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R ecent advances in airborne and spaceborne hyper-
spectral imaging technology have provided end us-

ers with rich spectral, spatial, and temporal information. 
They have made a plethora of applications feasible for the 
analysis of large areas of the Earth’s surface. However, a 
significant number of factors—such as the high dimen-
sions and size of the hyperspectral data, the lack of train-
ing samples, mixed pixels, light-scattering mechanisms 
in the acquisition process, and different atmospheric and 
geometric distortions—make such data inherently non-
linear and complex, which poses major challenges for 

 existing methodologies to effectively process and analyze 
the data sets. Hence, rigorous and innovative methodolo-
gies are required for hyperspectral image (HSI) and signal 
processing and have become a center of attention for re-
searchers worldwide. 

This article offers a comprehensive tutorial/overview fo-
cusing specifically on hyperspectral data analysis, which is 
categorized into seven broad topics: classification, spectral un-
mixing, dimensionality reduction (DR), resolution enhance-
ment, HSI denoising and restoration, change detection (CD), 
and fast computing. For each topic, we provide a synopsis of 
the state-of-the-art approaches and numerical results for vali-
dating and evaluating different methodologies, followed by a 
discussion of future challenges and research directions.
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THE PROMISE OF HYPERSPECTRAL IMAGING
Remote sensing involves obtaining information from an 
object or a scene without any direct physical contact. This is 
possible because different objects uniquely reflect, absorb, 
and emit electromagnetic radiation based on their molecu-
lar composition and texture. If the radiation arriving at a 
sensor is measured at a detailed wavelength range, the con-
sequent spectral signature, also known as a spectrum, can 
potentially be used to identify any given object of interest. 
To this end, the intent of hyperspectral imaging technol-
ogy is to capture, from the immediate surface of the Earth, 
hundreds of spectral channels (i.e., to shape the spectra) 
that can precisely characterize the chemical composition of 
different materials.

Hyperspectral sensors sample mainly the reflective por-
tion of the electromagnetic spectrum, ranging from the vis-
ible region (0.4–0.7 μm) to the short-wave infrared (SWIR) 
region (almost 2.4 μm) in hundreds of narrow contiguous 
spectral channels, each of which is 10-nm wide. There are, 
however, other types of hyperspectral sensors that are able 
to characterize the emissive properties of objects by collect-
ing data in the range of the midwave and long-wave infra-
red region. (Hyperspectral imaging covers a broad range of 
imaging systems, such as medical hyperspectral imaging, 
atmospheric sounding, close-range hyperspectral imaging, 
and so on. Here, we focus solely on airborne or spaceborne 
remotely sensed HSIs with a spectral coverage ranging 

0.4–2.5 μm.) Such detailed spectral sampling, making use 
of numerous small, commercial, high spatial and spectral 
instruments, has made HSIs a valuable source of informa-
tion for a wide variety of applications, including precision 
agriculture (e.g., monitoring the development and health 
of crops), the food industry (e.g., characterizing product 
quality), environmental monitoring, mineralogy, defense 
and security-based applications (e.g., identification of man-
made materials), chemical imaging, astronomy, ecological 
sciences, and many others.

A better understanding of HSIs can be gained from Fig-
ure 1. A three-dimensional (3-D) hyperspectral data cube 
consists of n n d1 2# #  pixels, in which n n1 2#  is the num-
ber of pixels in each spectral channel and d represents the 
number of spectral channels. An HSI can be characterized 
using one of the following more detailed definitions.
1) Spectral perspective (or spectral dimension): From this perspec-

tive, a hyperspectral data cube is composed of n n1 2#  pix-
els, where each pixel is a vector of d values. Each pixel cor-
responds to the reflected radiation of the specific region of 
the Earth and has multiple values in spectral bands. This 
detailed spectral information can be used to analyze dif-
ferent materials with precision. Figure 1(c) shows a spec-
tral profile of one pixel, with multiple values for each band 
in the spectral dimension.

2) Spatial perspective (or spatial dimension): In this con-
text, a hyperspectral data cube consists of d gray-scale 
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FIGURE 1. An example of a hyperspectral data cube: (a) a gray-scale image, (b) a hyperspectral data cube, and (c) a pixel vector and its 
corresponding spectral signature. 
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 images, with a size of .n n1 2#  The values of all of the 
pixels in one spectral band shape a gray-scale image 
with two dimensions [as shown in Figure 1(a)], which 
are both spatial.
Although the greater dimensionality of HSIs compared 

with multispectral images improves data information con-
tent considerably, it does introduce new challenges to con-
ventional image analysis techniques, which have been spe-
cifically designed for multispectral data. Furthermore, it is 
almost impossible for humans to visualize spaces of higher 
than three dimensions (e.g., red-green-blue images). A mis-
understanding of high-dimensional spaces and conven-
tional spaces sometimes leads to incorrect interpretations 
of HSIs and the inappropriate choice of the data process-
ing technique. Bearing this in mind, in the next section, we 
provide an overview of a few common HSI challenges and 
their possible solutions.

MAIN CHALLENGES OF HYPERSPECTRAL  
IMAGE ANALYSIS AND POSSIBLE SOLUTIONS
Several factors make the analysis and processing of HSIs 
a challenging task. Figure 2 illustrates the main paths in 
HSI analysis that have been developed primarily to address 
these factors. In this section, we take a closer look at each 
of the applications shown in Figure 2. The common under-
standing of HSIs is that, because such data contain a rich 
amount of spectral information, the whole dimensionality 
needs to be used to define precise boundaries in the feature 
space for a specific application. The increasing spectral res-
olution of HSIs benefits precision applications (e.g., Earth 
observation, precision agriculture, and disease detection). 
However, it challenges conventional signal- processing 
techniques and, thus, hampers the abilities of HSIs in many 
real applications.

Taking classification as an example (because classifica-
tion is one of the most popular applications for HSIs), we 
found in [1] that, when the number of training samples 
remains constant, after a few features, classification accu-
racy actually decreases as the number of features increas-
es. Two solutions have been widely exploited to address 
this problem.
1) Dimension (feature) reduction: As mentioned in several 

studies, such as [2]–[4], a high-dimensional space is al-
most empty, and multivariate data can be represented 
in a lower-dimensional space, where the undesirable ef-
fects of high-dimensional geometric characteristics and 
the curse of dimensionality are reduced. This fact has led 
to a chain of research on dimension (feature) reduction, 
which will be detailed in the “Dimensionality Reduc-
tion” section. 

2) Robust classifiers: The imbalance between the number of 
bands and available training samples has a dramatic in-
fluence on supervised classifiers. In this context, HSIs 
often demand a vast number of training samples to ef-
fectively estimate class parameters. To benefit from the 
rich spectral information of HSIs, one possible solution 

is based on using effective and efficient classification 
approaches that can handle high dimensionality, even 
if a limited number of training samples is available. 
In addition, along with the detailed spectral informa-
tion provided by HSIs, it is possible to take advantage 
of available spatial information (in particular, for very-
high-spatial-resolution HSIs) to further improve the 
eventual classification map. The “Classification” sec-
tion elaborates on advances in HSI classification.
Spectral mixing (including both linear and nonlinear mod-

els) is another bottleneck for HSI analysis that occurs for a num-
ber of reasons, such as insufficient spatial resolution of the sen-
sor and an intimate mixing effect. When mixing takes place, it 
is not possible to directly distinguish the materials available in 
the pixels from the corresponding measured spectral vectors. 
However, detailed spectral in-
formation provided by HSIs can 
be used to unmix hyperspectral 
pixels. The “Spectral Unmixing” 
section focuses on  spectral un-
mixing to address these issues.

Spaceborne imaging spec-
trometers are usually designed 
to acquire HSIs with a moder-
ate spatial resolution—e.g., 
a ground sampling distance 
(GSD) of 30 m—because of 
the inevitable tradeoffs among 
spatial resolution, spectral resolution, temporal resolution, 
and signal-to-noise ratio (SNR). Spatial resolution enhance-
ment of HSIs is a technology essential to expanding the range 
of applications for spaceborne hyperspectral missions. In the 
“Resolution Enhancement” section, we discuss techniques for 
the resolution enhancement of HSIs.

The degradation mechanisms associated with the 
measurement process and atmospheric effects inject un-
desirable noise that substantially downgrades the quality 
of hyperspectral data. The HSI SNR is usually decreased 
during the imaging process, depending on different noise 
sources. In remote-sensing HSIs, highly corrupted bands 
must often be removed before any further processing. Al-
ternatively, HSI restoration can recover those corrupted 
bands and also improve the HSI SNR, thereby improving 
the effectiveness of any further processing of the HSI. In 
this context, the “HSI Denoising and Image Restoration” 
section is dedicated to HSI denoising and image restora-
tion techniques that address such effects.

Another emerging research domain in the hyperspectral 
community, CD is the process of identifying and examining 
spectral–temporal changes in signals. The detailed spectral 
sampling and representation in HSIs result in the potential 
identification of more subtle spectral variations, which are 
usually not easily detected in traditional multispectral imag-
es. Accordingly, land cover dynamic monitoring can be en-
hanced to a finer level. To this end, advanced CD techniques 
must be designed to address CD issues in multitemporal 
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HSIs and, at the same time, overcome the challenges caused 
by the hyperspectral data set. We elaborate on different CD 
methods in the “Change Detection” section. 

Another crucial aspect of HSI analysis to be precisely 
taken into account is that hyperspectral remote sensors 
are now in the era of massive automatic data collection 
resulting from the improved spatial, spectral, and tempo-
ral resolutions provided by several hyperspectral instru-
ments. As a result, fast computing (detailed in the “Fast 
Computing” section) is critical to accelerating the efficient 
exploitation and analysis of HSIs.

MISSIONS AND STATISTICS
Several hyperspectral imaging instruments are currently 
available for the purpose of remote-sensing image and 
signal analysis, providing a large volume of images for 
various thematic applications. Airborne hyperspectral 
imaging sensors [e.g., the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS), Hyperspectral Digital Imag-
ery Collection Experiment, Compact Airborne Spectro-
graphic Imager (CASI), Airborne Prism Experiment, and 
HySpex] play a central role in acquiring data sources for 
the hyperspectral scientific community. The European 
Facility for Airborne Research (http://www.eufar.net) has 
established standards and protocols in the field of air-
borne hyperspectral remote sensing, allowing transna-
tional access to national infrastructures. In recent years, 
unmanned-aerial-vehicle-based real-time hyperspectral 
imaging has become increasingly common in various ap-
plications, such as agricultural monitoring, while raising 
new challenges in image processing.

Table 1 presents the principal parameters of seven space-
borne imaging spectroscopy missions planned for the near 
future: the China commercial remote-sensing satellite sys-
tem, DLR Earth sensing imaging spectrometer (DESIS) [5], 
environmental mapping and analysis program [6], hyper-
spectral imager suite (HISUI) [7], precursore iperspettrale 
della missione applicativa (PRISMA) [8], spaceborne hy-
perspectral applicative land and ocean mission (Shalom) 
[9], and hyperspectral infrared imager [10]. Many of those 
satellites are designed to have a GSD of 30 m, aiming at 

global coverage. Shalom’s GSDs of 8 m and 10 m in the 
visible near-infrared (VNIR) and SWIR ranges, respectively, 
are driven by both operational and commercial needs. DE-
SIS and HISUI will be mounted on the International Space 
Station. The launch of these satellites will further accelerate 
research on HSI processing and its applications.

Figure 3 shows statistics on articles related to HSIs and 
signal processing published in IEEE journals during 2009–
2012 and 2013–2016. All articles were searched via IEEE 
Xplore using hyperspectral as 
the main keyword and then 
categorized into broad topics 
by analyzing keywords in the 
titles. The size of each pie in 
Figure 3 is proportional to the 
number of articles.

The totals returned by this 
search are an indicator of the 
hyperspectral community’s 
recent growth. Seven topics 
under investigation represented 61.5% of all of the articles 
published in 2013–2016. Classification was the most active-
ly addressed topic in both periods, while spectral unmixing 
was the second most common. Classification- and unmix-
ing-related studies accounted for 41.6% of the total. These 
top two topics were followed by DR and image restoration. 
Image restoration showed a high growth rate, indicating 
that the improvement in the quality of HSIs is significant 
in subsequent processing. Resolution enhancement received 
particular attention during 2013–2016, as demonstrated by 
the highest growth rate. Although the number of articles re-
lated to CD increased steadily, the overall number was still 
small, probably due to limited data sets.

CONTRIBUTION
This article introduces a detailed and organized overview of 
HSIs and signal processing, categorized into the seven differ-
ent themes previously mentioned. In each section, we pro-
vide some numerical results, illustrations, a critical overview 
of the state of the art, current challenges, and possible future 
works. It is worth noting that the methodologies described 

TABLE 1. THE PARAMETERS OF SEVEN SPACEBORNE IMAGING SPECTROSCOPY MISSIONS.

PARAMETER CCRSS DESIS EnMAP HISUI PRISMA Shalom HyspIRI 

Altitude (km) 30 400 653 400 615 600 626 

GSD (m) 30 30 30 30 30 10 30 

Bandwidth (nm) 5–20 3.3 5.25–12.5 10–12.5 #12 10 #10

Spectral coverage ( μm) 0.4–2.5 0.4–1.0 0.42–2.45 0.44–2.5 0.4–2.5 0.4–2.5 0.38–2.5 

Number of bands 328 180 228 185 237 241 210 

Swath width (km) 30 30.7 30 20 30–60 10 45 

Other sensor Pan — — — Pan Pan TIR 

TIR: thermal infrared; CCRSS: China commercial remote-sensing satellite system; EnMAP: environmental mapping and analysis program; HyspIRI:  hyperspectral infrared imager.

UNMANNED-AERIAL-

VEHICLE-BASED REAL-TIME 

HYPERSPECTRAL IMAGING 

HAS BECOME INCREASINGLY 

COMMON IN VARIOUS 

APPLICATIONS.
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or mentioned are rooted mainly in the signal and image pro-
cessing, statistical inference, and machine-learning fields, 
with a particular emphasis on methodologies developed 
since 2013, after the publication of a previous survey article 
on hyperspectral remote-sensing image analysis [11].

DATA SETS
Throughout this article, three benchmark hyperspectral 
data sets are referenced: Reflective Optics System Imaging 

Spectrometer (ROSIS)-03 Pavia University, CASI Houston 
University, and Hyperion Umatilla County.

PAVIA UNIVERSITY
This data set was captured over the University of Pavia, 
Italy, by the ROSIS-03 airborne instrument. The flight 
over the city of Pavia, Italy, was operated by the Deutsches 
Zentrum für Luft- und Raumfahrt (the German Aerospace 
Agency) within the context of the HySens project, managed 
and sponsored by the European Union. The ROSIS-03 sen-
sor has 115 data channels with a spectral coverage ranging 
from 0.43 to 0.86 μm. Twelve channels have been removed 
because of the existence of noise, and the remaining 103 
spectral channels processed. The data have been corrected 
atmospherically, but not geometrically. The spatial resolu-
tion is 1.3 m per pixel. The data set covers the Engineering 
School at the University of Pavia and consists of different 
classes, including trees, asphalt, bitumen, gravel, metal 
sheet, shadow, bricks, meadow, and soil. The subset data set 
investigated in this review article comprises 640 # 340 pixels. 
Figure 4 presents a false color image of ROSIS-03 Pavia 
University data and the corresponding training and test 
samples that have already been separated.

UNIVERSITY OF HOUSTON
This data set was captured by the CASI imager over the Univer-
sity of Houston campus and the neighboring urban area in June 
2012. The size of the data is 349 # 1,905 pixels, with a spatial 
resolution of 2.5 m. This data set is composed of 144 spectral 
bands ranging from 0.38 to 1.05 μm. These data consist of  
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FIGURE 4. ROSIS-03 Pavia University: (a) a false color composite,  
(b) training samples, and (c) test samples. 
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FIGURE 3. Some statistics on articles related to HSIs and signal processing published in IEEE journals during (a) 2009–2012 and  
(b) 2013–2016. The size of each pie chart is proportional to the number of articles.
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15 classes, including grass healthy, grass stressed, grass synthetic, 
tree, soil, water, residential, commercial, road, highway, railway, 
parking lot 1, parking lot 2, tennis court, and running track. 
Parking lot 1 includes parking garages at the ground level and 
also in elevated areas, while parking lot 2 corresponds to parked 
vehicles. Figure 5 shows a three-band false color image and its 
corresponding already-separated training and test samples.

UMATILLA COUNTY
A pair of real bitemporal Hyperion HSIs acquired on 1 May 
2004 X1^ h and 8 May 2007 X2^ h were used to test several 
selected state-of-the-art CD approaches. This scene covers 
irrigated agricultural land in Umatilla County, Oregon. The 
images under consideration have a size of 180 # 225 pixels. 
The original Hyperion images contain 242 spectral bands, 
ranging from 0.35 to 2.58 μm, i.e., VNIR, and SWIR, with 
a spectral resolution of 0.01 μm and a spatial resolution of 
30 m. Preprocessing operations, such as the removal of the 
uncalibrated and noisiest bands, bad stripes repair, atmo-
spheric correction, and coregistration, have been carried 
out. Finally, 159 preprocessed bands (i.e., 8–57, 82–119, 
131–164, 182–184, and 187–220) out of the original 242 
bands were used in the CD experiment. Changes occurring 
in this scenario include the land cover class transitions be-
tween crops, bare soil, subtle variations in soil moisture, 
and water content of vegetation. More detailed descriptions 
of this data set can be found in [12]. Figure 6(a) and (b) 
shows the false color composite of X1  and ,X2  respectively. 
The false color composite of three spectral change vector 
(SCV) channels is shown in Figure 6(c); possible different 
changed pixels are illustrated in different colors, whereas 
the unchanged pixels are in gray. The multiclass change 
reference map is created based on careful image inter-
pretation, as shown in Figure 6(d). Note that the possible 
subtle subpixel-level changes (e.g., the one associated with 
the road surrounding the irrigated agricultural land [12]) 
are not considered in this article, so that the quantitative 

comparison with other pixel-level-based approaches could 
be conducted fairly. Thus, six pixel-level changes were con-
sidered, as shown in Figure 6(d).

DIMENSIONALITY REDUCTION
The increasing spectral resolution of hyperspectral data 
benefits precision pattern recognition, but it challenges 
both the memory capacity of ordinary personal computers 
and conventional signal-processing techniques. For an HSI 
with a spatial dimension of 600 # 400 pixels at 16 b-per-
band-per-pixel, the data volume becomes 240 MB for 500 
spectral bands. The data volume can be linearly increased 

(a)

(b)

(c)

Thematic Classes:

Healthy Grass Stressed Grass Synthetic Grass
Tree Soil Water
Residential Commercial Road
Highway Railway Parking Lot 1
Parking Lot 2 Tennis Court Running Track

FIGURE 5. CASI Houston: (a) a false color composite (red: band 70, 
green: band 50, blue: band 20), (b) training samples, and (c) test samples. 

ωC1

ωC2

ωC3

ωC4

ωC5

ωC6

ωn

(a) (b) (c) (d)

FIGURE 6. Umatilla County: (a) a false color composite (red: 650.67 nm, green: 548.92 nm, blue: 447.17 nm) of the bitemporal EO-1 Hy-
perion images acquired over an irrigated agricultural area in Umatilla County, Oregon, in 2004 (X1) and (b) in 2007 (X2); (c) a composite of 
three SCV channels (red: 823.65 nm, green: 721.90 nm, blue: 620.15 nm); and (d) a multiclass change reference map, in which six changes 
are in different colors, whereas the unchanged pixels are in gray.
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when time-series hyperspectral data are acquired to moni-
tor environmental changes. The complexities of storing and 
processing the data will easily exceed the memory capacity 
of ordinary personal computers. Moreover, as previously 
discussed, when the ratio between the spectral bands and 
the number of training samples is high, high-dimensional 
hyperspectral data suffer from the well-known issue of the 
curse of dimensionality. 

DR, with the goal of identifying and eliminating statistical 
redundancies of hyperspectral data while keeping as much 

spectral information as pos-
sible, is widely used in hyper-
spectral data processing. Rela-
tively few bands can represent 
most of the information in 
HSIs [13], making DR very use-
ful for storage, transmission, 
classification, spectral unmix-
ing, target detection [14], and 
visualization of remote-sens-
ing data [13], [15]. Recent work 
demonstrates the benefits of 
using DR when extracting rel-

evant information from HSIs for CD [16], forest management 
[17], and urban planning [18]. The applications of DR are of 
interest well beyond hyperspectral data, i.e., for various ap-
plications in signal processing and computer vision [19], and 
wherever interpretation and analysis of high-dimensional 
data are of interest.

Hyperspectral DR consists of both feature selection 
and feature extraction [13]. Feature selection tries to select 
a minimal subset of D features { , , , }S S S SD1 2 f=  from the 
original feature set { , , , }F F F Fd1 2 f=  based on an adopted 
selection criterion, where D d#  and ,S F3  while aiming 
to achieve improved performances for a specific applica-
tion (e.g., classification, target detection, and so forth). 
The objective of feature extraction is to find a transfor-
mation function :f R Rd D

"  that can transform the high-
dimensional data point x{ }Ri

d
i
N

1! =  to z x( ),fi i=  where 
z{ }Ri

D
i
N

1! =  and ,D d#  such that most information of 
the high-dimensional data is kept in a much lower-di-
mensional subspace. The term f can be a linear or non-
linear transformation. Unlike feature selection, feature 

extraction compresses the high-dimensional original data 
to generate a small number of new features, where each 
band often contributes to determining f, as shown in Fig-
ure 7. DR methods can be categorized into unsupervised, 
supervised, and semisupervised approaches, depending 
on whether the class label information is being used. 

UNSUPERVISED DIMENSIONALITY REDUCTION
Unsupervised DR methods deal with cases where no la-
beled samples are available and aim to find another rep-
resentation of the data in the lower-dimensional space by 
satisfying some given criterion. A variety of unsupervised 
DR methods have been introduced in the literature. The 
objective of these methods is not to optimize the accuracy 
for a given classification task, because they do not consider 
class-specific information provided by labeled samples. 
For example, principal component analysis (PCA) [20] re-
duces dimensionality by capturing the maximum variance 
in the data. Independent component analysis (ICA) [21] 
finds the project matrix by maximizing the statistical in-
dependence. Minimum noise-fraction (MNF) transforma-
tion [22] obtains the reduced features according to the im-
age quality measured by the SNR, and local linear feature 
extraction (LLFE) [23]–[25] methods seek a projection di-
rection in which neighborhood relationships are preserved 
in the feature spaces. The nonlinear versions of these meth-
ods, such as kernel methods (e.g., kernel PCA, kernel ICA, 
and kernel MNF [26]) and local methods (e.g., locally lin-
ear embedding [27], Laplacian eigenmap, and local tan-
gent space alignment [19]) have been widely used to detect 
higher-order statistical redundancies. In the same manner, 
conventional unsupervised feature selection methods for 
DR select a subset of features from the original data accord-
ing to a specific criterion, such as linear prediction error 
[28], entropy [29], or mutual information (by minimizing 
 dependency) [30].

Recently, fusion-based methods and manifold-learning 
methods have been widely explored for HSI unsupervised 
DR. Graph-based fusion methods couple data fusion and 
DR in a unified framework for classification [31], [32]. 
Borhani and Ghassemian presented a kernel-based method 
to incorporate spectral and spatial information simultane-
ously for DR and classification of hyperspectral data [33], 
while Zhang et al. represented multiple features in a low-
dimensional feature space where the complementary infor-
mation of each feature was exploited by comanifold learn-
ing and cograph regularization [34]. In the approaches of 
[35], manifold learning was exploited for feature extraction 
and salient band selection of HSIs. In [36], orthogonal to-
tal variation component analysis (OTVCA) was proposed, 
where a nonconvex cost function was optimized to find the 
best representation for HSIs in a low-dimensional feature 
space while controlling the spatial smoothness of the fea-
tures by using a total variation (TV) regularization. The TV 
penalty promotes piecewise smoothness (homogeneous 
spatial regions) on the extracted features and thus helps 

(a) (b)

FIGURE 7. Hyperspectral DR: (a) feature selection and (b) feature 
extraction. 
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to extract spatial (local neighborhood) information that is 
very useful for classification. It was shown that OTVCA is 
highly robust to noise, because it exploits a penalized least-
squares minimization framework.

SUPERVISED DIMENSIONALITY REDUCTION
Supervised methods rely on the existence of labeled sam-
ples to infer class separability. Several widely used super-
vised DR methods for HSIs are linear discriminant analy-
sis (LDA) [37], nonparametric weighted feature extraction 
(NWFE) [38], band selection based on Jeffries–Matsushita 
(J–M) distance [39], and mutual information [40]. Many 
extensions of these methods have been proposed in past 
decades, including modified Fisher’s LDA [41], regularized 
LDA [42], modified NWFE using spatial and spectral infor-
mation [43], kernel NWFE [44], extended J–M to multiclass 
cases [40], J–M distance for spatially invariant features [45], 
minimal-redundancy/maximal-relevance based on mutual 
information [46], and normalized mutual information [47].

Recent supervised DR methods for hyperspectral data 
exploit the local neighborhood properties of data. Li et al. 
[48] employed local Fisher’s LDA [49] to reduce the dimen-
sionality of the data while preserving the corresponding 
multimodal structure. In [50], local neighborhood infor-
mation was exploited in both the spectral and spatial do-
mains to find a discriminative projection for DR of hyper-
spectral data. Cao et al. [51] proposed a supervised band 
selection, by introducing the local spatial smoothness of 
the HSI into the wrapper method. Dong et al. [52] presented 
an ensemble-discriminative local-metric-learning method 
for DR, where local spatial information was incorporated 
into distance metric learning to learn a subspace, keeping 
the samples from the same class closer while pushing those 
from different classes farther away. 

Sparse graph embedding (SGE) explores the sparsity 
structure of the data for hyperspectral DR. Ly et al. [53] 
proposed block sparse-graph-based discriminant analysis, 
which learns a block sparse graph for a supervised DR. Xue 
et al. [54] proposed a spatially and spectrally regularized lo-
cal discriminant embedding method for DR, where spatial 
information was integrated into the sparse graph learning 
process. In [55], a discriminative sparse multimodal learn-
ing was developed for multiple-feature selection. However, 
the sparse coding used in SGE is helpful for learning under 
conditions where the coding is local [56], which means lo-
cality is more important than sparsity. Unfortunately, the 
converse is not true: sparsity does not always guarantee lo-
cality [56]. He et al. [57] proposed a weighted sparse graph to 
overcome the drawback of sparse coding in SGE, where both 
the locality and sparsity of the training pixels are integrated.

Other trends in supervised DR methods exploit various 
algorithms and learning techniques from soft computing, 
artificial intelligence, and machine learning. Genetic algo-
rithms (GAs) [58], particle swarm optimization (PSO) [59], 
and the combination of GAs and PSO are used to optimize 
feature selection [60], [61]. Deep learning techniques, e.g., 

stacked autoencoders [62] and convolutional neural net-
works (CNNs) [63], are used for spectral-spatial feature ex-
traction for HSI classification [64], [65].

SEMISUPERVISED DIMENSIONALITY REDUCTION
In real-world applications, labeled data are usually very lim-
ited, and labeling a large amount of data may sometimes 
require considerable human resources or expertise. On the 
other hand, unlabeled data are available in large quantities at 
very low cost. For this reason, semisupervised methods [66]–
[68], which aim at improved 
classification by utilizing both 
unlabeled and limited labeled 
data, have gained popularity 
in the machine-learning com-
munity. Some of the represen-
tative semisupervised learning 
methods include cotraining 
[66], transductive support vec-
tor machines (SVMs) [67], and 
graph-based semisupervised 
learning methods [68]. 

Some semisupervised fea-
ture extraction methods add a regularization term to pre-
serve certain potential properties of the data. For example, 
semisupervised discriminant analysis (SDA) [69] adds a 
regularizer into the objective function of LDA. The resulting 
method makes use of a limited number of labeled samples 
to maximize class discrimination and employs both labeled 
and unlabeled samples to preserve the local properties of 
the data. The approach of [70] proposed a general semisu-
pervised DR framework based on pairwise constraints and 
employed regularization with sparse representation (SR). A 
semisupervised pairwise band selection method [71] was 
proposed for HSIs, in which an individual band selection 
process was performed only on each pair of classes. Other 
semisupervised feature extraction methods combine su-
pervised methods with unsupervised ones using a tradeoff 
parameter, such as semisupervised local Fisher’s (SELF) dis-
criminant analysis [72].

It may not be easy, however, to specify the optimal pa-
rameter values in these and similar semisupervised tech-
niques, as mentioned in [70] and [72]. Liao et al. [73] pro-
posed a semisupervised local discriminant (SELD) analysis 
to overcome this problem by combining unsupervised meth-
ods (LLFE [23]–[25]) and a supervised method (LDA [37]) in 
a novel framework without any free parameters. They found 
an optimal projection matrix that preserves the local neigh-
borhood information inferred from unlabeled samples, 
while simultaneously maximizing the class discrimination 
of the data inferred from the labeled samples. The approach 
of [74] improved SELD [73] by better modeling the differ-
ences and similarities between samples. Specifically, this 
method built a semisupervised graph where labeled samples 
were connected according to their label information and un-
labeled samples by their nearest-neighborhood information. 
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TO PRESERVE CERTAIN 
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Graph embedding and manifold-based SR were combined 
in a semisupervised framework for hyperspectral DR [75], 
where the sparse coefficients were exploited to construct the 
graph. Semisupervised manifold alignment [76] and semisu-
pervised transfer component analysis [77] were proposed to 
find a transformation matrix to project high-dimensional 
multimodal images into a lower-dimensional feature space, 
where the geometry of each modality could be preserved.

These semisupervised DR methods try to build a similar 
objective function, i.e., maximizing class discrimination 
while at the same time preserving the intrinsic geometric 
structure of the data. The optimal solutions are acquired by 
solving generalized eigenvalue problems in the same man-
ner [78]. These methods can be further expanded to shape a 
manifold learning method by using the kernel trick, similar 
to the approaches in [79].

EXPERIMENTAL RESULTS
Table 2 and Figure 8 show the performances of some DR 
methods on the classification of the Pavia University HSIs. 

We compared the performance when using raw hyperspectral 
data and seven DR methods (including unsupervised, super-
vised, and semisupervised DR methods) with three popular 
classifiers, the parameter settings of which are the same as those 
in [74]. The training samples were randomly selected from the 
training set, with the sample size corresponding to different 
cases: 20, 40, and 80 samples per class, respectively. The results 
were averaged over ten runs on different numbers of extracted 
features from one to 30, and the averaged overall accuracy (OA) 
of the classification was recorded for each method. 

The results confirmed that DR can improve classifica-
tion performance on HSIs. As the size of the training sample 
increased, classification accuracy increased. Semisupervised 
DR methods (especially those in [73] and [74], designed for 
hyperspectral data) outperformed both unsupervised and su-
pervised methods for the one-nearest-neighbor classifier. 
DR methods that exploit spatial smoothness produced better 
results, even for unsupervised methods; e.g., OTVCA [36] 
outperformed the other methods for both random forest 
(RF) and SVM classifiers in terms of classification accuracy. 

TABLE 2. THE DIMENSIONALITY REDUCTION FOR THE CLASSIFICATION OF PAVIA UNIVERSITY DATA, OA%  
(OPTIMAL NUMBER OF REDUCED FEATURES).

NUMBER OF LABELED SAMPLES

DR METHODS CLASSIFIER 20 40 80 

Unsupervised Raw 1NN 63.14 68.36 69.88

SVM 67.29 70.15 71.51 

RF 68.72 71.06 73.39

PCA 1NN 67.38 (11) 69.46 (12) 70.23 (11)

SVM 70.21 (8) 74.77 (8) 76.81 (9) 

RF 73.46 (11) 73.88 (11) 76.13 (11)

LPP [24] 1NN 66.97 (18) 69.43 (18) 70.17 (12)

SVM 71.80 (9) 77.14 (12) 77.95 (18)

RF 72.46 (18) 74.20 (19) 75.82 (19)

OTVCA [36] 1NN 71.93 (19) 75.81 (20) 80.39 (23)

SVM 92.74 (19) 96.32 (21) 97.52 (18)

RF 96.24 (23) 97.75 (21) 98.79 (22)

Supervised NWFE [38] 1NN 71.34 (9) 73.34 (9) 74.42 (12)

SVM 72.29 (8) 76.62 (8) 77.18 (9) 

RF 75.84 (9) 77.03 (11) 78.74 (8) 

Semisupervised SDA [69] 1NN 52.67 (7) 62.64 (8) 70.76 (8) 

SVM 51.62 (8) 63.64 (9) 70.96 (10)

RF 55.72 (9) 66.97 (9) 71.34 (9) 

SELF [72] 1NN 61.42 (18) 68.75 (18) 69.56 (16)

SVM 63.93 (19) 75.85 (19) 82.74 (18)

RF 67.98 (18) 75.97 (12) 80.56 (12)

SELD [73] 1NN 77.27 (17) 79.03 (10) 81.95 (11)

SVM 75.71 (11) 76.20 (10) 82.03 (11)

RF 75.53 (8) 77.50 (9) 82.26 (9) 

SEGL [74] 1NN 79.40 (9) 81.22 (9) 83.57 (10)

SVM 77.57 (8) 78.16 (8) 82.26 (8) 

RF 76.67 (8) 79.14 (8) 83.51 (9) 

LPP: locality preserving projections; SEGL: semisupervised graph learning; 1NN: one nearest neighbor. 
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We can also see from Figure 8 that, as the number of features 
increases, the classification performance does not always in-
crease—in fact, some decrease. To achieve optimal clas-
sification performance, the number of reduced features 
needs to be optimized.

CHALLENGES FOR DIMENSIONALITY REDUCTION
Recent advances in sensor technologies and processing tech-
niques strongly support the use of hyperspectral data. More-
over, global Earth observation missions (e.g., AVIRIS from 
NASA, the PROBA series from the European Space Agency, 
and the Gaofen series from China) make such data in-
creasingly accessible. Furthermore, at lower altitudes, air-
planes and unmanned aerial vehicles can deliver extremely 
high-resolution hyperspectral data from targeted locations. 
In addition, image processing techniques allow us to extract 
multiple-level features from these big hyperspectral data.

Two main challenges remain in hyperspectral DR: 1) 
mining complementary features (while reducing the di-
mension and redundancy) from multiple levels of big hy-
perspectral data and 2) coupling DR and applications in a 
unified framework, ensuring that optimal features for ap-
plications are obtained. Most state-of-the-art research has 
separated DR and applications into two different steps. 
For example, morphological operators were employed 
in [80] to extract low-level features (such as the size and 
shape of objects) from remote-sensing images. In [81] and 
[82], middle-level attribute features were extracted from 
HSIs for land cover mapping. High-level features, such 
as object-based [83] and so-called deep learning features 
[84], have been used for CD and classification. 

State-of-the-art DR methods typically deal with either 
lower-level or higher-level features, but not with a combi-
nation of both. The features extracted at each level have 
their own characteristics: high-level  features are usually 
more powerful but less robust, while low-level ones are 
less informative but more robust. 
On the other hand, classification 
is taken as one of the most popular 
applications to validate DR perfor-
mances. Hyperspectral classification 
typically consists of two steps: 1) DR 
(via either feature extraction or fea-
ture selection) and 2) a training pro-
cedure for designing the classifier. 
However, it is difficult to ensure that 
the best features from the first step 
will optimize the classification per-
formance of the  following one.

CLASSIFICATION
HSI classification is a fast-growing 
and highly active field of research 
in the hyperspectral community. A 
classification algorithm is used to 
distinguish between different land 

covers by assigning unknown pixel vectors to one of the 
classes (or clusters). The individual classes are commonly 
differentiated based on the similarity to a certain class or 
by defining decision boundaries constructed in the feature 
space. The initial set of features for classification usually en-
compasses spectral channels [4].

With reference to Figure 1, two types of classification 
approaches can be broadly defined: spectral classifiers 
and spectral-spatial classifiers [4], where the former con-
sider the HSIs to be a list of spectral measurements with 
no spatial organization, while the latter classify the input 
data by taking into account the spatial dependencies of 
adjacent pixels.  

SPECTRAL CLASSIFIERS
Based on the availability of training samples (also referred 
to as learning with a teacher) for the training stage, classi-
fication approaches can be grouped into three categories: 
supervised, unsupervised (also known as clustering), and 
semisupervised approaches.

Supervised approaches classify input data using train-
ing samples. These samples are usually collected in one of 
two ways: 1) by manually labeling a small number of pix-
els in an image or 2) based on some field measurements. 
In contrast, unsupervised classification does not consider 
training samples. The supervised approach classifies input 
data based only on an arbitrary number of initial cluster 
centers that may be either user-specified or selected quite 
arbitrarily. During processing, each pixel is associated with 
one of the cluster centers, usually in an iterative way, based 
on a similarity criterion [85], [86]. In semisupervised ap-
proaches [87], the training stage is based not only on la-
beled training samples but also on unlabeled samples.

Because the consideration of training samples leads 
to higher classification accuracies than in situations 
where there is no class-specific information, supervised 

100

90

80

70

60

50

40

30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

O
A

 (
%

)

Number of Features

Raw PCA LPP NWFE
SELF SELD SEGL OTVCA

SDA

FIGURE 8. The classification performance on the Pavia University data as the number of 
features increases. Forty labeled training samples per class were randomly selected from the 
training set with an SVM classifier. 
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approaches have gained more attention in the hyperspec-
tral community than unsupervised ones. However, the 
curse of dimensionality is a bottleneck for supervised clas-
sification techniques. In theory, a large number of training 
samples is required to define precise class boundaries in the 
feature space. This problem intensifies when the number 
of bands (features) increases. However, in practice, there 
are not enough training samples to train supervised classi-

fiers, because collecting such 
samples is time consuming 
and/or costly. Therefore, clas-
sification approaches devel-
oped for HSIs need to be able 
to handle high-dimensional 
data with only a limited num-
ber of training samples. 

The most widely used su-
pervised spectral classifiers 
have been studied precisely and 
compared in [88]. Table 3 dem-
onstrates classification accura-

cies—i.e., OA, average accuracy (AA), and kappa coefficient—
obtained on the University of Houston data set by a number of 
widely used supervised spectral classifiers in the hyperspectral 
community, including SVM [89], RF [90], rotation forest (RoF) 
[91], canonical correlation forest (CCF) [92], [93], back-propa-
gation (BP) neural network [94], extreme learning machines 
(ELMs) [95], kernel ELMs (KELMs) [96], one-dimensional (1-
D) deep CNNs [84], and multiple linear regression (MLR) [97]. 
For the algorithm setup, see [88] and [93].

Currently, a major contribution in the hyperspectral 
community is based on the use of deep learning for HSI 
classification. HSIs are highly influenced by various atmo-
spheric scattering conditions, complicated light-scattering 
mechanisms, interclass similarity, and intraclass variabil-
ity, which make the hyperspectral imaging procedure in-
herently nonlinear [65]. Compared to the so-called shal-
low models, deep learning approaches are expected to 
potentially extract high-level, hierarchical, and abstract 
features that are, by nature, more robust when handling 
the nonlinearities of the input hyperspectral data. Al-
though the use of deep learning in the hyperspectral com-
munity is in its early days, some contributions in the com-
munity have focused on the use of deep learning for HSI 
classification. A stacked autoencoder and an autoencoder 
with sparse constraint were proposed for HSI classification 

[98], [99], where hierarchical features were extracted from 
the input data. 

Another deep model, the deep belief network, was pro-
posed for the classification of hyperspectral data through 
the learning of spectral-based features [100]. The critical 
comparison conducted in [88], specifically on supervised 
spectral classifiers, offered tantalizing hints about the logi-
cal selection of an appropriate classifier based on the ap-
plication at hand. One of the main conclusions was that 
there is no classifier that can consistently provide the best 
performance in terms of classification accuracy when differ-
ent data sets or different sets of training and test samples are 
considered. Instead, in addition to the resulting classifica-
tion accuracies, the consideration of an appropriate classi-
fier should be based on the complexity of the analysis sce-
nario (e.g., the availability of training samples, processing 
requirements, tuning parameters, algorithm speed, and so 
forth) and on the considered application domain.

SPECTRAL-SPATIAL CLASSIFIERS
Neighboring pixels in HSIs are highly related or correlated 
because remote sensors acquire a significant amount of 
energy from adjacent pixels and homogeneous structures 
in the image scene are generally larger than the size of a 
pixel. This is especially evident for images of high spatial 
resolution. Spatial and contextual data can provide useful 
information about the shape of different structures. In ad-
dition, such information reduces the labeling uncertainty 
that exists when only spectral information is taken into 
account and helps to address the salt-and-pepper appear-
ance of the resulting classification map. In general, spec-
tral-spatial classification techniques are composed of three 
main stages:
1) extracting spectral information (i.e., based on spectral 

classifiers discussed in the “Spectral Classifiers” section)
2) extracting spatial information (to be discussed later in 

this section)
3) combining the spectral information extracted during 

the first stage and the spatial information extracted dur-
ing the second.
To extract spatial information, two common strategies 

are available: the crisp neighborhood system and the adap-
tive neighborhood system. While the former considers spa-
tial and contextual information in a predefined neighbor-
hood system, the latter is more flexible and not confined 
to a given neighborhood system. In the following two 

TABLE 3. SUPERVISED SPECTRAL CLASSIFIERS: CLASSIFICATION ACCURACIES OBTAINED FROM  
THE UNIVERSITY OF HOUSTON DATA.

CLASS SVM RF ROF CCF BP ELM KELM 1-D CNN MLR

OA 80.1 72.9 79.1 83.3 80.9 79.5 80.6 78.2 80.6

AA 83.0 76.9 82.0 85.7 83.1 82.4 82.9 81.2 83.0 

Kappa 0.786 0.709 0.775 0.820 0.793 0.778 0.790 0.784 0.790
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 sections, each neighborhood system is briefly explained.  
It should be noted that these methods have been elaborated 
in detail in [4]. Table 4 demonstrates several classification 
accuracies obtained on the Pavia University data set by 
different spectral-spatial classification approaches we will 
now briefly discuss.

CRISP NEIGHBORHOOD SYSTEMS
Markov random fields (MRFs) are a family of probabilistic 
models that can be described as a two-dimensional (2-D) 
stochastic process over discrete pixel lattices. MRFs have 
been widely used to integrate spatial context into image 
classification problems. In this family of approaches, it is as-
sumed that, for a predefined neighborhood of a given pixel, 
there is a high probability that its closest neighbors belong 
to the same object. In [101], a classification framework was 
introduced by integrating an SVM and MRF. The developed 
contextual generalization of an SVMs was achieved by ana-
lytically relating the Markovian minimum-energy criterion 
to the application of an SVM. In [102], Ghamisi et al. pro-
posed a spectral-spatial classification approach based on a 
generalization of the MRF called hidden MRF (HMRF). In 
that work, spectral and spatial information was  extracted 
using SVM and HMRF, respectively. Finally, the spectral and 
spatial information was combined via majority voting with-
in each object. Xia et al. [103] integrated MRFs with the RoF 
classifier to further improve classification accuracy.

Another way of considering spatial information using 
the crisp neighborhood system is based on 2-D or 3-D deep 
CNNs [84]. CNNs consider local connections to deal with 
spatial dependencies using sharing weights, which can 
significantly reduce the number of network parameters 
(compared to its 1-D fully connected version) and extract 
spatial and contextual information using a predefined crisp 
neighborhood system [84]. In [104], an unsupervised ap-
proach was introduced to learn feature extraction frame-
works from unlabeled hyperspectral imagery. This method 
extracts generalizable features by training on sufficiently 
large quantities of unlabeled data that are distinct from the 
target data set. The trained network is then able to extract 
features from smaller, labeled target data sets and address 
the curse of dimensionality. 

In [65], a self-improving CNN (SICNN)-based approach 
was proposed for classifying hyperspectral data. This 

approach solves the curse of dimensionality and the lack of 
available training samples by iteratively selecting the most 
informative bands suitable for the designed network. Table 4 
demonstrates the classification accuracies obtained by SIC-
NN [65] and 2-D CNN [84] on the Pavia University data set. 
As can be seen, in all cases, the use of crisp-neighborhood-
system-based spectral-spatial classification can improve the 
classification accuracy of spectral classifiers (e.g., RF and 
SVM). However, considering 
a set of crisp neighbors has 
some disadvantages:
1) The crisp neighborhood sys-

tem may not contain enough 
samples, which downgrades 
the effectiveness of the clas-
sifier (particularly when the 
input data set is of high reso-
lution and the neighboring 
pixels are highly correlated).

2) A larger neighborhood system may lead to intractable 
computational problems. Unfortunately, the closest fixed 
neighborhoods do not always accurately reflect informa-
tion about spatial structures. For instance, they provoke 
assimilation of regions containing only a few pixels with 
their larger neighboring structures and do not provide ac-
curate spatial information at the border of regions.

3) In general, the use of a crisp neighborhood system leads 
to acceptable results for big regions in the scene. Oth-
erwise, it can make small structures in the scene disap-
pear, merging them with larger surrounding objects.

4) They may cause oversmoothing on the border of differ-
ent classes. This problem, however, has been addressed 
in [102] using a gradient step.

ADAPTIVE NEIGHBORHOOD SYSTEMS
To address the shortcomings of crisp neighborhood sys-
tems, an adaptive neighborhood system can be consid-
ered. One approach is to take advantage of different seg-
mentation methods. Image segmentation is the process of 
partitioning a digital photo into multiple nonoverlapping 
regions or objects. In image segmentation, a label is as-
signed to each pixel in the image such that pixels with the 
same label share certain visual characteristics [105]. These 
objects provide more information than individual pixels, 

TABLE 4. SUPERVISED SPECTRAL–SPATIAL CLASSIFIERS: CLASSIFICATION ACCURACIES OBTAINED  
FROM THE PAVIA  UNIVERSITY HYPERSPECTRAL DATA.

CLASS RF SVM 2-D CNN SICNN FODPSO MSF EMP EMAP APDAFE DBAPDA RF-EMEP ROF-EMEP GCK MFL

OA 71.3 78.8 78.8 83.4 88.1 91.1 77.7 90.7 97.0 98.0 96.1 96.3 98.0 97.5

AA 82.2 87.0 79.7 83.0 92.0 94.8 82.5 91.4 96.7 98.1 96.6 97.9 97.4 97.1 

Kappa 0.648 0.735 0.734 0.778 0.848 0.880 0.710 0.877 0.960 0.974 0.949 0.952 0.974 0.967

MSF: minimum spanning forest; APDAFE: attribute profiles with discriminant analysis feature extraction; DBAPDA: decision boundary feature extraction and attribute profiles and 
discriminant analysis feature extraction.
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because the interpretation of images based on objects is 
more meaningful than interpretations based on individ-
ual pixels.

For spectral-spatial classification of HSIs using segmen-
tation approaches, there are usually two methods to consid-
er: 1) segmentation and classification maps can be integrat-
ed using majority voting within each object by assigning 
the whole object to the most frequent classification label 
within that particular object [106] (such majority voting is 
described in [107]) and 2) segments can be considered to 
be input vectors for supervised classification [108]. In [109], 
however, a reverse view was employed, where markers for 

spatial regions were automat-
ically obtained from classifi-
cation results and then used 
as seeds for region-growing 
in the segmentation step. The 
classification accuracy of this 
segmentation method with 
an extra step (where the clas-
sification map is refined us-

ing the results of a pixelwise classification and a majority 
voting within the spatially connected regions) is shown in 
Table 4 as the minimum spanning forest.

One common way to segment an image is based on his-
togram thresholding. A commonly used exhaustive search 
for optimal thresholds in terms of between-class distances 
is based on the Otsu criterion [110]. The approach is easy 
to implement, but it has the disadvantage of being compu-
tationally expensive. An exhaustive search for an n-level 
segmentation (i.e., n 1-  optimal thresholds) involves 
evaluations of the fitness of ( )n L n 1 n 1- + -  combina-
tions of thresholds, where L shows the number of intensity 
values. Therefore, this method is not suitable from a com-
putational cost perspective. The task of determining n 1-  
optimal thresholds for n-level image thresholding could 
be formulated as a multidimensional optimization prob-
lem. In [106], a thresholding-based segmentation method 
was proposed, where an evolutionary-based optimization 
technique, called fractional order Darwinian PSO (FODPSO), 
sought to find the best set of thresholds with the highest be-
tween-class distance. The classification accuracy obtained 
by this segmentation method is given in Table 4. This meth-
od is very fast, even for large data sets, because it works on 
the image histogram instead of the image space.

Morphological profiles (MPs) are another set of ap-
proaches based on adaptive neighborhood pixels. MPs 
comprise a number of features constructed by applying a 
set of openings and closings by reconstruction with a struc-
turing element (SE) of increasing size [111]. The result of 
the basic extension of the MP, extended MP (EMP), that is 
applicable to HSIs is shown in Table 4. Although MPs are a 
powerful approach for extracting spatial information, the 
concept suffers from some limitations:

 ◗ The SE shape is fixed, which imposes a constraint on 
model spatial structures within a scene.

 ◗ SEs are unable to characterize information about the 
gray-level characteristics of the regions, such as spectral 
homogeneity, contrast, and so on.
To address these MP shortcomings, [112] introduced a 

morphological attribute profile (AP) that provides a multi-
level characterization of an image by using the sequential 
application of morphological attribute filters. A comprehen-
sive survey on the use of APs for HSI classification can be 
found in [113] and [4]. The classification accuracy obtained 
by the extension of APs on HSIs, known as extended multi-AP 
(EMAP), is given in Table 4. There are two main difficulties of 
using the AP, however: not knowing 1) which attributes lead 
to a better discrimination ability for different classes and 2) 
which threshold values should be considered to initialize 
each AP. To solve these issues, several articles, such as [114]–
[116], have tried to introduce automatic techniques for the 
use of APs. In [116] and [115], automatic spectral-spatial clas-
sification methods were proposed based on the use of EMAP 
and supervised/unsupervised feature extraction approaches. 
The classification accuracy of the APs with discriminant 
analysis feature extraction [116] and decision boundary fea-
ture extraction and APs and discriminant analysis feature 
extraction [115] are shown in Table 4.

MPs and APs produce extremely redundant features. To 
address this issue, a sparse classification using both spec-
tral and spatial information was investigated in [117]. In 
[118], the performance of different feature extraction ap-
proaches, including linear, nonlinear, and manifold 
approaches, was investigated to generate base images for 
constructing EMAPs.

To further improve the conceptual capability of the AP 
and the corresponding classification accuracies, Ghamisi et 
al. proposed extinction profiles (EPs) in 2016 [119] by con-
sidering a set of connected idempotent filters and extinc-
tion filters. In contrast to the AP, the EP preserves the height 
of the extrema [119] and, as a result, shows better capabil-
ity than the AP in terms of simplification for recognition. 
This advantage leads to higher classification accuracy for 
EPs than for APs. In addition, the EPs’ parameters can be 
set automatically, independent of the kind of the attribute 
being used (e.g., area, volume, and so on). In other words, 
EPs solve the main issue of conventional APs, the initializa-
tion of the threshold values [119]. In [120], the concept of 
EPs was generalized to extract spatial and contextual infor-
mation from HSIs, known as extended multi-EP (EMEP). The 
classification accuracy of EMEP using RF (RF-EMEP) and 
RoF (RoF-EMEP) is presented in Table 4.

COMPOSITE KERNELS
The main problem associated with the concept of spectral-
spatial feature extraction approaches is that they usually 
increase the number of features, while the number of train-
ing samples remains the same. This can lead to the curse of 
dimensionality and high executable processing time. This 
problem has partially been addressed by combining different 
kernels for spectral and spatial information (i.e., composite 
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kernels) [121] in the SVM classification process. However, 
classification using composite kernels and SVMs demands 
convex combination of kernels and a time-consuming op-
timization process. Therefore, the approach has been modi-
fied to deal with convex combinations of kernels through 
generalized composite kernels (GCK) [122], the results of 
which are shown in Table 4, and multiple-kernel learning 
[123]. In [124], a classification framework was introduced 
that combines multiple features with the linear and nonlin-
ear class boundaries present in the data without requiring 
any regularization parameters to control the weights of the 
considered features (the results are shown as MFL in Table 4). 

SEMISUPERVISED AND ACTIVE LEARNING
As previously discussed, the number of training samples 
is usually limited because the collection of such samples 
is either expensive or time consuming. In such situations, 
the limited number of training samples available may not 
be representative of the statistical distribution of the data, 
which can downgrade the quality of the classification map 
obtained by supervised classifiers. To partially address this 
issue, active learning, which aims to find the most infor-
mative training set, has gained popularity in the hyper-
spectral community. 

Active learning starts an iterative process with a small and 
suboptimal initial training set and then selects a few addi-
tional samples from a large quantity of unlabeled samples. 
Active learning considers the result of the current model, 
ranking  the unlabeled samples according to a criterion that 
allows selection of the most informative samples to improve 
the model, thus minimizing the number of training samples 
while preserving discrimination capabilities as much as pos-
sible [125]. For a complete survey on the use of active learn-
ing for remote-sensing image analysis, see [126] and [127].

Active learning and semisupervised learning share a 
similar conceptual background as both types of learning 
try to address the issue of limited labeled samples. In this 
manner, both approaches start with a small set of labeled 
samples and a large set of unlabeled data. Active learning 
usually requires a labor-intensive labeling process, while 
semisupervised learning, although avoiding manual label-
ing by assigning pseudolabels to unlabeled data, may intro-
duce incorrect pseudolabels and consequently downgrade 
classification performance [128]. Although active learning 
and semisupervised learning follow different work flows, 
they both aim to make the most of unlabeled data while 
reducing manual labeling efforts [125]. Therefore, it is com-
mon to use both of these strategies to make the most of 
these two paradigms for HSI classification. In [128], active 
learning and semisupervised learning were collaboratively 
integrated to form an approach called collaborative active 
and semisupervised learning that improves pseudolabeling 
accuracy and thus facilitates semisupervised learning. This 
method was based on spectral information. In [125], active 
learning and hierarchical segmentation were combined for 
spectral-spatial classification of HSIs.

SPARSE REPRESENTATION CLASSIFICATION
SR classification (SRC)-based approaches with dictionary-
based generative models [129], [130] have received consid-
erable attention in the hyperspectral community. In this 
context, an input signal is represented by a sparse linear com-
bination of samples (atoms) from a dictionary [129], where 
the training data are generally used as the dictionary. The 
main advantages of such approaches are that SRC avoids the 
heavy training procedure usually conducted by a supervised 
classifier and that the classi-
fication is performed directly 
on the dictionary. Classifica-
tion can be improved by in-
corporating contextual infor-
mation from the neighboring 
pixels into the classifier. This 
can be performed indirectly 
by exploiting the spatial cor-
relation through a structured 
sparsity imposed earlier in the 
optimization process. If an ad-
equate number of training samples is available, discrimina-
tive as well as compact class dictionaries can also be devel-
oped to improve classification performance [131].

CHALLENGES IN CLASSIFICATION
The main challenges for HSI classification are not particu-
larly related to methodology. They are, rather, related to 
the lack of appropriate benchmark data sets and the cor-
responding training and test samples. As can be seen in 
Figure 3, most published contributions in the hyperspec-
tral community are dedicated to HSI classification. The ap-
proaches are often capable of producing very accurate clas-
sification maps on the widely used Indian Pines and Pavia 
data sets, which makes real comparison of the approaches 
almost impossible. In other words, the existing data sets 
have already been saturated in terms of classification ac-
curacies. Therefore, our community is in urgent need of 
more complex data sets to share (e.g., highly nonlinear 
data sets with greater area coverage that are composed of 
many classes). In addition, a standard set of training and 
test samples should be defined for each particular data set, 
to make the proposed approaches fully comparable with 
each other.

SPECTRAL UNMIXING
Spectral unmixing has been an alluring exploitation goal 
since the early days of HSI processing [132]. Mixed pixels 
are common in remotely sensed HSIs because of the imag-
ing spectrometer’s insufficient spatial resolution or due to 
intimate mixing effects. However, the rich spectral resolu-
tion available in hyperspectral data cubes can be used to 
unmix hyperspectral pixels. In fact, mixed pixels can also 
be obtained with high-spatial-resolution data because of 
intimate mixtures. This means that increasing the spatial 
resolution often does not solve the problem. 
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In other words, the mixture problem can be approached 
in a macroscopic fashion, which means that only a few 
macroscopic components and their associated abundances 
should be derived. However, intimate mixtures happen 
at microscopic scales, thus complicating the analysis with 
nonlinear mixing effects [133]. In addition to spectral mix-
ing effects, there are many other interfering factors that can 
significantly affect the analysis of remotely sensed hyper-

spectral data. For instance, 
atmospheric interferers are a 
potential source of errors in 
spectral unmixing. Multiple 
scattering effects can also lead 
to model inaccuracies.

In linear spectral unmix-
ing, the macroscopically pure 
components are assumed to 
be homogeneously distribut-
ed in separate patches within 
the field of view. In nonlin-
ear spectral unmixing, the 

microscopically pure components are intimately mixed. A 
challenge is how to derive the nonlinear function, because 
nonlinear spectral unmixing requires detailed a priori 
knowledge about the materials. Responding to this limita-
tion, a vast majority of techniques have  focused on linear 
spectral unmixing, where the goal is to find a set of mac-
roscopically pure spectral components (called endmembers) 
that can be used to unmix all the other pixels in the data. 
Unmixing thus amounts to finding the fractional coverage 
(abundance) of each endmember in each pixel of the scene, 
which can be approached as a geometrical problem [134]. In 
the following section, we focus on the most relevant parts of 
the linear spectral unmixing chain. We also summarize the 
main efforts in nonlinear spectral unmixing.

ESTIMATION OF THE NUMBER OF ENDMEMBERS
Determining the number of pure spectral endmembers in 
HSIs is a challenging problem. One of the most commonly 
used approaches to this problem is the virtual dimension-
ality (VD) method [135], which follows the pigeon-hole 
principle. If we represent a signal source as a pigeon and 
a spectral band as a hole, we can use a spectral band to ac-
commodate one source. Thus, if a signal source is present in 
our remotely sensed hyperspectral data set, we should be 
able to detect this particular source in the relevant spectral 
band. This can be accomplished by calculating the eigenval-
ues of both the data-correlation and covariance matrices. A 
source is present if their difference is positive. 

Another popular approach is hyperspectral signal iden-
tification with minimum error (HySime) [136]. The idea of 
HySime is to find the first k  eigenvectors that contain the 
most data information, i.e., to find k  such that the mean-
square error (MSE) between the original data and their 
projection onto the eigenvector subspace is minimized. 
Subspace k  is ranked in terms of data variance, but noise 

variance is not unitary in different directions, and the con-
tribution from signals may be smaller than from noise. 
HySime addresses this issue by using subspace projection 
techniques, thus contributing an additional feature with 
regard to VD: the modeling of noise before the estimation. 

The eigenvalue likelihood maximization (ELM) method 
[137], in turn, implements a modification of the VD con-
cept based on the following observations: 1) the eigenval-
ues corresponding to the noise are identical in the covari-
ance and the correlation matrices, and 2) the eigenvalues 
corresponding to the signal (the endmembers) are larger in 
the correlation matrix than in the covariance matrix. The 
ELM takes advantage of this fact and provides a fully au-
tomatic method that does not need an input parameter (as 
does VD) or estimation of the noise (as does HySime). 

Finally, the normal compositional model (NCM) [138] 
addresses the possibility that, in real images, there may not 
be any pure pixels. To address this issue, NCM assumes 
that the HSI pixels are linear combinations of an unknown 
number of random endmembers (the opposite of the de-
terministic approach). This model provides more flexibility 
with respect to the observed pixels and the endmembers, 
which are allowed to be a greater distance from the ob-
served pixels.

ENDMEMBER EXTRACTION
The identification of endmembers is a challenging prob-
lem, for which many different strategies have been pro-
posed [134]. To categorize algorithms, we consider three 
different scenarios. 
1) The data contain at least one pure pixel per endmember, 

i.e., there is at least one spectral vector in each vertex of 
the data simplex (pure pixel assumption). 

2) The data do not contain pure pixels but contain enough 
spectral vectors on each facet. In this case, we may fit a 
minimum volume simplex to the data. 

3) The data are highly mixed, with no spectral vectors near 
the facets. In this case, minimum volume algorithms 
fail, and we need to resort to a statistical framework. We 
also consider algorithms that include spatial informa-
tion in addition to spectral information for this purpose.

PURE PIXEL ASSUMPTION
Pure pixel methods assume a classic spectral unmixing 
chain with three stages: DR, endmember selection, and 
abundance estimation. Here, the endmembers are directly 
derived from the original hyperspectral scene. The pixel 
purity index (PPI) [139] is perhaps the most popular end-
member extraction algorithm because of its availability 
in software packages. PPI has many parameters involved 
and is not an iterative algorithm. Manual intervention is 
required to select a final set of endmembers, which makes 
it unattractive for automatization purposes. 

An alternative is the N-FINDR [140], which assumes the 
presence of pure pixels in the original hyperspectral scene 
and further maximizes the volume that can be formed 
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with pixel vectors in the data cube. Orthogonal subspace 
projection (OSP) [141], in turn, uses the concept of orthog-
onal projections. Vertex component analysis (VCA) [142] 
iteratively projects data on a direction orthogonal to the 
subspace spanned by the endmembers, which have already 
been determined. In this regard, the algorithm is similar 
to OSP; the main difference is that VCA applies a noise 
characterization process to reduce the sensitivity to noise. 
This is accomplished by using singular value decomposi-
tion (SVD) to obtain the projection that best represents the 
data in the maximum-power sense. 

Another important concept in this category is the end-
member bundle, explored by algorithms such as multiple 
endmember spectral mixture analysis (MESMA) [143]. 
Although the shape of an endmember is fairly consistent, 
its amplitude generally varies because of illumination con-
ditions, spectral variability, topographic modulation, and 
other circumstances. MESMA addresses this issue using 
endmember bundles, which incorporate variability by rep-
resenting each endmember by a set or bundle of spectra, 
each of which could reasonably be the reflectance of an in-
stance of the endmember.

MINIMUM VOLUME ALGORITHMS
If the data do not contain any pure signatures, we can fit 
a simplex of minimum volume in cases where we have 
enough spectral vectors on the facets. This idea is the op-
posite of the concept of maximum volume adopted by 
N-FINDR; here, the goal is to find the simplex with the 
minimum volume that encloses the data. From an optimi-
zation point of view, these algorithms are formulated by 
including a data term that minimizes the reconstruction 
error and a volume term that promotes mixing matrices 
of minimum volume. This is the case for the iterative con-
strained endmember (ICE) [144] and minimum volume 
constrained nonnegative matrix factorization approaches 
[145], the main differences of which are related to the way 
they define the data volume term. 

The sparsity-promoting ICE approach [146] is an exten-
sion of the ICE algorithm, which incorporates sparsity-pro-
moting priors aimed at finding the number of endmembers. 
The minimum volume estimation (MVES) algorithm [147] 
integrates concepts of convex analysis and volume mini-
mization to provide a solution similar to that of previously 
mentioned algorithms but using cyclic minimization with 
linear programming. Again, the assumption is that the en-
closing simplex with minimum volume should coincide 
with the true endmember simplex (MVES uses hard positiv-
ity constraints). 

The minimum volume simplex analysis algorithm [148] 
follows a similar strategy but allows violations of the 
positivity constraint. This is because, due to the presence 
of noise or perturbations, spectral vectors may lie outside 
the true simplex, and this may introduce errors in the char-
acterization. The minimum-volume enclosing algorithm 
for endmember identification and abundance estimation  

[149] also exploits this concept, allowing a certain number 
of outliers when estimating the minimum volume that en-
compasses the HSI.

HIGHLY MIXED DATA
When the spectral mixtures are highly mixed, geometrical-
based methods yield poor results because there are not enough 
spectral vectors in the simplex facets. Statistical methods are a 
powerful alternative that usu-
ally comes with a price: higher 
computational complexity than 
with geometrical methods. Be-
cause, in most cases, the num-
ber of substances and their 
reflectances are not known, the 
problem can be approached 
as a blind-source separation 
problem, with some statistical 
unmixing approaches propos-
ing variations on the ICA [150]. However, ICA applicability is 
compromised by the statistical dependence existing among 
abundances. This has been addressed (among other strate-
gies presented in the recent literature) by the dependent com-
ponent analysis algorithm [151]. Bayesian approaches have 
also been used because they can model statistical variability 
and impose priors to constrain solutions to physically mean-
ingful ranges.

INCLUSION OF SPATIAL INFORMATION
Most available algorithms for endmember identifica-
tion do not consider information about spatial-contex-
tual information. In certain scenarios, it is important 
to include the spatial information in the analysis. Auto-
matic morphological endmember extraction [152] uses 
extend ed morphological transformations to integrate 
spatial and spectral information. However, spatial-spectral 
end  member extraction [153] uses a different approach. 
First, it processes the image using a local search window 
and applies SVD to determine a set of eigenvectors that 
describe most of the spectral variance in the window. 
Then, it performs a projection of all of the image data 
onto eigenvectors to determine candidate endmember 
pixels. Finally, it uses spatial constraints to combine and 
average spectrally similar candidate endmember pixels 
(preserving similar but distinct endmembers that occupy 
unique image regions).

To avoid modifying spectral-based algorithms for 
endmember extraction, spatial information can also be 
included as a preprocessing module, such as the spatial 
preprocessing algorithm [154]. A region-based approach 
[155] has also been developed to adaptively include spa-
tial information. Finally, a spatial-spectral preprocessing 
approach [156] has been developed to derive a spatial ho-
mogeneity index that uses Gaussian filtering and is thus 
relatively insensitive to the noise present in the hyper-
spectral data.
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ABUNDANCE ESTIMATION
Once the endmember signatures have been derived, differ-
ent strategies can be used to estimate their fractional abun-
dances [157]. The idea is to find the abundances that mini-
mize the reconstruction error obtained after approximating 
the original hyperspectral scene using a linear mixture mod-
el. However, this is generally an unconstrained solution that 
does not satisfy the abundance nonnegativity constraints 
(ANCs) and the abundance sum-to-one constraints (ASCs). 
Whether or not abundance constraints should be imposed 
depends on the practical application. It has been argued that, 

if the linear mixture model is 
accurate, the two constraints 
should be satisfied automati-
cally. In any event, the ANC is 
more important than the ASC. 
Due to noise and spectral vari-
ability, reinforcing the ASC 
may be prone to introducing 
additional estimation error. 

When endmembers are 
unknown, endmember sig-
natures should be extracted 
or estimated first. Some end-

member extraction algorithms can provide abundance es-
timates simultaneously (e.g., algorithms without the pure 
pixel assumption) [134]. Another group of abundance es-
timation approaches based on blind-source separation, 
which does not require endmember signatures to be known 
a priori, has been developed [134]. Widely used matrix-fac-
torization-based blind-source separation methods include 
ICA and nonnegative matrix factorization (NMF), which 
have been mostly used in the context of unsupervised (soft) 
classification. If the linear assumption does not hold, then 
nonlinear unmixing techniques should be used. In addi-
tion, as mentioned in the previous section, if spectral vari-
ability or endmember variability is being considered, the 
mixture model must be modified accordingly, which is tra-
ditionally accomplished by generating modified/extended 
linear mixture models [158]–[160].

SPARSE UNMIXING
Spectral unmixing algorithms with the pure pixel assump-
tion require the presence of pure pixels in the scene for end-
member extraction. Due to spatial resolution and mixing 
phenomena, this assumption cannot always be guaranteed. 
Spectral unmixing algorithms without the pure pixel as-
sumption generate endmember signatures that often do not 
relate to real physical signatures. A possible solution is to 
use ground spectral libraries to perform spectral unmixing, 
but libraries are very large, and hence the problem becomes 
sparse and difficult to solve. Another problem is the dif-
ference between the ground library and the image data. To 
address these issues, sparse unmixing [161] expresses pixel 
vectors as linear combinations of a few pure spectral signa-
tures obtained from a potentially very large spectral library 

of ground materials. An advantage is that it sidesteps the 
endmember extraction step (including the estimation of the 
number of endmembers). 

To incorporate spatial information into the spectral un-
mixing formulation, a TV regularizer has been developed 
to enforce spatial homogeneity by including this term in 
the original objective function [162]. It produces spatially 
smooth abundance fractions that improve sparse unmixing 
performance, even in very high-noise conditions. Further-
more, because it is generally observed that spectral libraries 
are organized in the form of groups with different variations 
of the same component (e.g., different mineral alterations), 
exploiting the inherent group structure present in spectral 
libraries can improve the results of sparse unmixing by se-
lectively enforcing groups. For this purpose, a group-based 
formulation of sparse unmixing has been introduced [163]. 

A further development has also been recently introduced 
based on the concept of collaborativity, which promotes 
solutions with a minimum number of active endmembers 
(the number of endmembers in a scene is generally low). 
This allows the number of endmembers participating in the 
final solution to be minimized [164], while also partially 
circumventing the need to estimate the number of end-
members in the scene [165].

NONLINEAR UNMIXING
Apart from the linear spectral unmixing algorithms, sev-
eral alternatives dealing with the mixture problem can be 
found in the literature [166]–[168]. The bilinear mixing 
model (BMM) considers secondary illumination sources. 
This model represents a simplification of reality, as it only 
considers bilinear interactions (objects that can be illumi-
nated by light reflected first by another object) [133]. BMMs 
can be generalized to deal with multiple endmembers, by 
trying to model bilinear interactions as new endmembers. 
The generalized bilinear model (GBM) provides more flex-
ible solutions that can avoid some overfitting problems as-
sociated with bilinear models, but it still assumes that there 
are no self-bilinear interactions [133]. 

The BMM and GBM have inspired several posterior 
methodologies: some use polynomial functions to model 
the nonlinearities provided by layer partitions and scatter-
ing properties in multilayered scenarios [169], while others 
use different approaches to solve the proposed model [170]–
[173]. In [174], the authors proposed a modification of the 
BMM in which the transformation of the spectral informa-
tion is based on a two-degree polynomial, thus defining the 
polynomial postnonlinear model (PPNM), a main advan-
tage of which is that it is able to deal with self-interactions; 
the PPNM has been recently extended to deal with all poly-
nomial degrees [175]. In [169], a p-linear polynomial model 
is used to characterize nonlinearities in combination with a 
supervised artificial neural network (ANN) and polytope de-
composition scheme. When the interactions are considered 
to exist at the photon level, nonlinear unmixing methods try 
to model the optical characteristics of the intimate mixture 
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from a theoretical analysis of the reflectance behavior at-
tending the specific geomorphical, chemical, and physical 
properties of the observed data. Several models have been 
proposed in this context, but the Hapke model [176] is still 
the most widely adopted approach. 

In addition, supervised techniques based on the use of 
methods such as kernel-based ones and ANNs have been 
proposed to perform unmixing on a microscopic scale [177]–
[186]. The main advantage of these techniques is that they 
can create a preliminary model of every nonlinear behavior. 
However, the need for reliable ground truth information 
about the training samples represents a major shortcoming.

CHALLENGES IN SPECTRAL UNMIXING
Despite the availability of several consolidated techniques 
for linear spectral unmixing, as well as a suite of incipient 
techniques for nonlinear spectral unmixing, an important 
challenge remains related to the nonlinearity of mixing 
phenomena in HSIs. The inherently nonlinear nature of 
the process and the dependence on the observed objects 
create the need to incorporate detailed information about 
the observed objects to properly model the multiple scat-
tering phenomena occurring in the nonlinear case. The es-
timation of participating endmembers in the mixture also 
remains a challenge, despite the availability of some tech-
niques that can provide reasonable approximations. 

Another important hurdle for the automatic execution 
of sparse unmixing algorithms is the heterogeneity in avail-
able spectral libraries, although important efforts have been 
made toward the development of open-source libraries of 
spectral materials that can alleviate the need to estimate the 
number and the signatures of spectral endmembers in ad-
vance. In this regard, the availability of open libraries such 
as SPECCHIO (http://www.specchio.ch) provides an impor-
tant first step toward the general use of open spectral librar-
ies for spectral unmixing purposes.

RESOLUTION ENHANCEMENT
HSI resolution enhancement has attracted increasing at-
tention in recent years, as shown in the statistical analysis 
of the trend described in the introduction. Resolution en-
hancement techniques for HSIs can be broadly categorized 
into four classes, as shown in Figure 9: 
1) hyperspectral superresolution (multi-image/single-

image)
2) subpixel mapping (or superresolution mapping)
3) hyperspectral pan-sharpening
4) hyperspectral–multispectral (HS–MS) data fusion. 

The first class, hyperspectral superresolution, is an 
extension to HSIs of ordinary superresolution in com-
puter vision. A high-resolution HSI is reconstructed from 
multiple low-resolution HSIs (or a single HSI) acquired 
by a single sensor. The second, subpixel mapping, is a  
resolution enhancement technique processed at a classi-
fication level using a single HSI as input. The remaining 
two classes, hyperspectral pan sharpening and HS–MS 
fusion, are multisensor superresolution techniques, in 
which an HSI is fused with an auxiliary higher-resolu-
tion data source (panchromatic or multispectral images) 
taken over the same area at the same time (or a similar 
period) to create a high-resolution HSI. The following 
sections provide an overview of recent advances in these 
four classes of techniques.

HYPERSPECTRAL SUPERRESOLUTION
A variety of superresolution image reconstruction tech-
niques have been intensively pursued over the past three de-
cades in computer vision. Superresolution techniques can be 
roughly divided into two types [187]: 1) classical multi-image 
superresolution, which obtains a high-resolution image (or 
sequence) from multiple low-resolution images for the same 
scene with different subpixel shifts, and 2) learning-based 
superresolution, which learns  correspondences between 
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FIGURE 9. The four classes of resolution enhancement techniques for HSIs: (a) multi-image hyperspectral superresolution, (b) subpixel 
mapping, (c) hyperspectral pan-sharpening, and (d) HS–MS fusion. 
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low- and high-resolution image patches from an external 
training database.

Multi-image superresolution techniques have been ex-
tended to HSIs. Depending on the type of subpixel shifts in 
the low-resolution image, these techniques can be divided 
into two approaches: the first uses multiple HSIs acquired 
by the same sensor over the same scene, similar to classi-
cal multi-image superresolution; the second takes advan-
tage of band-to-band misregistration (so-called keystone) 
in a single HSI. Akgum et al. first applied the multi-image 

superresolution technique to 
multiple HSIs based solely on 
simulations [188].

In the remote-sensing com-
munity, multi-image hyper-
spectral superresolution has 
been mainly studied using 
multi-angular HSIs obtained by 
the Compact High-Resolution 
Imaging Spectrometer (CHRIS). 
In [189], conventional super-
resolution techniques were ap-
plied to a set of multi-angular 

CHRIS images. Here, Chan et al. developed a new superreso-
lution technique for multi-angular HSIs based on a thin-plate 
spline nonrigid transform model. This approach was intended 
to improve the image registration procedure and demonstrat-
ed its effectiveness with experiments using the CHRIS images 
[190]. The impact of multi-angular superresolution on classi-
fication and unmixing  applications was further investigated in 
[191] and [192].

Qian and Chen developed a technique for the second 
approach that enhances the spatial resolution of HSIs by ex-
ploiting the keystone characteristics [193]. Keystone is band-
to-band misregistration in the cross-track direction caused by 
optical aberrations and misalignments in pushbroom systems. 
Different band images, including different subpixel miregistra-
tions, can be used as input images in the multi-image super-
resolution framework. The advantage of this method is that it 
requires only a single HSI, but the limitation is that the spatial 
resolution can be enhanced only in the cross-track direction.

Zhao et al. proposed SR-based algorithms for learn-
ing-based hyperspectral superresolution [194], [195]. The 
high-resolution version of a given low-resolution patch is 
recovered by solving the sparse linear inverse problem with 
spectral regularization based on spectral unmixing, in 
which the patch dictionary is learned from a set of high-res-
olution panchromatic images or HSIs. Patel et al. developed 
a learning-based superresolution method for HSIs using an 
adaptive wavelet designed from training HSIs [196]. These 
learning-based superresolution techniques do not require 
multiple images over the same scene but instead require an 
external training database with target resolution. For the 
upcoming hyperspectral satellites, it is realistic to use im-
ages obtained by operational multispectral satellites (e.g., 
Sentinel-2) for the training database.

SUBPIXEL MAPPING
Subpixel mapping is a technique for enhancing the spatial 
resolution of spectral images by dividing a mixed pixel into 
subpixels and assigning land cover classes to these subpix-
els [197]. Subpixel mapping techniques have been actively 
studied using multispectral images and extended to HSIs 
by exploiting rich spectral information. Subpixel mapping 
is made up of two steps: 1) estimating fractional abun-
dances of classes (or endmembers) at a coarse resolution by 
soft classification or spectral unmixing and 2) determining 
the subpixel location of each class within a pixel, assum-
ing spatial dependence. Many recent advances in subpixel 
mapping of HSIs aim at improving the accuracy of inverse 
problems involving these two steps.

Tong et al. proposed a method that exploits not only 
attraction but also repulsion between subpixels to better 
retrieve spatial dependence [198]. Zhang et al. integrated 
learning-based superresolution into subpixel mapping, 
requiring an external training set [199]. The estimation of 
unknown spatial details of classes at a high resolution from 
a single low-resolution image is a typical ill-posed inverse 
problem. Different techniques for spatial regularization 
that have been recently studied to mitigate the ill-posed-
ness have assumed spatial prior models, such as Laplacian, 
total variation, bilateral total variation, and nonlocal total 
variation [200], [201].

Obviously, the accuracy of the abundance maps ob-
tained in the first step greatly affects the final performance 
of subpixel mapping. To address this issue, Tong et al. pro-
posed a GA that can correct possible errors in the initial 
estimation of abundances using a mutation operator [202]. 
Xu et al. introduced a method that improves the accuracy of 
spectral unmixing in subpixel mapping by taking endmem-
ber variability into consideration, based on the assumption 
that different representative spectra for each endmember 
are available [201].

HYPERSPECTRAL PAN-SHARPENING
Pan sharpening is a technique that enhances the spatial 
resolution of multispectral imagery by fusing this imagery  
with a higher-resolution panchromatic image. Hyperspec-
tral pan-sharpening is an extension to HSIs of conventional 
pan-sharpening and is also a special case of HS–MS fusion. 
Naturally, there are two main approaches: 1) extensions of 
pan-sharpening methods and 2) subspace-based methods 
(originally developed for HS–MS fusion). 

Hyperspectral pan-sharpening is motivated by space-
borne imaging spectroscopy missions that mount both 
hyperspectral and panchromatic imaging sensors, such 
as EO-1/Hyperion-advanced land imager (ALI) [203],  
PRISMA [8], and Shalom [9]. The main advantage of HSIs 
on multispectral images is the rich spectral information, 
which enables the discrimination and identification of 
spectrally similar materials. In other words, any spectral 
distortions will lead to inaccurate analysis results in the 
subsequent data processing. Therefore, the challenge of 
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hyperspectral pan-sharpening is to enhance the spatial 
resolution of hyperspectral data while minimizing spec-
tral distortion.

Typical pan-sharpening techniques include the compo-
nent substitution (CS) [204]–[206], multiresolution analy-
sis (MRA) [207], [208], and SR [209], [210] algorithms. 
Aiazzi et al. [206] proposed a general CS-based pan-sharp-
ening scheme in which, a multispectral image is sharpened 
through the addition of spatial details obtained when mul-
tiplying the difference between a panchromatic image and 
a synthetic intensity component by a band-wise modula-
tion coefficient. Gram–Schmidt adaptive (GSA) is one of 
the benchmark CS-based pan-sharpening algorithms; here, 
the synthetic intensity component is computed via linear 
regression between a panchromatic image and lower-reso-
lution bands. 

In the MRA-based pan-sharpening scheme, spatial 
details of each multispectral band are obtained by use of 
MRA, which calculates the difference between a panchro-
matic image and its low-pass version multiplied by a gain 
factor. The gain factor can be computed either locally or 
globally. Representative MRA pan-sharpening algorithms 
include the smoothing filtered-based intensity modula-
tion (SFIM) method [207], the additive wavelet luminance 
proportional method [211], and the generalized Laplacian 
pyramid (GLP) method [208]. 

The SR-based pan-sharpening approach can be regard-
ed as a special case of learning-based superresolution, i.e., 
learning correspondences between low- and high-resolu-
tion image patches from a panchromatic image [210] or 
an external database, including multiple high-resolution 
multispectral images [212]. In [213], Alparone et al. dem-
onstrated the fusion of Hyperion and ALI panchromatic 
images using CS- and MRA-based algorithms [213]. 

The subspace-based approach exploits the intrinsic spec-
tral characteristics of the scene via a subspace spanned by 
a set of basis vectors, enhancing the spatial resolution of 
subspace coefficients. Because most subspace-based meth-
ods were developed for HS–MS fusion, we discuss them in 
the next section.

Eleven state-of-the-art algorithms from the CS-, MRA-,  
and subspace-based approaches were applied to hyper-
spectral pan-sharpening and compared in [214]. MRA- and 
subspace-based algorithms demonstrated relatively high-
quality and stable results. However, it was evident that large 
spectral distortion was inevitable for all the algorithms un-
der comparison, implying room for further technology 
development [214].

HYPERSPECTRAL AND MULTISPECTRAL DATA FUSION
HS–MS fusion is a technique that fuses an HSI with a 
higher-resolution multispectral image to create high-
resolution hyperspectral data. Unlike hyperspectral pan-
sharpening, this technique yields higher spectral quality 
owing to spectral information from the high-resolution 
data source. Enormous efforts have made to develop 

algorithms in the last decade. Quite recently, a compara-
tive review of HS–MS fusion was reported in [215]. Most 
of the HS–MS fusion algorithms can be categorized into 
at least one of the following six classes of approaches: 
1) CS, 2) MRA, 3) SR, 4) unmixing, 5) Bayesian, and 6) 
hybrid. The CS, MRA, and SR methods are extensions of 
pan-sharpening techniques, whereas the unmixing and 
Bayesian approaches fall into the same broader category 
of subspace-based techniques.

CS-based methods can be adapted to HS–MS fusion by 
splitting the fusion problem into several pan-sharpening 
subproblems and applying CS-based pan-sharpening to 
these subproblems. A key procedure for the CS-based ap-
proach is to divide the HSI into several groups and assign 
a high-resolution image selected or synthesized from the 
multispectral image to each group. Chen et al. proposed a 
framework that solves the HS–MS fusion problem by divid-
ing the spectrum of hyperspectral data into several regions 
and fusing hyperspectral and multispectral band images in 
each region by conventional pan-sharpening techniques 
[216]. The hypersharpening proposed by Selva et al. is a 
framework that effectively adapts MRA-based pan-sharp-
ening methods to HS–MS fusion by synthesizing a high-
resolution image for each hyperspectral band as a linear 
combination of multispectral band images via linear re-
gression [217]. An SR-based pan-sharpening technique was 
adapted to HS–MS fusion with spectral grouping and joint 
sparse recovery in [218].

Subspace-based methods have been actively developed 
for HS–MS fusion problems. The HS–MS fusion task is for-
mulated as the inverse problem of estimating the subspace 
basis and coefficients of the high-resolution HSI from the 
two input images [219]. The resolution-enhanced HSI can 
be reconstructed as the product of the basis matrix and the 
high-resolution coefficient matrix.

In recent years, a perspective of spectral unmixing has 
been attracting considerable attention in the context of 
subspace-based HS–MS fusion, owing to its straightforward 
interpretation of the fusion process. The basis matrix is de-
fined as a set of spectral signatures of intrinsic materials 
(endmembers), and the subspace coefficients correspond to 
the fractional abundances. Several unmixing-based meth-
ods have been proposed for HS–MS fusion with various op-
timization formulations [220]–[227]. In [215], it was noted 
that the high-resolution abundances estimation step has a 
significant influence on fusion performance. Outstanding 
and stable performance could be achieved by minimizing 
the unmixing reconstruction errors with respect to both the 
hyperspectral and multispectral images rather than only the 
multispectral image, particularly when the overlap of spec-
tral response functions between hyperspectral and multi-
spectral sensors was small. Such algorithms include coupled 
NMF (CNMF) [224], coupled spectral unmixing with a pro-
jected gradient method [228], and HySURE [229].

One important aspect of developing subspace-based 
methods has been determining how to mitigate the 



                                           ieee Geoscience and remote sensinG maGazine    december 201758 

ill-posedness of inverse problems involving the estimation 
of high-resolution subspace coefficients. Regularization on 
subspace coefficients has been extensively explored. Sparsi-
ty-promoting regularization has been commonly adopted 
for subspace-based methods [222], [225], [226], assum-
ing that there is a limited number of endmembers at each 
high-resolution pixel. HySURE solves a convex optimization 
problem with vector-total-variation-based regularization 
of the spatial distribution of subspace coefficients, leading 
to implicit denoising effects in the fusion results [229]. Wei 
et al. developed a Bayesian HS–MS fusion methodology in 
which different types of regularization terms on subspace 
coefficients can be designed flexibly, based on information 
from the prior distribution in the observed scene [230]. A 
Sylvester equation-based explicit solution was further inte-
grated into the Bayesian methodology to speed it up, lead-
ing to fast fusion based on Sylvester equation (FUSE) [231]. 
Veganzones et al. [232] introduced local image processing 
into an unmixing-based approach, where well-posed inverse 
problems are solved for each small patch, assuming that the 
number of endmembers in each patch is smaller than the 
number of multispectral bands.

One interesting finding of the comparative study in 
[215] was that hypersharpening methods and unmixing-
based methods (CNMF and HySURE), which are entirely 
different approaches, showed comparably high numerical 
performances, although the characteristics of the resolu-
tion-enhanced HSIs are different. This finding implies that 
hybrid methods combining different approaches can be ex-
pected to further improve fusion performance.

Table 5 shows the overall quantitative assessment results 
of 12 HS–MS fusion algorithms for eight simulated HS–MS 
data sets used in [215], including those based on the Pavia 
University and University of Houston data sets. The quantita-
tive assessment of fusion performance was carried out based 
on a version of Wald’s protocol presented in [232] and [215].

The reconstruction performances of algorithms has 
posed the greatest concern for researchers; however, their 
general versatility, computational costs, and impacts on 
applications are also important for users. Because each 
method has advantages and disadvantages, it is essential 
to choose a method based on the fusion and analysis sce-
narios. The impact of HS–MS fusion on applications has 
been recently investigated via classification and unmixing 
[233], [215]. Further research on real data is still neces-
sary to verify the practicability of HS–MS fusion for future 
 hyperspectral satellites.

CHALLENGES IN RESOLUTION ENHANCEMENT
The main challenges in the resolution enhancement of HSIs 
relate to practical issues. The development of multisensor 
superresolution algorithms has recently surged; however, 
very few publications in the literature discuss experiments 
on real data. Studies regarding the impact of HSI resolution 
enhancement on applications are still lacking. It is neces-
sary to clarify benefits and address practical issues of reso-
lution-enhancement technology to promote its operational 
application for future  hyperspectral satellite missions. For 
instance, temporal mismatches included in the input im-
ages raise challenges for HSI resolution enhancement. Fur-
thermore, a no-reference image-quality assessment for HSIs 
needs to be developed to provide reliability information 
regarding resolution-enhanced hyperspectral data products 
for end users. 

In multisensor superresolution, the problem remains 
that large spectral distortions are inevitable when the mis-
match between the two imaging sensors is large in either 
the spatial or spectral domain (e.g., a large GSD ratio or hy-
perspectral pan-sharpening). To address this issue, a pos-
sible future direction for performance improvement lies in 
developing algorithms that exploit a spectral library or spa-
tial information of a high-resolution image.

TABLE 5. THE AVERAGE QUALITY MEASURES FOR EIGHT DATA SETS FROM [215].

CATEGORY METHOD PSNR SAM ERGAS Q2n

CS GSA [206] 39.221 2.063 1.885 0.8796 

MRA SFIM-HS [207], [217] 41.074 1.707 1.789 0.8867 

GLP-HS [208], [217] 41.322 1.664 1.733 0.8984 

Unmixing CNMF [224] 42.092 1.607 1.681 0.9060 

ECCV ‘14 [225] 38.101 2.658 4.561 0.8431 

ICCV ‘15 [227] 40.470 1.672 1.902 0.8847 

HySURE [229] 42.336 1.602 1.766 0.9089 

Bayesian MAP-SMM [219] 40.008 1.822 1.997 0.8635 

FUSE [231] 40.568 1.881 1.908 0.8693 

FUSE-S [231] 41.177 1.803 1.804 0.8764 

Ideal 3 0 0 1 

Bold numbers indicate the best performances. HS: hyperspectral; ECCV: European Conference on Computer Vision; ICCV: International Conference on Computer Vision; FUSE-S: 
sparse FUSE.  
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HSI DENOISING AND IMAGE RESTORATION
Image restoration generally refers to the reconstruction of the 
true image based on its corrupted version. The true image is 
unknown and, therefore, is estimated through the observed 
image, which has been degraded by different sources. Deg-
radation sources depend on the imaging technology, sys-
tem, environment, and other factors. When the observed 
signal is degraded by noise sources, the estimation task is 
usually called denoising. Image restoration generally 
refers to a broader set of methods that also include appli-
cations such as deconvolution, deblurring, and inpainting. 
However, in HSI analysis, the term restoration is often used 
to refer to denoising.

In hyperspectral imaging the received radiance at the 
sensor is degraded by different sources, such as atmospheric 
haze and instrumental noise. The atmospheric effects are 
usually compensated for by applying atmospheric correc-
tions. Instrumental (sensor) noise includes thermal (John-
son) noise, quantization noise, and shot (photon) noise. 
Spectral bands are often corrupted to some degree. The 
presence of corrupted bands (also called junk bands) could 
degrade the efficiency of the image analysis technique, and, 
therefore, they are usually removed from the data before any 
further processing. The information lost by removing those 
bands can be substantial; hence, an alternative approach is 
to recover those bands and improve the SNR of the HSI. As a 
result, HSI restoration can be considered an important pre-
processing step in HSI analysis.

An HSI can be modeled by

 X ,H N= +  (1)

where X  is an n d12 #  matrix n n n12 1 2#=^ h containing the 
vectorized observed image at band i in its ith columns, H  
is the true unknown signal to be estimated and is repre-
sented as an n d12 #  matrix containing the unknown vec-
torized image at band i in its ith columns, and N  is an 
n d12 #  matrix containing the vectorized noise at band i 
in its ith columns. Note that all of the previously men-
tioned noises can be assumed to be additive noise. The 
restoration task is to estimate the original (unknown) sig-
nal H. Penalized (regularized) least squares is one of the 
most popular and common minimization frameworks 
used for estimation in HSI restoration. Penalized least 
squares is usually composed of a fidelity term and a pen-
alty term. The penalty term is often chosen based on the 
prior knowledge of the signal and might be a combination 
of penalties. Penalized least squares might also be solved 
subject to some constraints.

NOISE SOURCE ASSUMPTIONS IN  
HYPERSPECTRAL IMAGES
The presence of different noise sources in HSIs makes their 
modeling and restoration highly challenging. Therefore, 
HSI restoration often employs one or a mixture of the fol-
lowing  approaches.

SIGNAL-INDEPENDENT NOISE
Thermal noise and quantization noise in HSIs are modeled 
by signal-independent Gaussian additive noise [234], [235]. 
Usually, noise is assumed to be uncorrelated spectrally, i.e., 
the noise covariance matrix is diagonal [236], [235]. The 
Gaussian assumption has been broadly used in hyperspec-
tral analysis because it considerably simplifies the analysis. 
In addition, noise parameter 
(variance) estimation is sim-
pler under this assumption.

SIGNAL-DEPENDENT NOISE
Shot (photon) noise in HSIs is 
modeled by a Poission distri-
bution because the noise vari-
ance is dependent on the sig-
nal level. The noise parameter 
(variance) estimation is more challenging under this assump-
tion compared to the signal-independent case because it varies 
with respect to the signal level.

SPARSE NOISE
Impulsive noise, missing pixels, missing lines, and other out-
liers often exist in the acquired HSI, usually due to the mal-
functioning of the sensor. In this review, we categorize these 
as sparse noise because of their sparse characteristics. Sparsity 
techniques or sparse and low-rank decomposition techniques 
have been used to remove sparse noise from the signal. In 
[237], impulsive noise was removed using an 1, -norm for both 
penalty and data fidelity terms in the minimization prob-
lem suggested.

STRIPING NOISE
Hyperspectral imaging systems might also induce artifacts in 
HSIs, usually referred to as pattern noise. For instance, in push-
broom imaging systems, the target is scanned line by line, 
and the image line is acquired in different wavelengths by an 
area-array detector (usually a charged coupled device). This 
line-by-line scanning causes an artifact called striping noise, 
which is often due to calibration error and the sensitivity 
variation of the detector [238]. Striping noise reduction (also 
referred to as destriping in the literature) for pushbroom scan-
ning techniques has been widely studied in the remote-sens-
ing literature [239], [240], including work on HSI remote 
sensing [238], [241]–[243].

EVOLUTION OF HYPERSPECTRAL IMAGE 
RESTORATION APPROACHES
HSI restoration has been developed considerably over the 
past few years. Conventional restoration methods based 
on 2-D modeling and convex optimization techniques 
were not effective enough for HSIs because of the lack of 
understanding of spectral information. The highly corre-
lated spectral bands in HSIs have been found very useful 
for HSI restoration. This is the main reason for the success 
in using MLR as an estimation technique [244]. In [244], 
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it is assumed that each band is a linear combination of 
the other bands; therefore, the ith band is estimated us-
ing least squares estimation. Note that this technique has 
been used for noise parameter estimation in several HSI 
restoration approaches [245], [246]. Many restoration ap-
proaches have been suggested in the literature to exploit 
the spectral information, and they can be categorized into 
three main groups.

APPROACHES THAT USE 3-D  
MODELS INSTEAD OF 2-D ONES
In [247], the discrete Fourier transform was used to decor-
relate the signal in the spectral domain, and the 2-D discrete 
wavelet transform (DWT) was investigated to denoise the 
signal in the spatial domain. In [248], the HSI was treated 
as a 3-D data cube, and an HSI restoration technique was 
proposed based on sparse analysis regularization and un-
decimated wavelet transform. The advantages of 3-D wave-
lets (orthogonal and undecimated) over 2-D ones for HSI 
restoration were also discussed in [248] and [236].

APPROACHES THAT PROPOSE NEW PENALTIES  
FOR PENALIZED LEAST SQUARES THAT ALSO  
TAKE INTO ACCOUNT SPECTRAL INFORMATION
An algorithm given in [249] uses the 2-D DWT and a sparse 
restoration criterion based on penalized least squares hav-
ing a group of 2,  penalties on the wavelet coefficients. This 
method was improved on in [250] for HSI restoration by 
taking into account the spectral noise variance in the mini-
mization problem and solving it using the alternating di-
rection method of multipliers. Subsequently, because of 
the redundancy and high correlation in the spectral bands 
in HSIs, penalized least squares using a first-order spectral 
roughness penalty (FOSRP) was proposed for HSI restora-
tion [251]. The new cost function was formulated in the 
wavelet domain to exploit the MRA property of wavelets. 
The Stein unbiased risk estimator (SURE) was used to 
 automatically select the tuning parameters. It was shown 
that FOSRP outperforms sparsity penalties for HSI resto-
ration. This method was improved upon using a combi-
nation of a spectral roughness penalty and a group lasso 
penalty [252]. 

Cubic TV (CTV), proposed in [253], exploits the gradi-
ent in the spectral axis to improve the restoration results 
compared to TV denoising band by band. In [254], an 
adaptive version of CTV was applied for preserving both 
texture and edges simultaneously. In [255], a spatial-spec-
tral HSI denoising approach was developed. The spectral 
derivation was proposed to concentrate the noise in the 
low frequency. Then, noise was removed by applying the 
2-D DWT on the spatial domain and the 1-D DWT on the 
spectral domain. A spatial-spectral prior for maximum a 
posteriori information was proposed in [256]. The prior 
was based on five derivatives, one along the spectral direc-
tion and the rest applied on the spatial domain for four 
neighborhood pixels.

APPROACHES THAT USE LOW-RANK MODELS
Because of the redundancy along the spectral direction, 
low-rank modeling has been widely used in HSI analyses 
and applications such as DR, feature extraction, unmixing, 
and compression. PCA was used for hyperspectral restora-
tion in [257] to spectrally decorrelate the noise and signal. 
A low-rank representation method is a three-mode factor 
analysis called Tucker3 decomposition [258] used for HSI res-
toration [259]. The HSI is assumed to be a third-order tensor, 
and the best lower rank of the decomposition is chosen by 
minimizing a Frobenius norm. A similar idea was exploited 
for HSI restoration by applying more reduction spectrally 
[260]. A GA was developed to choose the rank of the Tuck-
er3 decomposition [261]. This work was followed by [262], 
in which the kernel function (Gaussian radial basis) was 
applied for each spectral band, with the idea of efficiently 
using multilinear algebra. 

Multidimensional Wiener filtering that exploits Tuck-
er3 decomposition was used in [263], where the flatten-
ing of the HSI was achieved by estimating the main direc-
tion that gives the smallest rank. Parallel factor analysis is 
also a low-rank modeling used in [264] for HSI denoising. 
A new 3-D linear model was proposed for HSI in [265], 
where 2-D wavelets were used for spatial projection and 
spectral-singular vectors of the observed HSI were used 
for spectral projection. A convex optimization was used 
for the restoration task based on the 3-D linear model and 

1,  penalty. Additionally, SURE was used for regulariza-
tion parameter selection.

Low-rank modeling has been used in synthesis and 
analysis penalized least squares [266], [250] and also in 
TV regularization [267], [250]. A 3-D low-rank model in 
the form of model (2) in the next section was proposed in 
[246], where 2-D wavelets were used as the spatial basis 
while the spectral basis was assumed to be an unknown 
low-rank orthogonal matrix. Therefore, an orthogonal-
ity constraint was added to the optimization problem for 
the simultaneous estimation of the two unknown matri-
ces in the minimization problem, which led to a noncon-
vex optimization.

HYPERSPECTRAL IMAGE MODEL SELECTION
Further studies in HSI modeling and restoration [250] con-
firmed that capturing spectral redundancy by low-rank 
modeling is more appropriate than full-rank modeling for 
HSI modeling and restoration. In [250], a model selection 
criterion was given for a general model of the form

 X AW M N,r r
T= +  (2)

where A  (n n12 12#   mat r i x) and Mr  (d r#  mat r i x , 
, )minr n d12# ^ h  could be 2-D and 1-D orthogonal (known) 

bases, respectively, and Wr  (n r12 #  matrix) contains the 
corresponding coefficients for the unknown hyperspectral 
data, H. The term Wr  is estimated using 1,  penalized least 
squares, and the signal is restored by H AW M .r r

T=t t  Ideally, the 
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model that gives the lowest MSE is the best choice among 
the candidates. However, the MSE is uncomputable in prac-
tice because it depends on the true (uncorrupted) data. 
Therefore, SURE is suggested for use as an estimator of MSE 
for HSIs. The results have confirmed that low-rank models 
give lower MSE (estimated by SURE) compared with full-
rank ones.

HYPERSPECTRAL IMAGE RESTORATION  
WITH MIXED-NOISE ASSUMPTION
A mixed-noise assumption has also been taken into 
consideration in HSI modeling and restoration. In a 
mixed-noise assumption, the HSI X( ) in model (1) is as-
sumed to be corrupted by a mixture of the noise sources 
described in the “Noise Source Assumptions in Hyper-
spectral Images” section. A mixture of the signal-de-
pendent noise N( )SD  and signal-independent noise ( )NSI  
models has been taken into account in [245], [268], and 
[269] as N N N .SI SD= +  Therefore, two parameters need 
to be estimated: the variances of NSI  and ,NSD  which 
have Gaussian distr ibution and Poission distr ibu-
tion, respectively. In [268], a 3-D (block-wise) nonlo-
cal sparse restoration method was suggested for HSIs. 
The minimization problem, which uses a group lasso 
penalty and a dictionary consisting of a 3-D discrete 
cosine transform and a 3-D DWT, was solved by using 
the accelerated proximal gradient method. In [269], NSI  
and NSD  were removed sequentially. Maximum likeli-
hood was used to estimate the two parameters of the 
noise model where MLR was investigated for an earlier 
estimation of the noise. In [241], a subspace-based ap-
proach was given to restore HSI corrupted by striping 
noise and N .ID

A widely used mixed-noise assumption for HSI res-
toration is N N N ,SI S= +  where NS  represents the sparse 
noise defined in the “Noise Source Assumptions in Hy-
perspectral Images” section. This mixture assumption 
was used in [270], where low-rank and sparse matrix 
 decomposition was taken into account to restore HSIs. 
This method was improved on by augmenting the to-
tal variation penalty to the restoration criterion [271]. 
Also, the noise-adjusted iterative low-rank matrix appro-
xi mation given in [272] approximates an HSI with a 
low-rank matrix, while taking into account the changes  
of the noise variance through the spectral bands. The 
authors of [273] proposed using a weighted Schatten p-
norm as a nonconvex low-rank regularizer for low-rank 
and sparse decomposition of HSIs degraded by sparse 
and Gaussian noises.

EXPERIMENTAL RESULTS
In this section, we present some experimental results for HSI 
restoration. Figure 10 shows the evolution of HSI restoration 
techniques based on SNR. The experiments were applied on 
a portion (128 # 128 # 96) of the Pavia University data set; 
here, the variance of the added Gaussian noise varies along 
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where the power of the noise is controlled by v and h 
behaves like the standard deviation for the Gaussian bell 
curve [244]. To evaluate the restoration results for the simu-
lated data set, the SNR in decibels is used as

H H H  / ,log10 SNR F F10
2 2

 out = - t_ i

where . F  is the Frobenius norm and the noise input level 
for the whole cube is defined as

H H  / .log X10 SNR F F10
2 2

 in = -^ h

In Figure 10, the results are shown when SNR in  varies 
from 5 to 40 dB in increments of 5 dB. Note that the re-
sults shown are means-over-ten experiments (adding ran-
dom Gaussian noise) and the error bars show the standard 
deviations. In this experiment, six restoration methods are 
compared based on SNR: 1,  penalized least squares using 
2-D wavelet modeling (2-D wavelet) [274] and 3-D wavelet 
modeling (3-D wavelet) [248]; penalized least squares using 
FOSRP (FOSRPDN) [251]; 1,  penalized least squares using 
a wavelet-based low-rank model called sparse wavelet-based 
model and rank selection (SPAWMARS) [250]; low-rank 
matrix recovery (LRMR) [270]; and noise-adjusted iterative 
low-rank matrix approximation [272]. Note that 2-D wave-
let, 3-D wavelet, FOSRPDN, and SPAWMARS all exploit 
SURE as a parameter selection technique and, therefore, 
are parameter-free methods. Also, note that SPAWMARS is a 
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FIGURE 10. A comparison of the performance of different HSI 
restoration methods for different levels of input Gaussian noise 
in decibels. NAILRMA: noise-adjusted iterative low-rank matrix 
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fully automatic version of an SVD-based sparse regulariza-
tion with reduction [236] with rank selection. The MATLAB 
codes for FOSRPDN and SPAWMARS are available online in 
[275] and [276], respectively.

The blue line in Figure 10 indicates the noise levels, and, 
therefore, the effectivity of the HSI restoration techniques 
can be compared with respect to the noise levels. It can be 
seen that 3-D wavelet restoration considerably improves 
on conventional 2-D wavelet techniques. Also, FOSRPDN, 
which is based on a 2-D wavelet and an FOSRP, outperforms 
3-D wavelet restoration, which confirms the importance of 
the spectral correlations. Finally, SPAWMARS, which utilizes 
a wavelet-based low rank, outperforms the other techniques 
used in this experiment. Note that Wavelab Fast (a fast wave-
let toolbox), which is provided in [277], was considered for 
the implementation of wavelet transforms. A Daubechies 
wavelet with two and ten coefficients for spectral and spatial 
bases, respectively, in five decomposition levels was used in 
all the experiments. The central processing unit (CPU) pro-
cessing time in seconds for different restoration approaches 
used in the experiment confirms that SPAWMARS is the 
most efficient method (Table 6). All the experiments in this 
section were performed in MATLAB on a  computer hav-
ing an Intel Core i7-4710HQ CPU at 2.5 GHz, with 12 GB 
of memory, and a 64-b operating system.

CHALLENGES IN HYPERSPECTRAL IMAGE  
DENOISING AND IMAGE RESTORATION
HSI restoration and modeling face several future challenges.
1) The HSI model selection and noise parameter estima-

tion need more attention. For instance, a model selec-
tion criterion that is not restricted to the Gaussian noise 
model would be very useful for HSI modeling and res-
toration. The main advantage of a model selection crite-
rion is that it provides an instrument to compare the res-
toration techniques without using a simulated (noisy) 
HSI but rather using the observed HSI itself.

2) It is of interest to investigate the contributions of the var-
ious HSI restoration approaches, such as CD, unmixing, 
and resolution enhancement, as preprocessing steps for 
further HSI analysis.

3) In mixed-noise scenarios, investigating the dominant 
noise type within HSIs should be considered.

4) HSI restoration approaches, which are computationally 
efficient and parameter free (automatic), can simply be 
used as a preprocessing step in real-world applications. 
Fast computing techniques may be considered for the 

swift implementation of HSI restoration approaches in 
the future.

CHANGE DETECTION
In this section, we define a CD problem in a pair of bitem-
poral HSIs (those in the multitemporal domain can be ad-
dressed straightforwardly, pair by pair). Let X1  and X2  be 
two HSIs acquired over the same geographical area at times 
t1  and ,t2  respectively. The hyperdimensional difference 
image X ,D  i.e., the SCVs, can be computed by subtracting 
the bitemporal images pixel by pixel, i.e.,

 X X X .D 2 1= -  (3)

Let { , }n c~X X=  be the set of all classes in X ,D  where n~  
is the no-change class and { , , ..., }c C C Ck1 2~ ~ ~X =  be the 
set of K possible change classes. The considered binary CD 
problem can be formalized to separate the n~  and cX  class-
es without distinguishing different classes in ;cX  the objec-
tive of the multiclass CD task is to detect the changed pixels 
in cX  and identify their classes in , , ..., .C C Ck1 2~ ~ ~" ,

Continuous satellite observation resulted in the acqui-
sition of a large number of multitemporal remote-sensing 
images. By analyzing these images, a better understanding 
of the changes and evolutions on Earth’s surface can be 
gained. CD is a technique that enables the land cover chang-
es occurring over a geographical area at different observa-
tion times to be identified [278]. In past decades, CD has 
played important roles in various multitemporal remote-
sensing applications, such as urban sprawl analysis, disaster 
loss evaluation, and forest and environmental monitoring 
[279]–[281]. For optical remote-sensing images, CD based 
on multispectral images has been intensively investigated 
because of the availability of multispectral sensors onboard 
the last-generation Earth observation satellites. With the 
launch of new-generation Earth observation satellites carry-
ing hyperspectral sensors, there are further opportunities to 
implement CD in multitemporal HSIs.

Unlike multispectral images, detailed spectral sam-
pling in HSIs allows the potential detection of more spec-
tral variations, especially those with subtle, spectrally in-
significant changes [282]. Compared with the abrupt changes 
that present in coarse multispectral images, changes in 
HSIs are more sophisticated, implicit, and structurally 
complex. One emerging problem within this context is 
the detection of small and subtle changes compared 
to the large unchanging background in multitemporal 

TABLE 6. THE CPU PROCESSING TIME IN SECONDS FOR DIFFERENT RESTORATION APPROACHES USED IN THE EXPERIMENT.

2-D WAVELET 3-D WAVELET FOSRPDN LRMR NAILRMA SPAWMARS

1.16 1.72 1.09 25.70 4.79 0.62 
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HSIs. This is related to the definition of an anomaly CD 
(ACD) problem, which is not easily addressed by classical 
CD techniques. 

Traditional CD identifies large land cover changes char-
acterized by significant spectral variations. An empirical 
definition of the change concept in multitemporal HSIs 
from the global and local spectrum discriminability can be 
found in [282]. For CD techniques in multispectral images, 
exhaustive investigations have been made in the past few 
decades. However, we could find relatively few works cov-
ering CD in HSIs. Recently, a book chapter [283] analyzed 
this challenging task and provided a literature review and 
comparison between CD in hyperspectral and multispec-
tral images. Problems and challenges in the existing meth-
ods were also discussed. 

This section reviews several recent CD techniques for 
HSIs, discussing and analyzing their properties. In ad-
dition, a quantitative analysis comparing the CD results 
obtained by some state-of-the-art CD techniques on the 
Umatilla County Hyperion data set is provided. A sum-
mary of several classical and recent techniques for multi-
temporal HSI CD techniques is provided in Table 7, along 
with some details such as their categories and principal 
characteristics. Note that this summary is not exhaustive.

ANOMALY CHANGE DETECTION
ACD in HSIs is intended to distinguish anomalous changes 
from the nonchanges and pervasive changes in multitem-
poral HSIs [284]. The main idea of ACD is to design a ro-
bust detector able to maximize the difference between the 

TABLE 7. A SUMMARY OF SOME CLASSICAL AND RECENT TECHNIQUES FOR  
MULTITEMPORAL HSI CD (NOT EXHAUSTIVE).

APPLICATION 
 PURPOSE

SUPERVISED/SEMISUPERVISED/ 
UNSUPERVISED TECHNIQUES MAIN CHARACTERISTICS

ACD Unsupervised Chronochrome [285], covariance- 
equalization [286]

An anomaly change estimation based on 
linear predictors.

 Unsupervised Elliptically contoured distributions-based 
methods [287]

Anomalous change detectors based on 
elliptically contoured distributions.

 Unsupervised SFA-based RX algorithm [284] SFA is used to construct the change 
residual image.

 Unsupervised CKRX [288] Background pixels are clustered, and the 
cluster centers are used in ACD.

 Unsupervised Eliminating external factors (e.g., image 
parallax errors [289], vegetation and  
illumination variations [290], diurnal and 
seasonal variations [291])

Enhancing the CD performance.

Binary CD Unsupervised MAD [294], IR-MAD [296], T-PCA [297], 
ICA [298]

Changes are represented and highlighted 
in transformed and reduced feature space.

 Supervised Subspace-based approach [299] Changes are identified as anomalous 
 pixels according to the subspace distance.

 Semisupervised Distance metric-based method [300] The distance metric is learned in a 
 Laplacian regularized metric framework.

 Unsupervised Slight CD method [16] Using block processing and locally linear 
embedding.

 Unsupervised/supervised Unmixing-based methods [301]–[304]   Unmixing single-time or stacked 
 multitemporal images to investigate  
the subpixel-level change.

Multiple CD Supervised PCC [305] Independently classifying each single-time 
image; detailed land cover transitions  
(i.e., from–to information) can be 
 obtained.

 Supervised 3-D spectral modeling approach [306] A spatial/spectral/temporal joint modeling 
and unmixing of multitemporal data.

 Unsupervised HSCVA [282] Hierarchical clustering and detecting of spec-
tral variations at different significant levels.

 Semisupervised S2CVA [307] The adaptive and sequential projection 
of SCVs to discover and detect multiple 
changes.

 Unsupervised MSU [12] Spectral–temporal unmixing to identify 
the unique multitemporal endmembers 
for representing multiclass changes.

 Unsupervised/supervised Band-selection-based method [309] The most informative band subset of the 
different images is selected to enhance 
CD performance. 
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anomaly changes and the unchanged scene background 
but to minimize the possible class difference within the 
background. In this context, multivariate statistical tech-
niques based on linear predictors, e.g., cross covariance 
(chronochrome) [285] and covariance-equalization [286], 
are typical ACD and binary CD detectors. Recently, algo-
rithms were proposed to detect anomalous changes in HSIs 
by modeling the data with elliptically contoured distribu-
tions [287]. A new ACD method was proposed in [284] 
that constructed the change residual image based on slow 

feature analysis (SFA) and de-
tected anomaly changes by 
using the Reed–Xiaoli (RX) 
algorithm. A cluster kernel 
RX (CKRX) algorithm was de-
veloped in [288] that clustered 
the background pixels, then 
used the  cluster centers in the 
anomaly detection. Other in-
vestigations have also focused 

on various specific changes—e.g., eliminating image paral-
lax errors [289], vegetation and illumination variation [290], 
and diurnal and seasonal variations [291].

BINARY CHANGE DETECTION
For binary CD, the aim is to separate the changed and un-
changed pixels in the images. In this case, classical tech-
niques in multispectral imaging such as thresholding 
[292] or clustering [293] can still be considered, based on 
the computed magnitude of the SCVs. Transform-based 
methods constitute an important class. Such techniques 
represent the original data in a feature space where the sig-
nificant change information is concentrated in a few trans-
formed components. This not only reduces data dimen-
sionality and noise but also focuses on the specific changes 
of interest in specific components. 

The multivariate alteration detection (MAD) method 
originally proposed for multispectral images in [294] 
was applied to HSIs to detect vegetation change based on 
 canonical correlation analysis [295]. It was extended to an 
iterative reweighted version (IR-MAD) [296] to better em-
phasize and detect changes. A temporal PCA (T-PCA) was 
proposed in [297] that exploits the temporal variances in 
the combined multitemporal HSIs. The no-change infor-
mation is represented in the first principal component and 
the change information in the second, which is orthogonal 
to the first one. 

Recently, in [298], ICA was applied, combined with the 
uniform feature design strategy, by following a hierarchi-
cal framework to identify specific vegetation changes. In 
[299], a subspace-based CD approach was designed using 
the undesired land cover class spectral signature as prior 
knowledge, where the subspace distance was computed to 
determine the anomalous pixels as change with respect to 
the background subspace. A semisupervised CD method 
was proposed in [300], where a Laplacian regularized 

metric framework was exploited to learn a distance met-
ric for detecting change under noisy conditions. In [16], an 
unsupervised CD method was developed for slight change 
extraction in a multitemporal HSI sequence. The feature 
space was built using block processing and locally linear 
embedding, and then a final CD map was generated by 
clustering the change class and the no-change class. In 
[301] and [302], CD in HSIs using unmixing was investi-
gated on a single-time image and stacked multitemporal 
images, respectively. Also, in [303] and [304], sparse un-
mixing and a decision-fusion-based spectral-mixture ap-
proach were exploited, respectively, to detect the subpixel-
level change information.

MULTIPLE CHANGE DETECTION
The aim of multiple CD is more complex and challenging 
than binary CD. Changed pixels are detected while differ-
ent classes of change are distinguished. If multitemporal 
ground reference samples are available, this task can be 
addressed according to a typical supervised postclassifica-
tion comparison (PCC) method [305] by classifying inde-
pendently two (or more) images at different times and then 
comparing the pixel class label to detect changes. The main 
advantage of PCC is that detailed land cover transitions are 
obtained (i.e., from–to information). However, the accura-
cy of the CD performance depends greatly on the accuracy 
of a single-time image classification result. 

In [306], a new approach for modeling the temporal 
variations of the reflectance response as a function of time 
period and wavelength was developed. In this approach, a 
library of known endmembers that depends mainly on the 
3-D surface reconstruction quality and similarity measure 
is used to perform a classification task. Changes are detect-
ed, and the approach provides better modeling of seasonal 
variations. However, in practical applications, comprehen-
sive multitemporal ground reference samples are usually 
not available. Accordingly, unsupervised techniques that 
do not rely on reference samples are more valuable. 

In [282], an unsupervised coarse-to-fine hierarchical SCV 
analysis (HSCVA) approach was proposed. It was designed 
to cluster and detect changes that include spectral variations 
at different significant levels according to their discrim-
inable spectral behaviors. A semisupervised sequential SCV 
analysis (S2CVA) technique for discovering, identifying, 
and discriminating multiple changes in HSIs was proposed 
in [307]. This method detects different kinds of changes ac-
cording to the adaptive and sequential projection of SCVs at 
each level of the hierarchy. S2CVA successfully extends the 
compressed change vector analysis method [308], which is 
suitable for dealing only with multispectral CD cases hav-
ing few spectral channels. To identify the subpixel-level 
spectral changes so that a more accurate multiple CD result 
can be produced, an unsupervised multitemporal spectral 
unmixing (MSU) model was proposed in [12]. The MSU 
investigates in detail the spectral-temporal mixture proper-
ties in multitemporal HSIs, and the considered multiple CD 

FOR BINARY CD, THE  

AIM IS TO SEPARATE THE 

CHANGED AND UNCHANGED 

PIXELS IN THE IMAGES.
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problem is addressed by analyzing the abundances of differ-
ent distinct multitemporal endmembers at a subpixel level. 

In addition, both unsupervised and supervised band-
selection-based CD approaches were designed to evaluate 
the potential detectability of the change detector in a re-
duced feature space [309]. Experimental results confirmed 
that the most informative band subset selected can help to 
improve CD performance over the use of the original full-
dimensional HSIs. A multiclass CD experimental compari-
son was carried out on the Umatilla County Hyperion data 
set using the state-of-the-art CD techniques introduced 
above, including HSCVA [282], S2CVA [307], and MSU 
[12]. Numeric experimental results are provided in Table 8, 
which includes the obtained OA, kappa coefficient, and 
omission and commission errors.

From Table 8, we can see that the MSU resulted in the 
best performance in this data set, with respect to the high-
est OA (95.37%) and kappa (0.8826) values and lowest 
number of total errors (3,114 pixels). This indicates the su-
perior detection of spectral variations at a fine level in the 
MSU approach. The other two state-of-the-art methods 
also obtained a high level of OA and kappa values, which 
demonstrates the effectiveness of the considered methods. 
In practical applications, two pixel-level multiple CD tech-
niques are sufficient to address the challenging multiple CD 
task, especially in an unsupervised/semisupervised fashion, 
without using ground reference samples.

CHALLENGES IN CHANGE DETECTION
For CD tasks in multitemporal HSIs, challenges come from 
the intrinsic properties of the hyperspectral data and the 
design of sophisticated CD techniques to handle the com-
plexities in the CD process. From the hyperspectral data 
perspective, the high dimension inevitably leads to infor-
mation redundancy and high computational cost. More-
over, changes are to be more implicitly represented and de-
tected. In other words, from the spectral signature point of 
view, similar changes are more likely to overlap, especially 
subtle changes. Thus, the difficulty in discriminating their 
classes in high-dimensional feature space increases. 

From the CD methodology perspective, advanced ap-
proaches need to be designed that 1) can more adaptively 
detect multiple complex changes (i.e., those having dif-
ferent spectral significance), 2) can be implemented more 
automatically, and 3) can be computationally effective. 
In particular, the development of unsupervised CD tech-
niques for HSIs is more important for real applications. 
In fact, several subproblems should be considered within 
a CD process, such as the identification of the number 
of multiple changes, the separation of changed and un-
changed pixels, and the discrimination of multiclass 
changes. Each of these subproblems deserves to be investi-
gated in detail, independently or simultaneously, to gener-
ate more accurate CD results. In addition, the subpixel and 
superpixel implementation of CD techniques at different 
detection scales is expected to enhance CD performance. 

Learning from the limited prior change information trans-
ferred between multitemporal HSIs could be another inter-
esting research direction.

FAST COMPUTING
The high-dimensional nature of hyperspectral data sets, 
together with the complexity of the processing algorithms, 
calls for advanced processing techniques to accelerate hyper-
spectral-related computations [310]. Traditionally, software 
for hyperspectral analysis has been written for serial com-
putation, i.e., to be run on a single computer having a single 
CPU in which a problem is broken down into a discrete se-
ries of instructions. Instructions are then executed one af-
ter another so that only one may execute at any moment  
in time. In turn, parallel com-
puting allows the simultane-
ous use of multiple computer 
resources. In other words, a 
problem is run on multiple 
CPUs by being broken down 
into discrete parts so that each 
part can be executed simulta-
neously. Load balancing refers 
to the practice of distributing 
work among tasks so that all tasks are kept busy all the time. 
This practice is considered to minimize task idle time.

Taking advantage of these concepts, several techniques 
have been developed to accelerate hyperspectral imaging 
computation. In this section, we summarize some of the 
available strategies, which vary according to the adopted 
platform for fast computing and acceleration.

CLUSTER COMPUTERS
Perhaps the most widely used high-performance computing 
architecture for accelerating hyperspectral-related computa-
tions is cluster computing. A cluster is a collection of com-
modity computers interconnected by a computer network. To 
efficiently execute a parallel problem in a cluster, partitioning 
strategies can be used so that the original problem is broken 
down into subtasks allocated to the different computers. 

In the case of hyperspectral imaging, two kinds of strate-
gies have been used to partition the original hyperspectral 

TABLE 8. THE CD ACCURACIES AND  ERRORS OBTAINED  
BY CONSIDERED STATE-OF-THE-ART TECHNIQUES ON THE 
UMATILLA COUNTY HYPERION DATA.

METHODS HSCVA [282] S2CVA [307] MSU [12]

OA (%) 95.26 95.36 95.37 

Kappa 0.8800 0.8822 0.8826 

Omission (pixels) 1,715 1,878 1,875 

Commission (pixels) 1,918 1,676 1,239 

Total errors (pixels) 3,633 3,554 3,114 

PARALLEL COMPUTING 

ALLOWS THE 
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COMPUTER RESOURCES.
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data set into subsets for efficient cluster-based processing. 
In spectral-domain partitioning, a single pixel vector (spec-
tral signature) may be stored in different processing units, 
and communications would be required for individual 
pixel-based calculations, such as spectral angle computa-
tions [311]. In spatial-domain partitioning, every pixel vec-
tor (spectral signature) is stored in the same processing unit 

[312]. These concepts have 
been explored not only in 
clusters [313], [314] but also 
in heterogeneous workstation 
networks [315].

HARDWARE 
ACCELERATORS
In addition to clusters, other 
kinds of high-performance 
computing architectures have 
been used. Specifically, on-
board processing of HSIs is 
required in certain contexts. 

This is particularly the case in time-critical applications 
[316], [317]. For this purpose, other solutions have been 
explored. In particular, reconfigurable computing provides 
higher performance (throughput and processing power) 
compared to other specialized hardware processors [318]. 
Reconfigurability is no longer a promise but a reality, and 
it is feasible to have several algorithms implemented on the 
same board and dynamically select one out of a pool of al-
gorithms from a control station [319]. A field-programma-
ble gate array (FPGA) is a chip in which there is a matrix of 
blank cells called configurable logic blocks. This device can be 
used to implement any circuit (provided there is a sufficient 
number of logic blocks). FPGAs have been widely used to 
accelerate hyperspectral imaging algorithms for onboard 
processing [320]–[322].

Another high-performance computing architecture that 
has provided excellent performance when accelerating hy-
perspectral imaging computations is the graphical process-
ing unit (GPU) [323]. GPUs are now fully programmable 
using high-level languages such as NVIDIA CUDA (http://
developer.nvidia.com). The GPU specializes in computer-
intensive, massive-data-parallel computation (which ex-
actly describes graphics rendering). Therefore, more transis-
tors can be devoted to data processing rather than to data 
caching and flow control. The fast-growing video game 
industry exerts strong economic pressure for constant in-
novation. This has motivated the extended use of GPUs for 
accelerating many different hyperspectral imaging-related 
tasks [316], [324]–[335].

CLOUD COMPUTING
Recently, more sophisticated high-performance architec-
tures have been used to process hyperspectral data. For 
instance, cloud computing platforms are increasingly em-
ployed for processing hyperspectral data in distributed 

architectures. In this sense, cloud computing offers ad-
vanced capabilities for service-oriented and high-perfor-
mance computing [336]. Furthermore, using cloud com-
puting to analyze large repositories of hyperspectral data 
can be considered a natural solution resulting from the 
evolution of techniques previously developed for other 
types of computing platforms [311]. In particular, using 
GPUs within distributed scenarios has been radically ex-
tended worldwide, thanks in part to the increasing devel-
opment of deep learning-based frameworks (e.g., Apache 
Spark, Caffe, Theano, Torch, and TensorFlow), which also 
find application in the hyperspectral analysis community 
[64], [65], [84], [337], [338]. 

However, the recent literature still provides few exam-
ples of the use of cloud infrastructures to implement hy-
perspectral analysis techniques in general and to perform 
supervised classification of hyperspectral data in partic-
ular. This may be due to the lack of open repositories of 
HSIs available for public use, a situation that is expected to 
change in the near future, as large distributed repositories 
of hyperspectral data for open use become available to the 
scientific community.

CHALLENGES IN FAST COMPUTING
The most important challenge related to consolidating fast-
computing techniques to analyze hyperspectral data (par-
ticularly in the context of real-time platforms) is still the 
high energy consumption required by high-performance 
computing architectures, which reduces their applicabil-
ity in real scenarios for onboard operation. Currently, the 
power consumption required by devices such as GPUs is too 
high for their incorporation into satellite platforms. Another 
shortcoming is the fact that these platforms are often sub-
ject to radiation tolerance issues. Future developments in 
hardware instruments for onboard operation are required 
for efficient real-time processing of HSIs, particularly in the 
context of satellite missions.

CONCLUSIONS
The role of HSI analysis cannot be underestimated for a 
plethora of applications, especially those related to CD and 
scene classification. Without a doubt, the use of such valu-
able data has been well established in the remote-sensing 
community, and the precise investigation of such data is in-
creasing significantly. To this end, the considerable number 
of airborne and spaceborne hyperspectral missions as well 
as the increasing number of scientific publications on this 
particular subject demonstrate that the area of HSI analysis 
is substantial, dynamic, and vibrant.

The field of hyperspectral imagery is extremely broad, 
and it is impossible to investigate it comprehensively in 
one literature review. This article focuses particularly on 
algorithmic approaches that have been developed, adapt-
ed, or proposed since 2013, covering a number of key re-
search areas, such as DR, classification, spectral unmixing, 
resolution enhancement, image restoration, CD, and fast 
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computing. It is certainly of significant interest to sum-
marize other survey articles from the application point of 
view, where the usefulness of hyperspectral imagery can 
be demonstrated through different practical aspects such 
as mineralogy, environmental mapping and monitoring, 
geology, and so on.

In addition to the material presented in this article, 
hyperspectral data preprocessing plays a vital role in fos-
tering application-oriented tasks. This important subject 
lies beyond the scope of this investigation, which mainly 
focuses on the development of algorithms for HSI analysis 
and processing. To this end, we see the need for some tu-
torials and survey articles with a primary focus on hyper-
spectral data preprocessing and preparation designed for 
atmospheric corrections, geometric and radiometric cor-
rections, coregistration, and quality assessment.

As indicated several times throughout this article, al-
though the area of HSI analysis is well established, there are 
still many doors open for further investigation. We hope 
that our work here will raise new possibilities for research-
ers to further investigate the remaining issues by develop-
ing fast, accurate, and automatic methodologies suitable for 
applications at hand.
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