GRSS) in 2011–2012,
and is currently serving as a President of the Spanish Chapter of IEEE GRSS
(since November 2012).

