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Abstract— Oil spill monitoring in optical remote sensing (RS)
images is a challenging task due to the complexity of target
discrimination in an oil spill scenario. Differently from traditional
oil spill detection methods that are mainly carried out in a
monotemporal image, in this letter, a novel solution is given in
a multitemporal domain by investigating potential capability of
change detection (CD) techniques, and it mainly contributes to
an unsupervised, semiautomatic, and efficient approach. It opens
a new perspective for solving an oil spill detection problem.
In particular, a coarse-to-fine multitemporal change analysis pro-
cedure is designed to investigate the spectral–temporal variation
of change targets present in the scenario. Changes relevant and
irrelevant to suspected oil spills are identified and discriminated
according to a binary and a multiple CD process, respectively.
The proposed approach provides a quick yet effective oil spill
detection solution, which is valuable and important in practical
applications. The proposed method was validated on two real
multitemporal RS data sets presenting the oil spill event in
northern Gulf of Mexico in 2010. Experimental results confirmed
its effectiveness.

Index Terms— Change detection (CD), change vector analysis,
coarse-to-fine (CTF), multitemporal data, oil spill, optical remote
sensing (RS).

I. INTRODUCTION

O IL pollution is an increasingly critical ocean disaster over
the world, attracting significant attention on this topic.
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It may result from different sources, for example, urban runoff
and industrial discharges, oil production, particle settlement in
the atmosphere, natural oil seepage, and tanker accidents [1].
Negative effects of oil spills are related to marine and coastal
environment, marine exploration, transportation, and so on, at
both regional and global levels [2]. Therefore, it is very urgent
and important to effectively detect oil spills on ocean surface
in time, in order to facilitate government decision making and
scientific research at next stage.

Thanks to the revisit time, wide area coverage, and relatively
low cost properties, satellite remote sensing (RS) is playing an
increasingly important role in oil spill monitoring. Space-borne
oil spill detection can complement and optimize the traditional
in situ investigation, which is difficult and even impossible to
manage in time. RS techniques have been widely used in oil
spill monitoring in the past decades [1]–[3]. Among different
sensors mounted on satellites, active microwave instruments
(e.g., synthetic aperture radar) and its corresponding analysis
techniques have been frequently investigated for oil monitoring
in [4] and [5]. Microwave sensors have all-weather and all-day
capabilities for Earth observation. Microwave backscattering
properties of ocean surfaces are directly reflected on image
brightness, and thus they are commonly utilized in identifying
oil-like features. However, the use of microwave sensors is
limited by their high cost, relatively small swath widths, and
low revisit frequencies [1]. Open issues such as estimation of
the thickness of oil spills and recognition of oil types are still
unsolved.

Although passive optical sensor images may be contami-
nated by clouds, compared with microwave sensors, they have
unique characteristic to measure oil slicks from the spectrum
point of view. Open issues aforementioned for microwave sen-
sor images might be addressed in optical images by exploring
in detail spectral behaviors. Therefore, optical multispectral
images are potentially capable to identify oil spills at a fine
level. Several works have attempted to explore such potential
capability in oil spill detection [1], [6]–[10]. Most of them
are designed based on the single-time oil spill image and
are devoted to locating the position of oil spills. We can
group them into two main categories: 1) qualitative manual
inspection-based approaches, e.g., analyzing the derived index
images and enhancing the oil–water contrast [1], [6]–[8] and
2) automatic detection methods based on supervised classi-
fiers [9], [10]. The former does not require ground reference
data; however, it does not allow a quantitative evaluation.
The latter is carried out relying on the available ground
reference samples to train a supervised classifier. A fine and
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automatic identification of oil spills and discrimination among
look-alikes (e.g., algal blooms, clouds, sun glints) are required
to be further investigated.

In this letter, a novel coarse-to-fine (CTF) oil spill detection
approach is designed. It is suitable for locating oil spills and
is potentially capable for discriminating suspected oil spill
relevant and irrelevant targets in a large scenario. In particular,
the original oil spill detection task in a monotemporal domain
is converted into a change detection (CD) task that is solved in
a multitemporal domain. The proposed CTF technique allows
a quick discovery of the suspected oil spills while investigating
quantitatively the detailed information inside. For users do
not have any prior knowledge on the data set and scenario,
the proposed technique provides an effective tool for oil spill
mining, discovery, and detection, especially for locating the
“target” regions having a high probability related to oil spills.
The proposed method is validated on two medium-resolution
optical satellite data sets (i.e., HJ-1 and Landsat) associated
with the oil spill event on April 20, 2010, in northern Gulf of
Mexico (GOM). Experimental results confirm the effectiveness
of the proposed technique for a quick and fine oil spill
detection.

The remainder of this letter is organized as follows.
Section II analyzes and discusses oil spill detection in
monotemporal and multitemporal images, respectively.
Section III presents the proposed CTF approach.
Section IV describes two used data sets, analyzes, and dis-
cusses the experimental results. The final conclusion is given
in Section V.

II. OIL SPILL DETECTION IN MONOTEMPORAL AND

MULTITEMPORAL IMAGES

The visibility of an oil spill is mainly due to the quality
of image (e.g., clouds contamination, noise distribution) and
the optical contrast between spills and the surrounding water
in both monotemporal and multitemporal image domains. For
the oil–water contrast, two conditions might be observed [8]:
1) glint, i.e., positive contrast, oil brighter than water and
2) glint-free, i.e., negative contrast, oil darker than water.
Several works were devoted to distinguishing these two con-
ditions in optical images [6], [8]. In this paper, we focus on
the former.

In a monotemporal image domain, the aim of oil spill
detection is to extract the target (i.e., oil spills) from the
background (i.e., sea water), which may contain many irrele-
vant targets (e.g., algal blooms, clouds, and sun glint areas).
To this end, the considered oil spill detection problem can be
addressed either according to qualitative manual inspection or
quantitative classification as summarized in Section I. Note
that the oil spill detection performance in a monotemporal
image depends on the class separability between oil slicks
and irrelevant targets. In reality, oil spill features might not be
explicitly identified due to the insignificant oil–water contrast.
Thus an automatic separation is difficult to be realized due
to the presence of similar spectral properties in oil slicks
and water. Moreover, a probably high number of irrelevant
targets in the scenario may make this task more complex and
challenging, especially in an unsupervised way.

On the contrary, analysis of multitemporal images may
open a new perspective for oil spill detection in a more

robust and precise way. In RS, CD is designed for identi-
fying changes occurred in a geographical area at different
observation times [11]. CD techniques have been widely used
in different RS applications; however, advantages of such
techniques have not been investigated for oil spill monitoring,
especially in optical images. In a multitemporal domain, oil
spills are expected to be detected as a change class that can
be discriminated from an unchanged background (i.e., sea)
and irrelevant changes (e.g., presence/absence of other targets).
Spectral–temporal variations of oil spills and irrelevant targets
have different spectral significance. Thus, oil spills are more
likely to be detected in a multitemporal domain.

III. PROPOSED COARSE-TO-FINE CHANGE ANALYSIS

APPROACH FOR OIL SPILL DETECTION

Let X1 be a selected “base” image in a data archive,
which is oil-free, and X2 be an input image acquired over
the same scenario for detecting suspected oil spills. X2 is
coregistered to X1. Let � = {ωn , �c} be the set of all classes
present in the scenario in the multitemporal domain, ωn be the
no-change sea background and �c = {ωC1, ωC2, . . . , ωCK }
be the set of K possible change targets. The considered oil
spill detection can be formalized as a problem to isolate a
set of oil relevant changes �c,O in �c (�c,O ∈ �c) from the
oil-irrelevant changes �c,N (e.g., algal blooms, ships, etc.) and
the no-change class ωn . �c,N ∈ �c, �c = {�c,O , �c,N }.
A novel CTF approach is proposed to discover and detect
suspected oil spills in multitemporal images from global to
local scales by following a binary-to-multiple CD procedure.
Block scheme of the proposed approach is illustrated in Fig. 1.
It mainly consists of three steps: 1) multitemporal image
preprocessing; 2) coarse oil spill change analysis; and 3) fine
oil spill change analysis. Details of each step are given as
follows.

A. Multitemporal Images Preprocessing

Due to the fact that oil spills only exist on the sea surface,
it is necessary to mask land regions that may contain a large
portion of oil irrelevant changes. Moreover, changes that are
caused by the absence or presence of clouds may affect the
detection of oil spills, so clouds are also masked on each
image. This not only reduces the unnecessary change analysis
and the resulting computational cost, but also enhances oil spill
visualization and identification on the sea surface. To mask
land regions, Normalized Difference Vegetation Index (NDVI)
result of each single date image is segmented according to a
predefined threshold TI = 0. NDVI value indicates the highest
possible density of green leaves like vegetation (close to 1), or
water, cloud, and snow (close to −1). Segmentation on NDVI
is sufficient and especially fast for a binary separation between
the sea (<TI ) and the land (�TI ). An improved background
suppressed haze thickness index method [12] is applied to
detect clouds, which are removed from two images. Note that
the masking operations are automatic without the requirement
of any assistance of manual work or reference samples.

B. Coarse Oil Spill Change Analysis

In this step, a coarse oil spill detection is conducted at a
global scale. The objective is to locate all possible targets
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Fig. 1. Block scheme of the proposed CTF oil spill detection technique.

presented on the sea surface while separating them from the
sea background. This is solved as a binary CD task in the
multitemporal domain to separate the change (i.e., �c) and
no-change (i.e., ωn) classes. Two geo-referenced and masked
images are compared to find pixels without masked in both
images. These pixels are extracted for further computation.
Let S1 and S2 be the selected subset of pixels for CD from
X1 and X2, respectively. SD is the set of spectral change
vectors (SCVs) defined as

SD = S2 − S1. (1)

Change magnitude ρ is then defined by calculating the
Euclidean compression of SCVs in (1), which indicates a
probability of a pixel being change or no change according
to its magnitude value. It is defined as

ρ =
√√√√ B∑

b=1

(SD,b)2 (2)

where SD,b is the bth (b = 1, . . . , B) component of SD , and
B is the number of spectral channels in the considered images.

Automatic techniques such as thresholding and clustering
can be utilized to address a binary CD problem. In this paper,
a threshold Tρ is defined by using an improved Kittler and
Illingworth (KI) minimum-error thresholding algorithm [13]
for segmenting all pixels in SD into �c and ωn two classes.
Note that the extracted change targets include the suspected
oil spill-relevant changes (i.e., �c,O ) and irrelevant changes
(i.e., �c,N ), which are impossible to be further distinguished
relying only on the coarse binary change analysis in this step.

C. Fine Oil Spill Change Analysis

In this step, suspected oil spill-relevant changes (i.e., �c,O)
are detected at a local scale (i.e., only the pixels identified as
�c in the previous step are considered), separating from the
irrelevant changes (i.e., �c,N ) according to a multiple CD.
It is challenging, in particular, in an unsupervised way. Many
issues should be addressed inside, such as estimation of the
number of changes, distinguishing different kinds of changes,
etc. A sequential spectral change vector analysis (S2CVA)
approach [14] is applied to this end. It is recently proposed
for detecting multiple changes in multitemporal hyperspectral
images while exploring a hierarchical nature of complex
multiple changes. It provides a quick yet effective tool for
solving the aforementioned problems simultaneously in a 2-D
compressed feature space. The 2-D representation is con-
structed based on two variables, i.e., change magnitude ρ and
change direction α, to illustrate and detect multiple changes.

In particular, ρ is defined as the same in (2), and α is defined
as follows [14]:

α = across

⎡
⎣
⎛
⎝ B∑

b=1

(SD,brb)

/ √√√√ B∑
b=1

(SD,b)2
B∑

b=1

(rb)2

⎞
⎠

⎤
⎦

(3)

where rb is the bth (b = 1, . . . , B) component of reference
vector r

A = cov(SD) = E[(SD − E[SD])(SD − E[SD])T ] (4)

where E[SD] is the expectation of SD. The eigen-
decomposition of A can be represented as

A · V = V · W (5)

where W and V are the matrix of eigenvalues and eigenvectors,
respectively. The reference vector r is computed as the first
eigenvector in V corresponding to the largest eigenvalue,
which projects the original SCVs into a direction that mea-
sures maximum variance of data, thus representing different
changes.

The 2-D representation in a polar domain D is defined as

D = {ρ ∈ [0, ρmax] and α ∈ [0, π]} (6)

where ρmax is the maximum value of ρ. The considered
multiple CD problem is solved by discriminating different
homogenous changes along the direction α in a sequence
of domains following a hierarchical analysis [14]. Note that
in the oil spill detection case when multispectral images are
considered, detection at first level of the hierarchy is sufficient
for identifying the major changes.

Although the change direction α is capable of separating
oil spill-relevant and -irrelevant changes, it is still difficult to
discriminate changes in �c,O that are probably related to the
oil spill thickness or oil–water mixture degree, due to the fact
that they present almost the same direction α, especially in
a multispectral case with limited spectral bands. Difference
information is actually present in the magnitude of �c,O ,
which has not been finely investigated in the previous step.
Therefore, an additional change analysis is implemented iter-
atively on the magnitudes of SCVs belonging to �c,O . Both
hard and soft oil spill detection results are obtained, repre-
senting the different information in the extracted �c,O . The
hard detection result is generated by interactively defining
thresholds according to modes on the magnitude histogram.
Thus different change classes are separated in �c,O . A soft
oil spill detection result can be generated by illustrating
pixels in pseudocolor without defining classes as in the hard
decision. Different pseudocolors indicate possible different
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Fig. 2. False color composite (R:b4, G:b3, B:b2) of HJ-1 images over GOM
acquired in (a) 2009 (X1) and (b) 2010 (X2).

Fig. 3. (a) 2-D change representation by the adaptive SCV analysis
approach [15]. (b) Magnitude histogram of the oil relevant change �c,O .

oil spill changes and change significance levels according
to magnitude values. Due to the unsupervised nature of the
proposed approach and with the limited spectral representation
in a multispectral case, it is impossible to accurately identify
specific types of oil spills without prior knowledge. However,
the proposed approach narrows the oil spill searching range
down in a large scenario and provides a quick solution to
locate and discriminate suspected oil spills by analyzing pixel
spectral–temporal behaviors. This is essentially valuable in
practical applications.

IV. EXPERIMENTAL RESULTS

A. HJ-1 Data Set

The first data set is made up of bitemporal multispectral
HJ-1A/B CCD1 images, acquired on January 9, 2009 (X1),
and May 10, 2010 (X2), respectively, over the northwestern
GOM. The original images contain red, green, blue, and
near-infrared four bands with a spatial resolution of 30 m.
Preprocessed (e.g., bands stacking, atmospheric correction)
images were coregistered, with a residual error limited within
0.5 pixel. Fig. 2(a) and (b) shows the false color composite
images X1 and X2, respectively.

Qualitative and quantitative analyses were carried out
to evaluate the performance of the proposed approach.
2-D representation obtained by using the S2CVA approach [14]
is illustrated in Fig. 3(a). Here, the threshold Tρ was defined
to 136 [cf. the red semicircle in Fig. 3(a)] and discrimina-
tion boundaries for multiple changes were defined as yellow
polygons. Oil spill relevant changes clustered at a low-value
direction [cf. the cluster �c,O in Fig. 3(a)], whereas irrelevant
change ωC5 is not. Magnitude histogram of �c,O is further
analyzed. In this case, four modes were identified inside �c,O ,
where three thresholds were interactively defined to segment
four classes, i.e., ωC1 -ωC4 [cf. Fig. 3(b)]. Both soft and hard
detection results are provided in Fig. 4(a) and (c), respectively.
A subset is extracted for a better visual comparison
[cf. Fig. 4(b) and (d)]. The pseudocolor in the soft detection
result indicates different oil spill changes in �c,O , and is
visually consistent with the obtained hard detection result

Fig. 4. Oil spill detection results obtained by the proposed CTF approach
(HJ-1 data set). (a) Soft detection. (b) Subset of (a). (c) Hard detection.
(d) Subset of (c).

based on histogram segmentation as shown in Fig. 3(b). In this
case, ωC5 is mainly caused by several stripe noises present
in the original image bands [e.g., dotted circles highlighted
in Fig. 4(d)]. According to a carefully qualitative evaluation,
we can see that suspected oil spills have been successfully
located and finely identified in the obtained soft and hard
detection results, by following the proposed CTF approach in
the multitemporal framework. In practical applications, these
suspected regions are quickly locked as “target” regions for
further investigation.

Quantitative analysis was made by comparing the binary
oil spill detection results obtained by the proposed unsuper-
vised CTF approach and by the supervised support vector
machine (SVM) classifier [15] in the masked monotemporal
image S2. Two-class samples were selected in S2 according
to a carefully image interpretation, including 43 824 pixels
as oil spill class and 117 626 pixels as background class,
where 40% was used for training SVM and 60% for testing.
Note that the SVM training and prediction were implemented
in LibSVM [16] with a RBF kernel, and a grid-search and five-
fold cross-validation strategy to find out the optimal parame-
ters. The accuracy and error indices are listed in Table I; we
can see that the proposed CTF approach resulted in a signifi-
cant improvement on the overall accuracy (OA) (i.e., 92.67%)
and Kappa (i.e., 0.8131) than SVM (i.e., 90.81% and 0.7835)
in locating oil spills, especially in decreasing commission
errors from 25.49% to 17.34%. Moreover, the proposed CTF
approach is much computationally efficient than SVM, which
only took, in total, 258.62 s to complete the whole detection
at such large image scenario, whereas in the same case, SVM
required 491.14 s.

B. Landsat Data Set

The second data set is a pair of multispectral Land-
sat ETM+ images acquired on March 30 (X1), and
May 1 (X2), 2010, respectively, over the northern GOM.
Bands 1–5 and 7 were selected, having a spatial resolution
of 30 m. Preprocessed (e.g., band stripe repairing, atmospheric
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Fig. 5. False color composite (R:b4, G:b3, B:b2) of Landsat images
over GOM, acquired in (a) March 2010 (X1) and (b) May 2010 (X2).
(c) Obtained 2-D change representation. (d) Magnitude histogram of oil
relevant change �c,O.

TABLE I

ACCURACY INDICES AND TIME COST OBTAINED BY SVM AND PROPOSED

CTF APPROACH IN LOCATING OIL SPILLS

correction) two images was coregistered with a residual error
of less than 0.5 pixel. False color composite of X1 and X2
is shown in Fig. 5(a) and (b), respectively. The same exper-
imental setup was used as in the previous case. Qualitative
and quantitative analyses were conducted. The 2-D change
representation is illustrated in Fig. 5(c). In the coarse binary
detection,Tρ was defined equal to 49.2, and three clusters
were identified, including �c,O and two irrelevant changes
(i.e., ωC2 and ωC3 represent two off-shore sea water changes
shown in green and red, respectively.). Note that only a single
mode is represented [cf. Fig. 5(d)] in the magnitude of �c,O .
It indicates a relatively homogenous oil spill spread on the sea
surface. Accordingly, a single oil spill class ωC1 is defined
in the hard detection result. However, different information
can be still observed in the pseudocolor soft detection result.
Satisfactory results are qualitatively evaluated by locating oil
spills and discriminating them from other targets. 139 236
pixels (oil spill class) and 632 076 pixels (background class)
were selected in S2 as reference samples (with 40% for
training, 60% for testing) in SVM. Based on a quantitative
analysis of accuracies listed in Table I, one can see that the
proposed CTF approach outperforms SVM, with respect to
higher OA and Kappa values (i.e., 97.97% and 0.9191). Note
that the computation cost in the proposed CTF approach (i.e.,
301.15 s) is much less than in SVM (i.e., 1138.07 s), indicating
its effectiveness in applying to a large image scenario.

V. CONCLUSION

This letter presents a new solution to the challenging
oil spill detection task in a multitemporal domain. A novel
CTF approach is proposed to realize a sophisticated oil spill

discovery and detection at a large-scale scenario. The pro-
posed technique is unsupervised and semiautomatic, without
the availability of ground reference data, and in particular
cost-efficient. Main contributions of this work include: 1) it
opens a new perspective to solving the considered oil spill
detection problem from a systematic CD perspective in a
multitemporal domain, which has not been studied in literature
according to our knowledge. Suspected oil spills are extracted
and discriminated in a coarse binary and a fine multiple
CD step, respectively, by investigating in details the spectral-
temporal variation and 2) it detects oil spills while providing
valuable soft and hard detection results. Information might
associate with the oil thickness was discovered, which is not
easily detectable in the popular monotemporal techniques.
Experimental results confirm the effectiveness of the proposed
approach. For future developments, oil spill-relevant features
will be extracted to optimize the proposed technique.
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