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Abstract—A novel method for anomaly detection in hyperspec-
tral images (HSIs) is proposed based on low-rank and sparse
representation. The proposed method is based on the separation
of the background and the anomalies in the observed data. Since
each pixel in the background can be approximately represented by
a background dictionary and the representation coefficients of all
pixels form a low-rank matrix, a low-rank representation is used
to model the background part. To better characterize each pixel’s
local representation, a sparsity-inducing regularization term is
added to the representation coefficients. Moreover, a dictionary
construction strategy is adopted to make the dictionary more
stable and discriminative. Then, the anomalies are determined by
the response of the residual matrix. An important advantage of
the proposed algorithm is that it combines the global and local
structure in the HSI. Experimental results have been conducted
using both simulated and real data sets. These experiments indi-
cate that our algorithm achieves very promising anomaly detection
performance.

Index Terms—Anomaly detection, dictionary construction,
hyperspectral image (HSI) analysis, low-rank representation
(LRR), sparse representation.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) convey abundant in-

formation about the spectral characteristics of materials,
with hundreds or even thousands of bands covering specific
wavelengths [1]. The spectrum of each hyperspectral pixel
can be viewed as a vector with each entry representing the
radiance of reflectance value at each spectral band [2]. Since
different materials normally reflect electromagnetic energy at
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different and specific wavelengths, HSI data are suitable for
target detection, which have been of great interest in many
military and civilian applications for several years [2]-[5]. The
goal of target detection is to separate the specific target spectra
or anomalous properties. Anomaly detection can be seen as
target detection without any prior information about the target
signature.

In anomaly detection, pixels that have a significantly dif-
ferent spectral signature from their neighboring background
clutter pixels are defined as spectral anomalies. The well-known
Reed—Xiaoli (RX) algorithm [6] is based on the assumption
that the background follows a multivariate normal distribution.
Then, the RX detector uses the probability density functions of
the multivariate normal distribution to measure the probability
of the test pixel to be part of the background. The solution of
the resulting generalized likelihood ratio test turns out to be the
Mahalanobis distance between the spectral vectors of an input
test pixel and its surrounding neighbors. However, in a real
hyperspectral scene, a multivariate normal distribution is too
simple to describe the complicated background. Moreover,
due to the existence of noisy and other anomalous pixels, the
estimated covariance matrix and the mean vector as a form of
background representation may not be accurate. To overcome
this limitation, some improved methods have been proposed.
For example, the regularized-RX [7] regularizes the covariance
matrix estimated by all HSI pixels. The segmented-RX [8] is a
recently proposed method that uses a clustering of all image
pixels. The weighted-RX and linear-filter-based-RX methods
are introduced in [9], aiming at improving the background
information estimation. Moreover, kernel-based methods such
as kernel-RX [10], [11] and support vector data description
[12], [13] were proposed based on the kernel theory for ex-
tending the original space to a higher dimensional feature
space. These methods can deal with very high dimensional data.
Moreover, some non-RX-based methods have been proposed
recently. A random-selection-based anomaly detector was pre-
sented in [14]. By randomly selecting representative back-
ground pixels and employing a sufficient number of random
selections, the contamination of the background statistics was
reduced. The discriminative metric learning anomaly method is
described in [15]. It exploits a robust anomaly degree metric for
increasing the separability between anomaly pixels and other
background pixels using discriminative information. Subspace-
based methods are presented in [16] and [17]. To capture
local spectral variations, multiple-window anomaly detection is
developed in [18].
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In addition to the aforementioned methods, recently,
representation-based methods have gained much attention.
These methods assume that hyperspectral signatures can be rep-
resented by using a dictionary. With different constraints on the
representation coefficients, we can obtain different detectors.
The sparse-representation-based detector (SRD) is introduced
in supervised hyperspectral target detection [19], [20] and
assumes that each sample can be represented by a few atoms in
the dictionary. The collaborative-representation-based detector
is proposed in [21]. It is based on the concept that each pixel in
the background can be approximately represented by its spatial
neighborhoods, whereas anomalies cannot. The representation
is the linear combination of neighboring pixels, and the col-
laboration among these pixels is reinforced by the ¢5-norm
minimization of the representation weight vector. However,
none of these methods takes the correlations of all the pixels
in the HSI into consideration; thus, the global information is
not accounted for in these methods.

In this paper, a novel anomaly detection method based on
low-rank and sparse representation (LRASR) is proposed. As
opposed to other representation-based methods, the proposed
method is built on the separation of the anomaly part and
background part, and the background information is contained
in the lowest rank representation of the HSI pixels. Low-
rank representation (LRR) [22], [23] can be used to find the
lowest rank representation of all the pixels jointly. Then, the
anomaly part can be obtained by the residual of the original
image and the recovered background part, using the lowest rank
representation. In this way, the relationship of all HSI pixels is
characterized from a global viewpoint. Then, the local structure
of each pixel’s coefficient is of great importance for better
representation. A sparsity criterion is designed to characterize
the local structure of the data set in the proposed LRASR,
which gives an accurate representation of the observed data.
Moreover, the background dictionary has a great impact on
the representation power. In anomaly detection, the dictionary
should consist of the background pixels and cover all the back-
ground classes. Thus, a novel dictionary construction strategy is
proposed in our method to make the representation more stable
and discriminative. The main contributions of this paper can be
therefore summarized as follows.

1) To the best of our knowledge, this is the first time that
the LRR is adopted for anomaly detection purposes in
HSI. The background information is characterized by the
low rankness of the representation coefficients, and the
anomaly information is contained in the residual.

2) To better describe the local structure of each pixel’s
representation, a sparsity-inducing regularizer is included
in the proposed model, resulting in a more accurate
representation.

3) The construction of the dictionary takes two factors into
consideration: One is the fact that the dictionary is com-
posed of the background pixels, and the other is that it
contains all the background classes.

The remainder of this paper is organized as follows.
Section II provides a detailed description of the proposed
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LRASR detector. In Section III, both the simulated experiment
and real data experiments are described and analyzed, followed
by the conclusions in Section I'V.

II. LRASR FOR ANOMALY DETECTION
A. LRR for Anomaly Detection

Consider that N pixels form a band HSI X = {mi}i]\il €
RE*N In HSI, an anomalous pixel should be different from
the background pixels. Moreover, there usually exists strong
correlation among the background pixels, i.e., the background
pixels can be represented by some of the other background
pixels. This means that the matrix X can be decomposed into a
background part and an anomalous part as follows:

X =DS+E (1

where DS denotes the background part, D = [dy, da, ..., d;,]
is the background dictionary formed by the background pix-
els (m is the total number of atoms in the dictionary), S =
[S1,82,...,sn] denotes the representation coefficients, and
E = [e1, eq,...en] denotes the remaining part corresponding
to the anomalies. This means that the original data can be
reconstructed by the background dictionary.

There are many feasible solutions to problem (1). To address
this issue, we need some criteria for characterizing matrices
S and E. On the one hand, only a very small fraction of the
pixels belong to anomalies which means that matrix E is sparse.
On the other hand, the spectrum of each pixel corresponds
to one kind of material (which is called pure pixel) or to the
mixture of several materials (which is called mixed pixel). As
the spectrum of every material can be represented in a subspace,
all the spectra in the HSI can be drawn from multiple subspaces.
Thus, the coefficients matrix S should give the lowest-rank
representation of all spectra jointly. In summary, for matrix
X = [x1,Xa2,...,xxN] with each x; representing the ith pixel,
it is appropriate to infer the anomalies by solving the following
LRR [22] problem:

min rank(S) + A||E||2,1
st X=DS+E 2

where rank(-) denotes the rank function, parameter A > 0 is
used to balance the effects of the two parts, and || - ||2,1 is the
£91 norm defined as the sum of ¢ norm of the column of a
matrix

IE|

3

N
2,1 = g
i=1

where [E],; is the entry of E. The {5 ; norm encourages the
columns of E to be zero, which assumes that the corruptions
are “sample specific,” i.e., some pixels are corrupted and the
others are clean. For a column vector corresponding to the
ith pixel, a larger magnitude implies that the pixel is more
anomalous. As a consequence, the matrix E naturally measures
the anomalies. Different from the method proposed in [24]
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which used robust principal component analysis (RPCA) [25]
to separate the original data to a low-rank part and the sparse
error part, we use LRR to separate the data. As pointed in [22],
RPCA relies on the assumption that the data lie in a single low-
rank subspace. However, due to the existence of mixed pixels,
the pixels of an HSI are drawn from multiple subspaces. Thus,
it may not be appropriate to use RPCA in this context. On
the contrary, by choosing an appropriate dictionary, the LRR
(which is regarded as a generalization of RPCA) can recover
the underlying multiple subspaces.

Algorithm 1 LADMAP Algorithm for LRASR

Input: data matrix X, parameters 8 > 0, A > 0

Initialize: So=Jo=Eo=Y10=Y2p, o = 0.01,
fmax = 1019, pg = 1.1, &1 = 1075, e9 = 1072, 5, = ||D||3,
k=0.

1: while ||X_DSO_E0||F/HXHF251 or

o max(\/M1 Sk —=Sk-1ll g, [T =1l s | —Ep-1ll )/
X[ > 2 do
2: Update variable Sy 1:

Ski1=0O ()1 (Sk + [DT(X — DS, —Ei + Y1 ./1k)
— (Sk = Ik + Yoi /ux)| /m)

3: Update variable Jj1:
Jirr = S, 1 (Skar + You/pk)
4: Update variable Eg1:
Epp1 =), (X =DSpp1 + Y1 i/1r)

5: Update Lagrange multipliers as follows:

Yiit1 =Y+ (X —=DSpi1 — Egyr).

Yort+1 =Your + pk(Skt1 — Jes1)
6: Update 1 as follows:

Hk+1 =Min(Umax, pptk) Where

po. if e max(y/A ISk~ Sell o [T —Tell
p= |Birr — Ball ) /IX [ < e

1, otherwise

7:Update k : k < k+ 1.
8: end while
Output: an optimal solution (Sy, Jx, Ex).

However, solving problem (2) is NP-hard. Fortunately, it
was suggested by matrix completion methods [25] that the
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following convex optimization provides a good surrogate for
problem (2):

min - [|S[l + AEl21
st X=DS+E “)

where || - ||« denotes the matrix nuclear norm (sum of the sin-
gular values of a matrix) [26]. Once the representation process
is finished, the anomalies for the ith spectrum T'(x;) can be
determined by the response of the residual matrix E as follows:

T(x:) = Bl = D (B0 ©)

J

where ||[E*]. ||, denotes the /2 norm of the ith column of E*.
If it is larger than a threshold, then x; is claimed to be an
anomalous pixel.

B. Sparse Regularization for LRR

As seen in [22], the low rankness criterion is superior at
capturing the global structure of observed data X. However,
each spectrum has its own local structure. The more accurate
the description of the local structure, the more accurate the
representation of the observed data. The sparse signal represen-
tation has proven to be a powerful tool in many areas [27], [28].
This success is mainly due to the fact that most natural signals
can be sparsely represented by a few coefficients carrying the
most important information with respect to a certain dictionary
or basis set [28]. In HSI target detection, sparsity-based target
detection algorithms are widely used. The basic sparsity-based
detector uses a similar sparsity model proposed in [28] to
sparsely represent a test image by a few training samples,
including both target and background samples, and then, it
directly employs the reconstruction residuals to perform the
detection. In the anomaly detection stage, as most of the sam-
ples are background pixels, they have a sparse representation in
terms of the background dictionary. Therefore, the sparse nature
of the matrix allows us to describe the local structure. The
model with the sparse regularization can be written as follows:

réll}g [SIl« + BIIS[lx + Al E[[2,1
st X=DS+E (6)

where || - ||1 is the ¢; norm of a matrix, i.e., the sum of the
absolute value of all entries in the matrix; 8 > 0 is a parameter
to trade off low rankness and sparsity. The model (6) incor-
porates the global structure by the low-rank property and the
local structure by the sparsity property, which results in a more
accurate representation of the original data. Thus, the residual
matrix E provides a better description of the anomalies.

The LRASR problem (6) could be solved by the popular
alternating direction method [22], [29]. However, two auxiliary
variables need to be introduced when solving (6), and expensive
matrix inversions are required in each iteration. Thus, a newly
developed method called the linearized alternating direction
method with adaptive penalty (LADMAP) [30] is adopted to
solve (6).
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Algorithm 2 Anomaly detection algorithm for HSI based on
LRASR

Input: data matrix X, parameters 3 > 0, A > 0, K, P

1: Divide the data matrix X into K parts using K-means
algorithm, s.t.

X =Ujc1, g XLXNXI =0, i#j, i,j=
Denote N; the number of pixels in X and D = {).
2:fori=1: K

2.I:IfN; < P

Skip and go to Step 2;

2.2: compute the mean vector p and covariance matrix »  of
data {z;|z; € X*,j =1....N;}.

2.3: compute the pre-detection result:

PD(x;) = (x; — )T S (% —p) j = 1,2,...
2.4: choose P pixels D* = [x1,X2,...,Xp]in
{Xj|Xj € X’L,‘] =1... NZ}, S.L.

PD(x;) < PD(x;),x; € D',x; € {xj|x; € X', j =

1,...K,

7Ni

1,...,N;}\ D*
25:D=DuUD;
end

3: Solve the following problem using Algorithm 1,
win - [S]l. + BlIS[1 + AllEll2,
st X=DS+E

And obtain the optimal solution (S*, E*).

4: compute T'(x;) = [|[E*]. |, = Zj ([E*]gz)Q

1=1,2,...,N
Output: Anomaly detection map.

To make the objective function separable, we introduce an
auxiliary variable J which satisfies S = J; then, we can replace
the second term ||S||; in the objective function with ||J||;.
Thus, the original problem (6) can be converted to the following
problem:

win - S]l. + Bl + AEll21
st X=DS+E,S=1J @)
The augmented Lagrangian function of problem (7) is
L(S,J,E, Y1,Yo, )
= I8l + Bl + A[Ef21 + (Y1,X - DS — E)
+ (Yo, S = 3)+ 5 (IX - DS — B[} + IS - J]}})
= ISl + Bl + AllEll2,1

+ f(S,3,E, Y1, Y2, 1) (IY1lE + 1Y2lF) ®)

1

2p
where (Y1, Ys) are Lagrange multipliers, o > 0 is the penalty
parameter, and

f(S,J, E,Yl,Yg, /1,)
= L (IX-DS—E+Y/ul}+IS=3+Y2/ul}) ©)
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The LADMAP is a multiple-variable optimization problem,
which can be solved by updating one variable alternately by
minimizing L with the other variables fixed. Suppose that we
are in the kth iteration; the problem can be divided into the
following subproblems.

1) Fix J and E, and update S; the objective function can be
written as follows:

Sk41 = argsminHSH*
+ (Vsf(Sk, Ik Ex, Y11, Yo iy i), S — Sg)
Mk
+ THS — Si||%

Mk
2

= argmin ||S||. +
s
x ||S = S+ [-DT (X ~DS, —Ey+ Y1 1/ pk)

Sk = T+ You /u)] /5
(10)

where the quadratic term f is replaced by its first-order
approximation at previous iterations, and then adding a
proximal term [30], Vg is the partial differential of f
with respect to S, and 71 = || D||3.

2) Fix S and E, and update J; the objective function can be
written as follows:

Jpr = argJIninﬁHJHl + %Hslﬁ—l — I+ You/mil 7

(11
3) Fix S and J, and update E; the objective function can be
written as follows:

Eit1 = argmin A\|E||21
E
Hk 2

The solution is outlined in Algorithm 1.

In Algorithm 1, ©, S, and 2 are the singular value threshold-
ing [31], shrinkage [29], and ¢ ; minimization operator [22],
respectively. Here, the orders of updating S, J, and E can be
changed.

C. Construction of Dictionary D

In the aforementioned algorithm, the dictionary D plays an
important role in detecting anomalies. In sparse representation
for target detection problems, the dictionary is composed of
the background dictionary and the target dictionary, which
are supposed to be known. However, in the case of anomaly
detection, the dictionary is not known in advance and should
represent the background information as much as possible. One
way to construct the dictionary is to use the original data X
directly. Although the original data X contains anomalies, the
number of anomalous pixels is very small, which can be ignored
in the representation process. However, the computation burden
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(@)

(b) ' ©

Fig. 1. Simulated data set. (a) False color image of the whole scene, (b) false color image of the detection area, and (c) ground-truth map.

is very large since the algorithm involves a singular value
decomposition of a matrix with size M x M, where M is the
number of atoms. Another way is to choose some of the pixels
from the HSI randomly to form the dictionary. In this way,
the atom number can be decreased. However, the dictionary
should cover all the ground material classes except for the
anomalies. Fortunately, in an HSI, most of the scene is covered
by a few kinds of major materials, so pixels are much more
likely to belong to these major materials than to others. If
we construct the dictionary by choosing pixels randomly, the
probability of choosing pixels belonging to major materials is
very high, so the constructed dictionary will be composed of
the major materials’ pixels, and some materials with other less
relevant samples will be ignored. As a result, the pixels which
correspond to the material with less representative samples will
be detected as anomalies.

In this paper, a new strategy for dictionary construction is
adopted. First, K-means is used to divide all the pixels into
K clusters X = {X! X2 ... XX}, The Euclidean distance
is used in the K-means algorithm. K should be larger than
the true number of ground material classes in order to make
sure that the K clusters cover all the ground materials. As
the atom should be a background pixel, a prepredictive strat-
egy is adopted in order to choose the background pixels in
each cluster. Similar to the RX algorithm, the square of the
Mahalanobis distance between the test pixel and the local
background mean in each cluster is calculated. The RX detector
assumes that the higher the value of the detection result, the
more likely the pixel will be anomalous. However, noisy pixels
or pixels corresponding to rare materials can be detected as
outliers because they are more uncommon in the HSI.

On the other hand, pixels with small prepredictive values are
background pixels with certainty. Therefore, the P pixels which
give the smallest Mahalanobis distance are chosen to generate
atoms in the dictionary. If the total number of pixels in the

(@ (b)

Fig. 2. First real-world data set. (a) False color image of the detection area and
(b) ground-truth map.

cluster is smaller than P, this cluster can be skipped as we have

set K larger than the real number of ground material classes.
The anomaly detection algorithm for HSIs based on LRASR

using the clustered dictionary is summarized in Algorithm 2.

III. EXPERIMENTAL RESULTS
A. Data Set Description

In this paper, both simulated and real hyperspectral data
sets are used to evaluate our method. The simulated data
were generated based on a real HSI data set. It was collected
by the Airborne Visible/Infrared Imaging Spectrometer over
San Diego, CA, USA. The spatial resolution is 3.5 m per pixel.
The image has 224 spectral channels in wavelengths ranging
from 370 to 2510 nm. After removing the bands that correspond
to the water absorption regions, low SNR, and bad bands (1-6,
33-35,94-97, 107-113, 153-166, and 221-224), 186 available
bands of the data are retained in the experiments. The whole
data set has a size of 400400, as shown in Fig. 1(a). From this
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Fig. 3. Second real-world data set. (a) False color image of the whole image, (b) false color image of the detection area, and (c) ground-truth map.

(b)

Anomaly

Background

Fig. 4. Two-dimensional plots of the detection results achieved by LRASR
using different dictionaries. A color nearer to red suggests that the pixels are
anomalous, while a color nearer to blue suggests that the pixels belong to the
background. The results are shown using (a) our dictionary and (b) a random

dictionary.
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Fig. 5. ROC curves for the simulated data set using different dictionaries.

hyperspectral data set, a region with a size of 100x 100 pixels is
selected to form the simulated data. The anomalous pixels are
simulated by the target implantation method [32]. Based on the
linear mixing model, a synthetic subpixel anomaly target with
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Fig. 6. Plot of MSE versus the number of endmembers.
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Fig. 7. ROC curves obtained for the simulated data set with different values

of P.
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Fig. 8. Two-dimensional plots of the detection results obtained by different methods for the simulated data set: (a) Global-RX, (b) SegRX, (c) SRD,

(d) RPCA-RX, and (e) LRASR.
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Fig. 9. ROC curves obtained by different methods for the simulated data set.

TABLE I
AUC FOR THE DETECTORS REPORTED IN FIG. 7

Global-RX
0.8050

SRD
0.9029

RPCA-RX
0.8612

LRASR
0.9597

Algorithm
AUC

SegRX
0.9283

spectrum z and a specified abundance fraction f is generated
by fractionally implanting a desired anomaly with spectrum t
in a given pixel of the background with spectrum b as follows
[33]:

z=f-t+(1—f)-b. (13)

In the image, 16 anomalous targets have been implanted.
These anomalies are distributed in four rows and four columns.
The abundance fractions f are 0.05, 0.1, 0.2, and 0.4 for differ-
ent rows, respectively, and remain unchanged for the anomalies
in the same row. The anomalous spectrum t is chosen outside
the selected scene in the whole image, and the same anomalous
spectrum t is applied to the 16 target pixels. It corresponds to
the plane in the middle left of the whole scene. The image scene
used in the simulated experiments is shown in Fig. 1(b), and the
ground-truth map of anomalies is illustrated in Fig. 1(c).

The first data used for real-world detection are also part of the
San Diego image. The up-left 100 x 100 of the scene is chosen
as the test image. The scene is mainly composed of buildings
with different roofs, parking aprons with different materials,
an airport runway, and a small quantity of vegetation. The air-
planes are the anomalies to be detected. The false color image
and the ground-truth map are shown in Fig. 2(a) and (b), respec-
tively. Fifty-seven pixels were selected as anomalies, composed
of full-pixel anomalies in the main body of the airplanes and

subpixel targets on the edges of the airplanes. In this scene, the
anomaly is big compared to that of the simulated data set.

The second data set used in real-world experiments is a
HYDICE hyperspectral data set obtained from an aircraft plat-
form. It covers an urban area that comprises a vegetation area,
a construction area, and several roads including some vehicles.
The image has a spectral resolution of 10 nm and a spatial reso-
lution of 1 m. The low-SNR and water vapor absorption bands
(14, 76, 87, 101-111, 136-153, and 198-210) are eliminated
so that 162 bands remain. The whole data set has a size of
307 %307 pixels, as shown in Fig. 3(a). However, the ground
truth defines that the anomalous targets are the cars and roofs
embedded in the different backgrounds in the upper rightmost
area of the scene. Therefore, the considered subscene consists
of pixels covering this area. A color representation and the
ground-truth map are shown in Fig. 3(b) and (c), respectively.
The 21 anomalous target pixels are the vehicles with different
sizes in the urban scene.

B. Detection Performance

First, we illustrate the effects of the dictionary constructed by
our method. In our dictionary construction step, K and P are
set to 15 and 20, respectively. We compare our method with
another method using a different dictionary. In that method,
all the atoms in the dictionary are randomly chosen from the
whole image. For a fair comparison, the number of atoms
is set to 300. The 2-D plots illustrating the detection results
obtained by the two methods are shown in Fig. 4(a) and (b). The
anomalies are obvious in both maps. However, in the results of
the method using a random dictionary, many pixels on the lower
rightmost corner of the scene exhibit a high detection value
despite not being anomalous. This indicates that the random
dictionary cannot avoid the presence of noisy pixels or pixels
corresponding to rare materials being detected as anomalies.
For numerical comparison, the receiver operating characteristic
(ROC) curve is constructed, which acts as the classic com-
parison measurement for different detection methods [2], [34].
The target detection rate and false alarm rate are computed
by a certain segmentation threshold. For each target detector’s
results, the segmentation threshold can be changed to obtain
a group of target detection rate and false alarm rate for each
target detector, which can be used to plot the ROC curve. A
better detector would lie nearer the upper leftmost corner and
result in a larger area under the curve [2]. Fig. 5 shows the ROC
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Fig. 10. Two-dimensional plots of the detection results obtained by different methods for the real San Diego data set: (a) Global-RX, (b) SegRX, (c) SRD, (d)

RPCA-RX, and (e) LRASR.
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Fig. 11. ROC curves obtained by different methods for the real San Diego
data set.

TABLE II
AUC FOR DETECTORS REPORTED IN FIG. 9
Algorithm | Global-RX  SegRX SRD RPCA-RX  LRASR
AUC 0.9090 0.9446 0.7234 0.9288 0.9882

curves obtained after applying the two considered methods. It
can be seen that the method using our dictionary can achieve
better results, which is expected because our dictionary can
cover most of the background materials, thus providing more
robust and reliable results.

The number of clusters should be larger than the real number
of the ground materials, but this number is difficult to know
a priori. Thus, the HySime [35] algorithm is applied to estimate
the number of endmembers that can represent the real ground
materials. HySime estimates the signal and the noise correlation
matrices and then selects the subset of eigenvalues that best
represents the signal subspace in the minimum mean squared
error (MSE) sense. Fig. 6 shows the MSE versus the number of
endmembers of the three considered data sets. From Fig. 6, we
can see that, when the number of endmembers is larger than 10,
the MSE values are small for the three data sets. Thus, we set
K = 15 empirically in our experiments. Then, we compare the
impact of P as shown in Fig. 7. From Fig. 7, we can see that
the results obtained using different values of P are almost the
same. Thus, our method is robust to P. For simplicity, P is set
to 20 in our experiments.

Next, we evaluate the detection performance of our pro-
posed LRASR detector, comparing it with the conventional
global RX, segmentation-based-RX (SegRX) detector, SRD,
and RPCA-RX. For SegRX, the K-means clustering is first
applied on the whole data to divide the data into several clusters.
Then, the RX is used in each cluster to detect the anomalies.

The number of clusters in SegRX is set empirically. The regu-
larization parameters for RPCA-RX and SRD are optimized in
our experiments. The parameters of window size (Woyt, Win)
are set to (15, 7) for SRD after extensive searching. The 2-D
plots of the detection results of all the compared algorithms
are shown in Fig. 8(a)—(e). From these figures, we can see
that all the methods (except SRD) can distinguish between the
background and anomalies in high abundance fraction pixels.
The proposed LRASR can also provide a clear discrimination
in the low abundance fraction pixels. Fig. 9 illustrates the ROC
curves obtained for the simulated data set. An important obser-
vation from Fig. 8 is that the SegRX outperforms the global RX
and RPCA-RX. Compared to the SegRX, the proposed LRASR
exhibits a slightly lower probability of detection for a low false
alarm rate (when the false alarm is 0.033 to 0.047). Compared
to SRD, it exhibits a lower probability of detection when the
false alarm is from 0.125 to 0.2; however, the proposed LRASR
is the best method in terms of the overall detection performance.
Furthermore, we have also computed the area under the ROC
curve (AUC) to evaluate the performance of these methods. The
results are shown in Table I. The proposed LRASR achieves
the highest score as expected. It is 0.03 higher than the second
highest score, which is achieved by SegRX. The improvement
over the other tested methods is due to the fact that our proposed
LRASR performs better at both noise pixel suppression and
weak anomaly detection.

For the real San Diego data set experiment, the 2-D plots for
the obtained detection results are illustrated in Fig. 10(a)—(e).
From this figure, it can be seen that the proposed LRASR gives
a map where the anomalies are obvious. The ROC curves of all
the methods are shown in Fig. 11 for illustrative purposes. The
proposed LRASR achieves the highest probability of detection
for all false alarm rate values. The AUC scores are provided
in Table II. The proposed LRASR achieves a score that is
0.04 higher than SegRX, which is an obvious improvement.
This confirms that the proposed method can outperform the
traditional detectors.

For the real urban data set, the 2-D plots of the obtained
detection results are shown in Fig. 12(a)—(e). The anomalies
in Fig. 12(e) are more obvious, and few nonanomalous pixels
have high detection values. The ROC curves and AUC scores
are also shown in Fig. 13 and Table III, respectively. Although
the representation-based SRD gains a higher probability of
detection when the false alarm rate ranges from 0.012 to 0.051,
the proposed LRASR achieves the highest AUC score among
all the detectors. Therefore, it can be concluded that LRASR
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Fig. 12. Two-dimensional plots of the detection results obtained by different methods for the real urban data set: (a) Global-RX, (b) SegRX, (c) SRD,
(d) RPCA-RX, and (e¢) LRASR.
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Fig. 13. ROC curves obtained by different methods for the real urban data set.

TABLE III
AUC FOR DETECTORS REPORTED IN FIG. 11

Algorithm | Global-RX  SegRX SRD RPCA-RX  LRASR
AUC 0.8504 0.8978 0.8928 0.8564 0.9220

TABLE IV
EXECUTION TIMES (IN SECONDS) FOR ALL EXPERIMENTS

Global-RX SegRX SRD RPCA-RX LRASR

Simulated data 0.28 8.45 7.13 19.27 169.06
Real San Diego data 0.27 2.67 5.81 22.41 162.49
Real urban data 0.2 241 4.56 9.37 132.17

0001 oo

Fig. 16. Joint consideration of 3 and A for the real urban data set.

Table IV. The algorithms are tested on a computer with a
64-b quad-core Intel Xeon CPU 3.33-GHz processor under
Windows 7. It reveals that our method does take more computa-
tion time than other methods. Due to the fact that our algorithm
requires hundreds of iterations to converge, the computational
cost of the proposed method is an important issue to be settled
in our future developments.

0.001 " o001

Fig. 14. Joint consideration of 3 and A for the simulated data set.

is a promising method for the detection of anomalous pixels
in HSIs.

The computation costs of all the aforementioned methods The proposed method involves two regularization parame-
have also been compared. Detailed results are presented in ters: 8 and A. Normally, we can use a more robust method to

C. Sensitivity to the Regularization Parameters
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compute them by a maximum a posteriori (MAP) estimation
problem. To improve the computational efficiency, we do not
use a robust estimation method in this paper. Figs. 14-16 il-
lustrate the obtained performance when jointly taking the two
regularization parameters into consideration. (3 is chosen from
{0.001, 0.01, 0.1, 0.5, 1, 2, 3}, and A is chosen from {0.001,
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. It reveals that, for the San
Diego data set, LRASR is sensitive to 3. For the simulated data
set and the second real-world data set, it achieves high AUC
when A is larger than 0.001. From a general viewpoint, the
changes of AUC are not obvious when 3, A € [0.01 0.1]. For
simplicity, in our experiments, we have empirically set 5 = 0.1
and A = 0.1 for all the considered the data sets, achieving
satisfactory results in all cases.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

This paper has proposed a new anomaly detection method
based on LRASR. To estimate the background, each pixel is
represented via a linear combination of the background dic-
tionary’s atoms. The representation coefficient matrix, which
contains the background information, has a low-rank property.
A sparse constraint is added to achieve a more accurate descrip-
tion of the local structure of each sample. As the dictionary
represents the background information, a novel way to
construct the dictionary is proposed. By this way, the atoms
of the dictionary are more likely to belong to the background,
and the dictionary covers all the ground material classes in
the scene. The anomalies are calculated from the residual of
the LRASR. It is demonstrated that the proposed LRASR
provides better detection performance than other methods. An
important aspect deserving future research is the computational
complexity of the proposed method. In this regard, we are
currently developing efficient implementations using high per-
formance computing architectures such as commodity graphics
processing units.
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