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Hyperspectral image classification has been a vibrant 
area of research in recent years. Given a set of observa-

tions, i.e., pixel vectors in a hyperspectral image, classifica-
tion approaches try to allocate a unique label to each pixel 
vector. However, the classification of hyperspectral images 
is a challenging task for a number of reasons, such as the 
presence of redundant features, the imbalance among the 
limited number of available training samples, and the high 
dimensionality of the data.  

The aforementioned issues (among others) make the 
commonly used classification methods designed for the 
analysis of gray scale, color, or multispectral images in-
appropriate for hyperspectral images. To this end, several 
spectral classifiers have been specifically developed for 
hyperspectral images or carried out on such data. Among 
those approaches, support vector machines (SVMs), ran-
dom forests (RFs), neural networks, deep approaches, 
and logistic regression-based techniques have attracted 
great interest in the hyperspectral community. This article 
reviews most of the existing spectral classification ap-
proaches in the literature. It also critically compares the 
most powerful hyperspectral classification approaches 
from different points of view, including their classifica-
tion accuracy and computational complexity. The article 
goes on to provide several hints for readers about the logi-
cal choice of an appropriate classifier based on the appli-
cation at hand.

CLASSIFYING HYPERSPECTRAL DATA
Imaging spectroscopy (also known as hyperspectral imaging) 
is an important technique in remote sensing (RS). Hyper-
spectral imaging sensors often capture data from the visible 
through the near-infrared wavelength ranges, thus providing 
hundreds of narrow spectral channels from the same area on 
the surface of the earth. These instruments collect data con-
sisting of a set of pixels represented as vectors, in which each 
element is a measurement corresponding to a specific wave-
length. The size of each vector is equal to the number of spec-
tral channels or bands. Hyperspectral images usually consist 
of several hundred spectral data channels for the same area on 
the earth’s surface; while, in multispectral data, the number 
of spectral channels is usually up to tens of bands [1]. The de-
tailed spectral information collected by hyperspectral sensors 
increases the capability of discriminating between different 
land-cover classes with increased accuracy. Several operation-
al hyperspectral imaging systems are currently available, pro-
viding a large volume of image data that can be used for a wide 
variety of applications, such as in ecology, geology, hydrology, 
precision agriculture, and military applications.

Due to the detailed spectral information available from 
the hundreds of narrow bands collected by hyperspectral 
sensors, the accurate discrimination of different materials 
is possible. This fact makes hyperspectral data a valuable 
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source of information to be fed to advanced classifiers. The 
output of the classification step is known as the classifica-
tion map.

Table 1 categorizes different groups of classifiers with 
respect to different criteria, followed by a brief descrip-
tion. Since classification is a wide field of research and it is 
not feasible to investigate all those approaches in a single 
 article, we tried to narrow down our description by exclud-
ing the items highlighted in green in Table 1, which have 
been extensively covered in other contributions. We reiter-
ate that our main goal in this article is to provide a com-
parative assessment and best practice recommendations 
for the remaining  contributions in Table 1.

With respect to the availability of training samples, 
classification approaches can be split into two categories, 
i.e., supervised and unsupervised classifiers. Supervised 
 approaches classify input data for each class using a set of 
representative samples known as training samples. Training 
samples are usually collected either by manually labeling 
a small number of pixels in an image or based on some 
field measurements [2]. In contrast, unsupervised classi-
fication (also known as clustering) does not consider train-
ing samples. This type of approach classifies the data based 
only on an arbitrary number of initial cluster centers that 
may be either user specified or quite arbitrarily selected. 

During the processing, each pixel is associated with one 
of the cluster centers based on a similarity criterion [1], 
[3]. Therefore, pixels that belong to different clusters are 
more dissimilar to each other compared to pixels within 
the same cluster [4], [5].

There is a vast amount of literature on  unsupervised 
classification approaches. Among these methods, Kmeans [6], 
Iterative Self-Organizing Data Analysis Technique (ISODATA) 
[7], and Fuzzy Cmeans [8] rank 
among the most popular. This 
set of approaches is known 
for being highly sensitive to 
the initial cluster configuration 
and may be trapped into subop-
timal solutions [9]. To address 
this issue, researchers have tri-
ed to improve the resilience of 
the Kmeans (and its family) by 
optimizing it with bioinspired 
optimization techniques [3]. 
Since supervised approaches 
consider class-specific infor-
mation provided by training 
samples, they lead to more precise classification maps than 
unsupervised approaches. In addition to unsupervised and 
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supervised approaches, semisupervised techniques have 
been introduced [10], [11]. With these, the training is based 
on both labeled training samples as well as unlabeled sam-
ples. In the literature, it has been shown that the classifi-
cation accuracy obtained with semisupervised approaches 
can outperform that obtained by supervised classification. 
In this article, our focus is only on supervised classifica-
tion approaches. 

SUPERVISED CLASSIFICATION OF 
HYPERSPECTRAL DATA
A hyperspectral data set can be seen as a stack of many 
pixel vectors, here denoted by ( , ..., ) ,x xx d

T
1=  where d

represents the number of bands or the length of the pixel 
vector. A common task when interpreting RS images is to 
differentiate between several land-cover classes. A classifi-
cation algorithm is used to separate between different types 

TABLE 1. A TERMINOLOGY OF CLASSIFICATION APPROACHES BASED ON DIFFERENT CRITERIA. TO NARROW DOWN THIS 
 ARTICLE’S RESEARCH LINE, WE INTENTIONALLY AVOID ELABORATING ON THE ITEMS HIGHLIGHTED IN GREEN.

CRITERIA TYPES BRIEF DESCRIPTION

Whether training samples are used  
or not.

Supervised classifiers Supervised approaches classify input data using a set of representative 
samples for each class, known as training samples.

Unsupervised classifiers Unsupervised approaches, also known as clustering, do not consider 
the labels of training samples to classify the input data.

Semisupervised classifiers The training step in semisupervised approaches is based on both 
labeled and unlabeled training samples.

Whether any assumption on the  
distribution of the input data is  
considered or not.

Parametric classifiers Parametric classifiers are based on the assumption that the probability 
density function for each class is known.

Nonparametric classifiers Nonparametric classifiers are not constrained by any assumptions on 
the distribution of input data.

Whether either a single classifier or 
an ensemble classifier is taken into 
account.

Single-classifier classifiers In this approach, a single classifier is taken into account to allocate a 
class label for a given pixel.

Ensemble (multiple)  
classifiers 

In this approach, a set of classifiers (multiple classifiers) is taken into 
account to allocate a class label for a given pixel.

Whether or not the technique uses  
hard partitioning, in which each data 
point belongs to exactly one cluster.

Hard classifiers Hard classification techniques do not consider the continuous changes 
of different land-cover classes from one to another.

Soft (fuzzy) classifiers Fuzzy classifiers model the gradual boundary changes by providing 
measurements of the degree of similarity of all classes.

Whether spatial information is taken  
into account.

Spectral classifiers This approach considers the hyperspectral image as a list of spectral 
measurements with no spatial organization.

Spatial classifiers This approach classifies the input data using spatially adjacent pixels, 
based on either a crisp or adaptive neighborhood system.

Spectral–spatial classifiers The sequence of spectral and spatial information is taken into account 
for the classification of hyperspectral data.

Whether the classifier learns a model  
of the joint probability of the input  
and the labeled pixels.

Generative classifiers This approach learns a model of the joint probability of the input and 
the labeled pixels and makes the prediction using Bayes rules.

Discriminative classifiers This approach learns conditional probability distribution or learns a 
direct map from inputs to class labels.

Whether the classifier predicts a  
probability distribution over a set of  
classes, given a sample input.

Probabilistic classifiers This approach is able to predict, given a sample input, a probability 
distribution over a set of classes.

Nonprobabilistic classifiers This approach simply assigns the sample to the most likely class that 
the sample should belong to.

Which type of pixel information  
is used.

Subpixel classifiers In this approach, the spectral value of each pixel is assumed to be a 
linear or nonlinear combination of endmembers (pure
materials).

Per-pixel Input pixel vectors are fed to classifiers as inputs.

Object- based and  
object-oriented classifiers

In this approach, a segmentation technique allocates a label for each 
pixel in the image in such a way that pixels with the same label share 
certain visual characteristics. In this case, objects are known as  
underlying units after applying segmentation. Classification is  
conducted based on the objects instead of a single pixel.

Per-field classifiers This type of classifier is obtained using a combination of RS and 
geographic information system (GIS) techniques. In this context, raster 
and vector data are integrated in a classification. The vector data are 
often used to subdivide an image into parcels, and classification is 
based on the parcels.
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of patterns [5]. In RS, classification is usually carried out 
in a feature space [12]. In general, the initial set of features 
for classification contains the spectral information, i.e., the 
wavelength information for the pixels [1]. In this space, each 
feature is presented as one dimension, and pixel vectors can 
be represented as points in this d-dimensional space. A clas-
sification approach tries to assign unknown pixels to one of 
y  classes , , ..., ,y y yK1 2X = " ,  where K  represents the number 
of classes, based on a set of training samples. The individual 
classes are discriminated based either on the similarity to a 
certain class or by decision boundaries that are constructed 
in the feature space [5].

PARAMETRIC VERSUS NONPARAMETRIC 
CLASSIFICATION
From another perspective, classification approaches can be 
split into parametric and nonparametric. For example, 
the widely used supervised maximum likelihood classi-
fier (MLC) is often applied in the parametric context. In 
this manner, the MLC is based on the assumption that the 
probability density function for each class is governed by 
the Gaussian distribution [13]. In contrast, nonparametric 
methods are not constrained by any assumptions on the 
distribution of the input data. Hence, techniques such as 
SVMs, neural networks, decision trees, and ensemble ap-
proaches (including RFs) can be applied, even if the class-
conditional densities are not known or cannot be reliably 
estimated [1]. Therefore, for hyperspectral data with a lim-
ited number of available training samples, such techniques 
may lead to more accurate classification results.

CHALLENGES FOR THE CLASSIFICATION OF 
HYPERSPECTRAL DATA
In this section, we discuss some specific characteristics of hy-
perspectral data that make the classification step challenging.

THE CURSE OF DIMENSIONALITY
In [14]–[16], researchers have reported some distinguishing 
geometrical, statistical, and asymptotical properties of high-
dimensional data through some experimental examples, 
e.g., 1) as dimensionality increases, the volume of a hy-
percube concentrates in corners, or 2) as dimensionality 
increases, the volume of a hypersphere concentrates in an 
outside shell. With respect to these examples, the following 
conclusions have been drawn:
◗ A high-dimensional space is almost empty, which im-

plies that multivariate data in IR  are usually in a lower 
dimensional structure. In other words, high-dimensional 
data can be projected into a lower subspace without 
 sacrificing considerable information in terms of class 
separability [1].

◗ Gaussian distributed data have a tendency to concen-
trate in the tails, while uniformly distributed data have 
a tendency to be concentrated in the corners, which 
makes the density estimation of high-dimensional data 
for both distributions more difficult.

◗ Fukunaga [13] showed that there is a relation between 
the required number of training samples and the num-
ber of dimensions for different types of classifiers. The 
required number of training samples is linearly related 
to the dimensionality for linear classifiers and to the 
square of the dimensionality for quadratic classifiers 
(e.g., Gaussian MLC [13]).

◗ In [17], Landgrebe showed that too many spectral bands 
might be undesirable in terms of expected classification 
accuracy. When dimension-
ality (the number of bands) 
increases, with a constant 
number of training sam-
ples, a higher-dimensional 
set of statistics must be 
estimated. In other words, 
although higher spectral 
di  mensions increase the 
separability of the classes, 
the accuracy of the statisti-
cal estimation decreases. This leads to a decrease in clas-
sification accuracies beyond a number of bands. For the 
purpose of classification, these problems are related to the 
so-called curse of  dimensionality.
It is expected that, as dimensionality increases, more in  -

formation is demanded to de    tect more classes with higher 
accuracy. At the same time, the aforementioned characteris-
tics demonstrate that conventional techniques developed for 
multispectral data may not be suitable for the classification of 
hyperspectral data.

The aforementioned issues related to the high-dimension-
al nature of the data have a dramatic influence on super-
vised classification techniques [18]. These techniques demand a 
large number of training samples (which is almost impossible 
to obtain in practice) to make a precise estimation. This prob-
lem is even more severe when dimensionality increases. There-
fore, classification approaches developed on hyperspectral 
data need to be capable of handling high-dimensional data 
when only a limited number of training samples is available.

UNCERTAINTIES
Uncertainties generated at different stages of the data acqui-
sition and classification procedure can dramatically influence 
the classification accuracies and the quality of the  final 
classification map [19]–[22]. There are many reasons for 
such uncertainties, including atmospheric conditions at the 
data acquisition time, data limitation in terms of radiomet-
ric and spatial resolutions, mosaicing several images, and 
many others. Image registration and geometric rectifica-
tion cause position uncertainty. Furthermore, algorithmic 
errors at the time of calibrating either atmospheric or topo-
graphic effects may lead to radiometric uncertainties [23].

INFLUENCE OF SPATIAL RESOLUTION
Classification accuracies can be highly influenced by the 
spatial resolution of the hyperspectral data. A higher spatial 
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resolution can significantly reduce the mixed-pixel problem 
and detect more details of the scene. In [24], it was mentioned 
that classification accuracies are the result of a  tradeoff be-
tween two aspects. The first refers to the influence of bound-
ary pixels on classification results. In this case, as spatial 

resolution becomes finer, the 
number of pixels falling on 
the boundary of different ob-
jects will decrease. The second 
aspect refers to the increased 
spectral variance of different 
land covers associated with fin-
er spatial resolution.

When we deal with low 
or medium spatial resolution 
optical data, the existence of 
many mixed pixels between 
different land-cover classes 
is the main source of uncer-

tainty and can influence classification results dramatically. 
Fine spatial resolution can provide detailed information 
about the shape and structure of different land covers. 
Such information can also be fed to the classification sys-
tem to further increase classification accuracy values and 
improve the quality of classification maps. The consider-
ation of spatial information in the classification system is 
a vibrant research topic in the hyperspectral community, 
and it has been investigated in many works such as [1] and 
[25]–[29]. As mentioned, the consideration of spatial in-
formation in the classification system is out of the scope of 
this work, which focuses on supervised spectral classifiers. 
However, the use of high-resolution hyperspectral images 
introduces some new problems, especially those caused 
by shadows, which lead to high spectral variations within 
the same land-cover class. These disadvantages may reduce 
classification accuracy if classifiers cannot  effectively han-
dle such effects [30].

LITERATURE REVIEW
In this section, we briefly outline some of the most popular 
supervised classification methods for hyperspectral imag-
ery. Some of these methods will be detailed further in sub-
sequent sections of this article.

PROBABILISTIC APPROACHES
A common subclass of classifiers is based on probabilistic 
approaches. This group of classifiers uses statistical termi-
nologies to find the best class for a given pixel. In contrast 
with other algorithms that simply allocate a label with re-
spect to a best class, probabilistic algorithms output a prob-
ability of the pixel being a member of each of the possible 
classes [5], [13], [31]. The best class is normally then select-
ed as the one with the highest probability.

For instance, the multinomial logistic regression (MLR) 
classifier [32], which is able to model the posterior class 
distributions in a Bayesian framework, supplies (in addition 

to the boundaries between the classes) a degree of plausibil-
ity for such classes [33]. Sparse MLR (SMLR), by adopting a 
Laplacian prior to enforce sparsity, leads to good machine 
generalization capabilities in hyperspectral classification 
[34], [35], though with some computational limitations. 
The logistic regression via splitting and augmented Lagrang-
ian (LORSAL) algorithm opened the door to the processing 
of hyperspectral images of median or big volume and an 
extremely large number of classes, using a high number of 
training samples [36], [37]. More recently, a subspace-based 
version of this classifier, called MLRsub [38], has also been 
proposed. The idea of applying subspace projection meth-
ods relies on the basic assumption that the samples within 
each class can approximately lie in a lower-dimensional 
subspace. The exploration of MLR, SMLR, LORSAL, and 
MLRsub for hyperspectral models presents two important 
advantages. On one hand, with the advantages of good 
algorithm generalization and fast computation, MLR has 
been widely used to model the spectral information of hy-
perspectral data [39]–[48]. On the other hand, as the struc-
ture of MLR classifiers is very open and flexible, composite 
kernel learning [49], [50] and multiple feature learning [51], 
[52] become active topics under the MLR model and lead to 
very competitive results for hyperspectral image classifica-
tion problems.

NEURAL NETWORKS
The use of neural networks in complex classification sce-
narios is a consequence of their successful application in 
the field of pattern recognition [53]. Particularly in the 
1990s, neural network approaches attracted many research-
ers in the area of the classification of hyperspectral images 
[54], [55]. The advantage of such approaches over proba-
bilistic methods result mainly from the fact that neural 
networks do not need prior knowledge about the statistical 
distribution of the classes. Their attractiveness increased 
because of the availability of feasible training techniques 
for nonlinearly separable data [56], although their use has 
been traditionally affected by their algorithmic and train-
ing complexity [57] as well as by the number of parameters 
that need to be tuned.

Several neural network-based classification approaches 
have been proposed in the literature that consider both 
supervised and unsupervised nonparametric approaches 
[58]–[62]. The feedforward neural network (FN)-based 
classifiers are the most commonly adopted ones. FNs have 
been well studied and widely used since the introduction 
of the well-known backpropagation algorithm (BP) [63], 
a first-order gradient method for parameter optimization. 
The BP presents two main problems, i.e., slow convergence 
and the possibility of falling in local minima, especially 
when the parameters of the network are not properly fine-
tuned. With the aim of alleviating the disadvantages of the 
original BP algorithm, several second-order optimization-
based strategies, which are faster and need fewer input pa-
rameters, have been proposed in the literature [64], [65]. 
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Recently, the extreme learning machine (ELM) learning 
algorithm has been proposed to train single hidden-layer 
FNs (SLFN) [66], [67]. Then, the concept has been extended 
to multihidden-layer networks [68], radial basis function 
(RBF) networks [69], and kernel learning [70]. The main 
characteristic of the ELM is that the hidden layer (feature 
mapping) is randomly fixed and need not be iteratively 
tuned. ELM-based networks are remarkably efficient in 
terms of accuracy and computational complexity and have 
been successfully applied as nonlinear classifiers for hyper-
spectral data, providing results comparable with state-of-
the-art methodologies [71]–[74].

KERNEL METHODS, INCLUDING SVMS

SVMs are another example of a supervised classification ap-
proach. They have been widely used for the classification 
of hyperspectral data because of their ability to handle 
high-dimensional data with a limited number of train-
ing samples [1], [75], [76]. SVMs were originally intro-
duced to classify linear classification problems. To gener-
alize the SVM for nonlinear classification problems, the 
so-called kernel trick was introduced [77]. The sensitivity 
to the choice of the kernel and regularization parameters 
is the most important disadvantage of a kernel SVM. For 
the former, the Gaussian RBF is widely used in RS [77]. 
The latter is classically addressed using cross validation  
techniques that employ training data [78]. Gómez et al. 
proposed an approach by combining both labeled and 
unlabeled pixels using clustering and the mean map ker-
nel to increase the classification accuracy and reliability of 
SVMs [79]. In [80], a local k -nearest neighbor adaptation 
was taken into account to formulate localized SVM vari-
ants. Tuia and Camps-Vallas proposed a regularization ap-
proach to tackle the issue of kernel predetermination. The 
method was based on the identification of kernel structures 
through the analysis of unlabeled pixels [81]. In [82], a so-
called bootstrapped SVM was proposed as a modification of 
the SVM. The training strategy of the approach is that an 
incorrectly classified training sample in a given learning 
step is removed from the training pool, reassigned a correct 
label, and reintroduced into the training set in the subse-
quent training cycles.

In addition to the SVM, a composite kernel framework 
for the classification of hyperspectral images was recently 
investigated. In [83], a linearly weighted composite ker-
nel framework with SVMs was used for the classification 
of hyperspectral data. However, classification using com-
posite kernels and SVMs demands a convex combination 
of kernels and a time-consuming optimization process. To 
overcome these limitations, a generalized composite kernel 
framework for spectral–spatial classification was developed 
in [83]. The MLR [33], [37], [84] was also investigated as 
an alternative to the SVM classifier for the construction of 
composite kernels, and a set of generalized composite ker-
nels that can be linearly combined without any constraint 
of convexity was proposed.

DECISION TREES
Decision trees represent another subclass of nonparametric 
approaches that can be used for both classification and re-
gression. Safavian and Landgrebe [85] provided a good de-
scription of such classifiers. 
During the construction of a 
decision tree, the training set 
is progressively split into an 
increasing number of smaller, 
more homogeneous groups. 
This unique hierarchical con-
cept is different from other 
classification approaches that 
generally use the entire fea-
ture space at once and make 
a single membership decision 
per class [86]. The relative 
structural simplicity of decision 
trees and the  relatively short 
training time required (compared to methods that can be 
computationally demanding) are the main advantages of 
such classifiers [1], [87], [88]. Moreover, decision tree classi-
fiers make it possible to directly interpret class membership 
decisions with respect to the impact of individual features 
[5]. Although a standard decision tree may be degraded under 
some circumstances, its general concept is of interest, and the 
classifier performance can be further improved in terms of 
classification accuracies by classifier ensembles or multiple 
classifier systems [89], [90].

ENSEMBLE METHODS (MULTIPLE CLASSIFIERS)
Traditionally, a single classifier was taken into account to al-
locate a class label for a given pixel. However, in most cases, 
the use of an ensemble of classifiers (multiple classifiers) 
can be considered to increase classification accuracies [1]. To 
develop an efficient multiple classifier, one needs to deter-
mine an effective combination of classifiers such that each 
is able to benefit the others while avoiding the weaknesses 
of each [89]. Two highly used multiple classifiers are boost-
ing and bagging [89], [91], [92], which were elaborated in 
detail in [1].

RANDOM FORESTS
RFs were first introduced in [95], and they represent a popu-
lar ensemble method for classification and regression. This 
classifier has been widely used in conjunction with hyper-
spectral data, since it does not assume any underlying prob-
ability distribution for input data. Moreover, it can provide 
a good classification result in terms of accuracies in an ill-
posed situation when there is no balance between dimen-
sionality and the number of available training samples. In 
[96], rotation forest is proposed based on the idea of RFs 
to simultaneously encourage both member diversities and 
individual accuracy within a classifier ensemble. For a de-
tailed description of this approach, see [1], [90], [93], [95], 
and [96].
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SPARSE REPRESENTATION CLASSIFIERS 
Another important development has been the use of sparse 
representation classifiers (SRCs) with dictionary-based gen-
erative models [97], [98]. In this case, an input signal is rep-
resented by a sparse linear combination of samples (atoms) 
from a dictionary [97], where the training data are generally 
used as the dictionary. The main advantage of SRCs is that 
they avoid the heavy training procedure that a supervised 
classifier generally conducts, and the classification is per-
formed directly on the dictionary. Given the availability of 
sufficient training data, some researchers have also devel-
oped discriminative as well as compact class dictionaries to 
improve classification performance [99].

DEEP LEARNING
Deep learning is a kind of neural network with multilay-
ers, typically deeper than three layers, that tries to hierar-
chically learn the features of input data. Deep learning is 
a fast-growing topic that has shown usefulness in many 
research areas, including computer vision and natural 

language processing [100]. 
In the context of RS, some 
deep models have been pro-
posed for hyperspectral data 
feature extraction and clas-
sification [101]. The stacked 
autoencoder (SAE) and the 
autoencoder (AE) with sparse 
constrain were proposed for 
hyperspectral data classifica-
tion [102], [103]. Later, an-
other deep model, i.e., the 
deep belief network (DBN), 

was proposed for the classification of hyperspectral data 
[104]. Very recently, an unsupervised convolutional neural 
network (CNN) was proposed for RS image analysis, which 
uses greedy layer-wise unsupervised learning to formulate 
a deep CNN model [105].

CLASSIFICATION ACCURACY ASSESSMENT
Accuracy assessment is a crucial step in evaluating the effi-
ciency and capability of different classifiers. There are many 
sources of errors, such as errors caused by the classification 
algorithm, position errors caused by the registration step, 
mixed pixels, and unacceptable quality of training and test 
samples. In general, it is assumed that the difference be-
tween the classified image and the reference data is due to 
the errors caused by the classification algorithm itself [23]. 
A considerable number of works and reviews on classifica-
tion accuracy assessment have been conducted in the area 
of RS [1], [106]–[111].

THIS ARTICLE’S CONTRIBUTIONS 
The main aim of this article is to critically compare rep-
resentative spectral-based classifiers (such as those out-
lined in the “Literature Review” section) from different 

perspectives. Without any doubt, classification plays an 
important role in the analysis of hyperspectral data. There 
are many papers dealing with advanced classifiers, but, to 
the best of our knowledge, there is no contribution in the 
literature that critically reviews and compares advanced 
classifiers with each other, providing recommendations on 
best practice when selecting a specific classifier for a given 
application domain.

To make our research more specific, we consider only 
spectral and per-pixel-based classifiers in this article. In 
other words, spatial classifiers, fuzzy approaches, subpixel 
classifiers, object-based approaches, and per-field RS-GIS  
approaches are considered to be out of scope.

Compared to previous review papers, such as [112] pub-
lished in 2009 that provides a general review of the advanc-
es in techniques for hyperspectral image processing to that 
date, this article deals specifically with spectral classifiers 
and includes the most recent and advanced spectral classi-
fication approaches in the hyperspectral community (with 
many new developments since the publication of the pre-
vious paper). In addition, we believe that a few specific clas-
sifiers have gained great interest in the hyperspectral com-
munity because of their ability to handle high- dimensional 
data with a limited number of training  samples. Among 
those approaches, neural networks, RFs, MLR, SVMs, and 
deep CNN-based classifiers are the most widely used at 
present. As a result, we first elaborate on these approaches 
and then further compare them based on different scenari-
os, such as the capability of the methods in terms of having 
different numbers of training samples, spatial resolution, 
stability, complexity, and the automation of the considered 
classifiers. The aforementioned approaches are applied to 
three widely used hyperspectral images (e.g., Indian Pines, 
Pavia University, and Houston), and the obtained results 
are critically compared with each other. To make the equa-
tions easier to follow, Table 2 details all of the notations 
used in this article.

Figure 1 shows the classification approaches investi-
gated in this article along with their publication year and 
the number of citations obtained so far. However, it should 
be noted that, in each paper, authors cited different papers 
as the original one. Here, we use the most-cited paper of 
the corresponding classifier used in the RS community. We 
used [58] for neural networks, [90] for RFs, [33] for MLR, 
[113] for SVMs, [114] for ELM, and [115] for kernel ELM 
(KELM). Since the CNN was published only very recently, it 
is not shown in Figure 1.

NEURAL NETWORKS
Artificial neural networks (ANNs) have been traditionally 
used in multihyperspectral data classification. FNs, in par-
ticular, have been extensively applied because of their abil-
ity to approximate complex nonlinear mappings directly 
from the input samples using a single hidden layer [116]. 
Traditional learning techniques are based on the original 
BP algorithm [63]. The most popular group is the gradient  
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descent-based learning methods, which are generally slow 
and may easily converge to a local minima. These tech-
niques adjust the weights in the steepest descent direction 
(negative of the gradient), which is the direction in which 
the performance function decreases most rapidly, but this 
does not necessarily produce the fastest convergence [64]. In 
this sense, several conjugate gradient algorithms have been 
proposed to perform a search along conjugate directions, 
which generally result in faster convergence. These algo-
rithms usually require high storage capacity and are widely 
used in networks with a large number of weights. Lastly, 
Newton-based learning algorithms generally provide  better 
and faster optimization than conjugate gradient methods. 
Based in the Hessian matrix (second derivatives) of the 
performance index at the current values of the weight and 
biases, their convergence is faster, although their complexity 
usually introduces an extra computational burden for the 
calculation of the Hessian matrix.

Recently, the ELM algorithm has been proposed to train 
SLFNs [66], [67] and has emerged as an efficient algorithm 
that provides accurate results in much less time. Tradi-
tional gradient-based learning algorithms assume that 
all of the parameters (weight and bias) of the feedforward 
networks need to be tuned, establishing a dependency 
between different layers of parameters and fostering very 
slow convergence. In [117] and [118], it was first shown that 
an SLFN (with N  hidden nodes) with randomly chosen 
input weights and hidden-layer biases can learn exactly 
N  distinct observations, which means that it may not be 
necessary to adjust the input weights and first hidden-
layer biases in applications. In [66], it was proven that the 
input weights and hidden-layer biases of an SLFN can be 
randomly assigned if the activation function of the hid-
den layer is infinitely differentiable, which allows for the 
analytical determination of the rest of the parameters (the 
weights between the hidden and output layers) since the 
SLFN is a linear system. This fact leads to a significant de-
crease of the computational complexity of the algorithm, 
making it much faster than its predecessors, and turning 
ELM into the main alternative for the analysis of large 
amounts of data.

Let ( )x ti i  be n distinct samples, where [ , , ..., ]x x xxi i i id
T

1 2=  
! IRd  and [ , , ..., ]t t tti i i iK

T
1 2=  ! ,IRK  where d  is the spectral 

dimensionality of the data and K  is the number of spectral 
classes. An SLFN with L  hidden nodes and an activation 
function ( )f x can be expressed as

 ( ) ( · ) , , ..., ,f f b j n1x w x oi
i

L

i j i
i

L

i j i j
1 1
b b= + = =

= =

/ / (1)

where [ , , ..., ]w w wwi i i id
T

1 2=  is the weight vector con-
necting the i th hidden node and the input nodes, 

[ , , ..., ]i i i iK
T

1 2b b b b=  is the weight vector connecting 
the i th hidden node and the output nodes, bi  is the bias 
of the i th hidden node, and ( · )f bw xi j i+  is the output of 
the i th hidden node regarding the input sample .xi  The 
above equation can be rewritten compactly as

· ,H Yb =  (2)
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TABLE 2. A LIST OF NOTATIONS AND ACRONYMS.

NOTATIONS DEFINITION NOTATIONS DEFINITION NOTATIONS DEFINITION NOTATIONS DEFINITION 

x Pixel vector d Number of bands b Bias m Regularization 
parameter

U Transformation C Regularization 
parameter

v Stack variable k Kernel 

.  Euclidean norm w Normal vector L Number of  
hidden nodes 

K Number of classes 

y Classification 
label 

w Input weight n Number of  
training samples

( | )xp yi i  Probability of pixel i 

a Lagrange 
 multiplier

b Output weight v Visible units h Hidden units 
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FIGURE 1. The number of citations associated with each classifier.
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where H is the output matrix of the hidden layer and b is 
the output weight matrix. The objective is to find specific 

, ,bw ii bt t t  ( , ..., )i L1=  so that
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As mentioned before, the minimum of H Y 2b-  is tradi-
tionally calculated using gradient-based learning algo-
rithms. The main issues related to these traditional methods 
are as follows:
◗ First and foremost, all gradient-based learning algo-

rithms are very time consuming in most applications. 
This became an important problem when classifying 
hyperspectral data.

◗ The size of the learning rate parameter strongly affects 
the performance of the network. Values that are too 
small generate very slow convergence processes, while 
scores in h that are too large make the learning algo-
rithm diverge and become unstable.

◗ The error surface generally presents local minima. Gra-
dient-based learning algorithms can get stuck at local 
minima. This can be an important issue if local minima 
are far above global minima.

◗ FNs can be overtrained using BP-based algorithms, thus 
obtaining worse generalization performance. The ef-
fects of overtraining can be alleviated using regulariza-
tion or early stopping criteria [119].
It has been proved in [66] that the input weights wi

and the hidden-layer biases bi do not need to be tuned, 
so the output matrix of the 
hidden layer H can remain 
unchanged after a random 
initialization. Fixing the in  put 
weights wi  and the hidden-
layer biases bi  means that 
training an SLFN is equiva-
lent to finding a least-squares 
solution bt  of the linear sys-
tem .H Yb =  Different from 
the traditional gradient-based 
learning algorithms, ELM 
aims to reach not only the 

smallest training error but also the smallest norm of out-
put weights.

 .Minimize:   and  H Y 2 2b b- (6)

Let ( ) [ ( · ), ..., ( · )],f b f bh x w x w xL L1 1= + +  if we express 
(6) from the optimization theory point of view

 ,min C2
1

2
1

i
i

n

2
2 2

1
b p+b

=

/ (7)

 . . ( ) , , ..., ,s t i n1h x yi i
T

i
2b p= - =  (8)

where i
2p  is the training error of training sample xi  and C  is 

a regularization parameter. The output of ELM can be ana-
lytically expressed as

 ( ) ( ) .Ch x h x H I HH YT T
1

b = +
-

a k (9)

This expression can be generalized to a kernel version of 
ELM using the kernel trick [71]. The inner product opera-
tion considered in ( )h x HT  and HHT  can be replaced by 
a kernel function: ( )· ( ) ( , ).kh x h x x xi j i j=  Both the regu-
larized and kernel extensions of the traditional ELM al-
gorithm require the setting of the needed parameters (C
and all kernel-dependent parameters). When compared 
with traditional learning algorithms, ELM has the follow-
ing advantages:
◗ There is no need to iteratively tune the input weights wi

and the hidden-layer biases bi  using slow gradient-based 
learning algorithms.

◗ Derived from the fact that ELM tries to reach both the 
smallest training error and the smallest norm of output 
weights, this algorithm exhibits better generalization 
performance in most cases when compared with tradi-
tional approaches.

◗ ELM’s learning speed is much faster than in the tradi-
tional gradient-based learning algorithms. Depending 
on the application, ELM can be tens to hundreds of 
times faster [66].

◗ The use of ELM avoids inherent problems with gradient-
descent methods such as getting stuck in a local minima 
or overfitting the model [66].

SUPPORT VECTOR MACHINES
SVMs [113] have often been used for the classification 
of hyperspectral data because of their ability to handle 
high-dimensional data with a limited number of train-
ing  samples. The goal is to define an optimal linear- 
separating hyperplane (the class boundary) within a 
multidimensional feature space that differentiates the 
training samples of two classes. The best hyperplane is the 
one that leaves the maximum margin from both classes. 
The hyperplane is obtained using an optimization prob-
lem that is solved via structural risk minimization. In this 
way, in contrast to statistical approaches, SVMs minimize 
classification error on unseen data without any prior as-
sumptions made on the probability distribution of the 
data [120].

The SVM tries to maximize the margins between the 
hyperplane and the closest training samples [75]. In other 
words, to train the classifier, only samples that are close 
to the class boundary are needed to locate the hyperplane 
vector. This is why the training samples closest to the hy-
perplane are called support vectors. More importantly, since 
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only the closest training samples are influential in placing 
the hyperplane in the feature space, the SVM can classify 
the input data efficiently even if only a limited number of 
training samples is available [2], [113], [121], [122]. In addi-
tion, SVMs can efficiently handle the classification of noisy 
patterns and multimodal feature spaces.

With regard to a binary classification problem in a d -
dimensional feature space, ,IR xd

i ! ,IRd , ,i n1 f=  is a 
set of n  training samples with their corresponding class 
labels yi { , }1 1! + . The optimal separating hyperplane 

( )f x  is determined by a normal vector w ! IRd  and the 
bias ,b where /b w  is the distance between the hyper-
plane and the origin, with w  as the Euclidean norm 
from w

( ) .f w bx x= + (10)

The support vectors lie on two canonical hyperplanes 
bw 1x !+ =  that are parallel to the optimal separating hy-

perplane. The margin maximization leads to the following 
optimization problem:

 ,min w C2 i
i

n2

y+ / (11)

where the slack variables iy  and the regularization param-
eter C  are considered to deal with misclassified samples in 
nonseparable cases, i.e., cases that are not linearly separable. 
The regularization parameter is a constant used as a penalty 
for samples that lie on the wrong side of the hyperplane. 
It is able to efficiently control the shape of the solution of 
the decision boundary. Thus, it affects the generalization 
capability of the SVM (e.g., a large value of C  may cause the 
approach to overfit the training data) [97].

The SVM described previously is a linear classifier, 
while decision boundaries are often nonlinear for clas-
sification problems. To tackle this issue, kernel methods 
are required to extend the linear SVM approach to non-
linear cases. In such cases, a nonlinear mapping is used 
to project the data into a high-dimensional feature space. 
After the transformation, the input pattern x  can be de-
scribed by ( ) .xU

 ( ( ), ( )) ( , ).kx x x xi j i jU U =  (12)

The transformation into the higher-dimensional space can 
be computationally intensive. The computational cost can 
be decreased using a positive definite kernel ,k  which ful-
fills the so-called Mercer’s conditions [77], [95]. When the 
Mercer’s conditions are met, the final hyperplane can be 
defined by

 ( ) ( , ) ,f y k bx x xi
i

n

i i j
1
a= +

=

d n/ (13)

where ia  denotes the Lagrange multipliers. For a detailed 
derivation of (13), we refer readers to [123]. In the new 
feature space, an explicit knowledge of U  is not needed. 

The only required knowledge lies on the kernel function 
.k  Therefore, one needs to estimate the parameters of the 

kernel function as well as the regularization parameter. To 
solve this issue, an automatic model selection based on a 
cross validation was introduced [124]. In [125], a genetic 
algorithm-based approach was used to regulate the hyper-
plane parameters of an SVM while it found efficient fea-
tures to be fed to the classifier.

In terms of kernels, the Gaussian RBF kernel may be the 
most widely used in RS [77], [95]. This kernel can handle 
more complex, nonlinear class distributions in comparison 
with a simple linear kernel, which is just a special case of 
the Gaussian RBF kernel [1], [126].

SVMs were originally developed for binary classifica-
tion problems. In general, one needs to deal with multiple 
classes in RS [1]. To address this, several multiclass strate-
gies have been introduced in the literature. Among those 
approaches, two main strategies are best known and are 
based on the separation of the multiclass problem into sev-
eral binary classification problems [127]. These are the one-
against-one strategy and the one-against-rest strategy [95]. 
The following are some important points:
◗ The capability of the SVM in handling a limited num-

ber of training samples, self-adaptability, a swift train-
ing stage, and ease of use are considered as the main 
advantages of this classifier. In addition, SVMs are resil-
ient to becoming trapped 
in local minima, since the 
convexity of the cost func-
tion enables the classifier to 
consistently identify the op-
timal solution [120]. More 
precisely, SVMs deal with 
quadratic problems and, 
as a result, they guarantee 
to the global minimum. 
Furthermore, the result of the SVM is stable for the same 
set of training samples, and there is no need to repeat 
the classification step, as is the case for many approach-
es such as neural networks. Last but not least, SVMs are 
nonparametric and do not assume a known statistical 
distribution of the data to be classified. This is consid-
ered an important advantage because the data acquired 
from remotely sensed imagery usually have unknown 
distributions [120].

◗ One drawback of the SVM lies in setting the key param-
eters. For example, choosing a small value for the kernel 
width parameter may cause overfitting, while a large 
value may cause oversmoothing, which is a common 
drawback of all kernel-based approaches. Moreover, the 
choice of the regularization parameter ,C  which con-
trols the tradeoff between maximizing the margin and 
minimizing the training error, is highly important.

For further reading, a detailed introduction of SVMs is giv-
en by Burges [123], Cristianini and Shawe-Taylor [130], and 
Scholkopf and Smola [77].
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MULTINOMIAL LOGISTIC REGRESSION
MLR models the posterior densities ( | , )p xyi i ~  as follows 
[32]:

 ( | , )
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where [ , ..., ]( ) ( )K T1 1T T

~ ~ ~= -  are the logistic regressors. 
Again, yi  is the class label of pixel , dx Ri

d!  is the number 
of bands, and K  is the number of classes. Since the density 
in (14) does not depend on translations of the regressors 

,( )k~  we take .0( )K~ =  The term ( ) [ ( ), , ( )]x x xl
T

1 fz zU =  
is the fixed functions of the input, often termed features. 
The open structure of ( )xU  leads to flexible selection of the 
input features, i.e, they can be linear, kernel, or nonlinear 
functions. To control the algorithm complexity and its gen-
eralization capacity, the regressor ~  is modeled as a ran-
dom vector with Laplacian density [129]

( ) ( ),expp 1?~ m ~- (15)

where m is the regularization parameter controlling the de-
gree of sparsity of .~

In the present problem, under a supervised scenario, 
learning the class density amounts to estimating the lo-
gistic regressors ,~  which can be done by computing the 
maximum a posteriori estimate of ~

( ) ( ),argmax logp,~ ~ ~= +
~

t (16)

where ( ), ~  is the log-likelihood function over the labeled 
training samples. For supervised learning, it is given by

 ( ) ( | , ),logp y k x
i

n

i i
1

, /~ ~=
=

/ (17)

where n is the number of training samples. Although con-
vex, (16) is difficult to compute because the term of ( ), ~  
is nonquadratic and the term ( )logp ~  is nonsmooth. Fol-
lowing [32], ( ), ~  can be estimated by a quadratic function. 
However, the problem is still difficult, as ( )logp ~  is non-

smooth. Optimization prob-
lem (16) can be solved by the 
SMLR in [129] and by the fast 
SMLR in [35]. However, most 
hyperspectral data sets are 
beyond the reach of these al-
gorithms, as their processing 
becomes unbearable when 
the dimensionality of the in-
put features increases. This 
is even more critical in the 
frameworks of composite ker-
nel learning and multiple fea-
ture learning. To address this 

issue, the LORSAL algorithm is proposed in [36] and [37] 
to deal with high-dimensional features and leads to good 

success in hyperspectral classification. For more informa-
tion about the LORSAL algorithm, see [33] and [37].

Finally, the advantages of MLR are as follows:
◗ MLR classifiers are able to directly learn the posterior 

class distributions and deal with the high dimensional-
ity of hyperspectral data in a very effective way. The class 
posterior probability plays a crucial role in the complete 
posterior probability under the Bayesian framework to 
include the spectral and spatial information.

◗ The sparsity-inducing prior on the regressors leads to 
sparse estimates, which allows us to control the algo-
rithm complexity and their generalization capacity.

◗ The open structure of the MLR results in a good flexibil-
ity for the input functions, which can be linear, kernel-
based, or nonlinear.

RANDOM FORESTS
RFs were proposed in [93] as an ensemble method for clas-
sification and regression. Ensemble classifiers get their 
name from the fact that several classifiers, i.e., an ensem-
ble of classifiers, is trained and their individual results are  
then combined through a voting process [130], [131]. In 
other words, the classification label is allocated to the input 
vector ( )x  through ( ) ,y y x majority voterf

B
b

B
1= " ,  where ( )y xb

is the class prediction of the bth tree and B shows the total 
number of trees. RFs can be considered to be a particular 
case of decision trees. However, since RFs are composed of 
many classifiers, this implies special characteristics that 
make them completely different from traditional classifica-
tion trees; therefore, they should be understood as a new 
type of classifier [132].

The training algorithm for RFs applies the general tech-
nique of bootstrap aggregating, or bagging, to tree learners 
[92]. Bootstrap aggregating is a technique used for training 
data creation by resampling the original data set in a ran-
dom fashion, with replacement (i.e., there is no deletion 
of the data selected from the input sample for generating 
the next subset) [132]. The bootstrapping procedure leads 
to more efficient model performance, since it decreases 
the variance of the model without increasing the bias. 
In other words, while the predictions of a single tree are 
highly sensitive to noise in its training set, the average of 
many trees is not that sensitive as far as the trees are not 
correlated [133]. By training many trees on a single train-
ing set (or even the same tree many times if the training 
algorithm is deterministic), strongly correlated trees are 
produced. Bootstrap sampling decorrelates the trees by 
showing them different training sets. RF uses trees as base 
classifiers, ( , ),   , . . . , ,h k 1x ki =" ,  where x  and ki  are the 
set of input vectors and the independent and identically 
distributed random vectors [95], [136]. Since some data 
may be used more than once for the training of the classi-
fier while others may not be used, greater classifier stabil-
ity is achieved. This makes the classifier more robust when 
a slight variation in input data occurs, and consequently 
higher classification accuracy can be obtained [132], [134]. 
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As mentioned in several studies, such as [88], [89], [132], 
and [135], methods based on bagging such as RFs, in con-
trast with other methods based on boosting, are not sensi-
tive to noise or overtraining.

In RFs, there are only two parameters to generate the 
prediction model, i.e., the number of trees and the number 
of prediction variables. The number of trees is a free param-
eter that can be chosen with respect to the size and nature 
of the training set. One possible way to choose the optimal 
number of trees is based on cross validation or by observing 
the out-of-bag error [93], [131], [136]. For detailed informa-
tion regarding RFs and their different implementations, see 
[1], [130], and [131]. The number of prediction variables is 
referred to as the only adjustable parameter to which the 
forest is sensitive. As mentioned in [1], the optimal range 
of this parameter can be quite wide. However, the value is 
usually set to approximately the square root of the number 
of input features [130], [131], [137], [138].

By using RFs, the out-of-bag error, the variable impor-
tance, and the proximity analysis can be driven. To find de-
tailed information about the RF and its derived parameters, 
see [1], [86], [93], [130], [131], and [136]. The following are 
some important points about RFs:
◗ RFs are quite flexible, and they can handle different sce-

narios, such as large numbers of attributes, very limited 
numbers of training samples, and small or large data 
sets. In addition, they are easy and quick to evaluate.

◗ RFs do not assume any underlying probability dis-
tribution for input data, can provide a good classifica-
tion result in terms of accuracies, and can handle many 
variables and a large amount of missing data. Another 
advantage of the RF classifier is that it is insensitive to 
noise in the training labels. In addition, RF provides an 
unbiased estimate of the test set error as trees are added 
to the ensemble, and finally it does not overfit.

◗ The generated forest can be saved and used for other 
data sets.

◗ In general, for sparse feature vectors, which is the case in 
most high-dimensional data, a random  selection of fea-
tures may not be efficient all the time since  uninformative 
or correlated features might be  selected, which down-
grades the performance of the classifier.

◗ Although RFs have widely been used for classification 
purposes, a gap still remains between the theoretical 
understanding of RFs and their corresponding practical 
use. A variety of RF algorithms have been introduced, 
showing promising practical success. However, these 
algorithms are difficult to analyze, and the basic math-
ematical properties of even the original variant are still 
not well understood [139].

DEEP LEARNING-BASED APPROACHES
There are some motivations to extract the invariant fea-
tures from hyperspectral data. First, undesired scattering 
from neighboring objects may deform the characteristics of 
the object of interest. Furthermore, different atmospheric 

scattering conditions and intraclass variability make it ex-
tremely difficult to effectively extract the features. Moreover, 
hyperspectral data quickly in-
crease in volume, velocity, and 
variety, so they are difficult 
to analyze in complicated real 
situations. On the other hand, 
it is believed that deep models 
can progressively lead to more 
invariant and abstract features 
at higher layers [100]. There-
fore, deep models have the 
potential to be a promising 
tool. Deep learning involves a 
number of models, including 
the SAE [140], DBN [141], and deep CNN [142].

THE SAE
The AE is the basic part of the SAE [140]. As shown in 
 Figure 2, an AE contains one visible layer of d  inputs, one 
hidden layer of L  units, and one reconstruction layer of d
units. During the training procedure, IRx d!  is mapped 
to IRz L!  in the hidden layer, and it is called the encoder. 
Then, z  is mapped to IRr d!  by a decoder, which is called 
the reconstruction. These two steps can be formulated as
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f b

f b

z w x

r w x
z z

r r

= +

= +

where wz  and wr  denote the input-to-hidden and the hid-
den-to-output weights, respectively. bz  and br  denote the 
bias of the hidden and output units, and (.)f  denotes the 
activation function.

Stacking the input and hidden layers of AEs together layer 
by layer constructs an SAE. Figure 3 shows a typical instance 
of an SAE connected with a subsequent logistic regression 
classifier. The SAE can be used as a spectral  classifier.

DBNS

The restricted Boltzmann machine (RBM) is a layer-wise 
training model in the construction of a DBN [143]. As 
shown in Figure 4, it is a two-layer network with visible units 

wr , br

wz , bz

r

z

x

Input

Reconstruction

FIGURE 2. A single hidden-layer AE. The model learns a hidden 
feature z from input x by reconstructing it on r.
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,0 1v d= " ,  and hidden units ,0 1h L= " , . A joint configura-
tion of the units has an energy given by
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where , , ,b a wi j iji = " ,  in which wij  is the weight between 
visible unit i  and hidden unit ,j  and bi  and a j  are bias 
terms of the visible and hidden unit, respectively. The 
learning of wij  is done by a method called constructive 
 divergence [141].

Due to the complexity of input hyperspectral data, RBM 
is not the best way to capture the features. After the train-
ing of RBM, the learned features can be used as the input 
data for the following RBM. This kind of layer-by-layer 
learning system constructs a DBN. As shown in Figure 5, 
a DBN is employed for feature learning and adds a logistic 
regression layer above the DBN to constitute a DBN-logis-
tic regression framework.

THE DEEP CNN
The CNN is a special type of deep learning model that is 
inspired by neuroscience. A complete CNN stage contains a 
convolution layer with nonlinear operation and a pooling 
layer. A convolutional layer is as follows:
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where xi
l 1-  is the i th feature map of ( )l 1- th layer, x j

l  is 
the j th feature map of current ( )i th  layer, and M is the 
number of input feature maps. kijl  and b jl  are the trainable 
parameters in the convolutional layer. (.)f  is a nonlinear 
function, and * is the convolution operation. It should be  
noted that here we explain one-dimensional (1-D) CNN, 
as this article deals with spectral classifiers. To find de-
tailed information about two-dimensional (2-D) and 
three-dimensional (3-D) CNN for the classification of 
hyperspectral data, see [145]. 

The pooling operation offers invariance by reducing the 
resolution of the feature maps. The neuron in the pooling 
layer combines a small N 1#  patch of the convolution layer, 
and the most common pooling operation is max  pooling. 
A convolution layer, nonlinear function, and pooling layer 
are three fundamental parts of CNNs [144]. By stacking 
several convolution layers with nonlinear operation and 
several pooling layers, a deep CNN can be formulated. A 
deep CNN can hierarchically extract the features of inputs, 
which tend to be invariant and robust [100].

The architecture of a deep CNN for spectral classifica-
tion is shown in Figure 6. The input of the system is a 
pixel vector of hyperspectral data, and the output is the 

Convolution
Pooling Logistic

Regression
Pixel

Vector
Feature Map 2

Feature Map 1

Feature Map 3

Convolution Pooling Stack

Output:
Class
Labels

FIGURE 6. A spectral classifier based on a deep CNN.
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w

FIGURE 4. A graphical illustration of an RBM. The top layer (h) 
represents the hidden units and the bottom layer (v) represents the 
visible units. w: input weight.
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FIGURE 5. A spectral classifier based on a DBN. The classification 
scheme shown here has four layers: one input layer, two RBMs, and 
a logistic regression layer. 
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FIGURE 3. A typical instance of an SAE connected with a subse-
quent logistic regression classifier. 
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label of the pixel to be classified. It consists of two convo-
lutional and two pooling layers as well as a logistic regres-
sion layer. After convolution and pooling, the pixel vector 
can be converted into a feature vector that captures the 
spectral information.

DISCUSSION OF DEEP LEARNING APPROACHES
The following aspects are worth being mentioned about 
deep learning-based approaches:
◗ Recently, some deep models have been used in hy-

perspectral data feature extraction and classification. 
Deep learning opens a new window for future research, 
showcasing the deep learning-based methods’ huge 
potential [145].

◗ The architecture design is the crucial part of a successful 
deep learning model. How to design a proper deep net 
is still an open area in the machine learning communi-
ty, though we may be able to use grid searches to find a 
proper deep model. 

◗ Deep learning methods may lead to a serious problem 
called overfitting, which means that the results can be 
very good on the training data but poor on the test data. 
To deal with this issue, it is necessary to use powerful 
regularization methods.

◗ Deep learning methods can be combined with other 
methods, such as sparse coding and ensemble learn-
ing, which is another research area in hyperspectral 
data classification.

EXPERIMENTAL RESULTS
This section describes our experimental results, including 
the different hyperspectral data sets used in experiments, the 
setup for the different algorithms to be compared, and the ob-
tained results with a detailed discussion about the use of the 
different classifiers tested in different applications. The sets 
of training and test samples used in this article are available 
on request by e-mailing the authors.  

DATA DESCRIPTION

PAVIA UNIVERSITY
This hyperspectral data set has been repeatedly used. It was 
captured over the city of Pavia, Italy, by the Reflective Op-
tics Spectrographic Imaging System (ROSIS-03) airborne 
instrument. The flight over the city of Pavia was operated 
by the Deutschen Zentrum für Luft- und Raumfahrt (DLR, 
the German Aerospace Agency) within the context of the 
HySens project, managed and sponsored by the European 
Union. The ROSIS-03 sensor has 115 data channels with 
a spectral coverage ranging from 0.43 to 0.86 μm. Twelve 
channels have been removed due to noise. The remaining 
103 spectral channels were processed. The data have been 
corrected atmospherically but not geometrically. The spa-
tial resolution is 1.3 m per pixel. The data set, with dimen-
sions of 640 340#  pixels, covers the Engineering School 
at the University of Pavia and consists of different classes, 

including trees, asphalt, bi-
tumen, gravel, metal sheet, 
shadow, bricks, meadow, and 
soil (see Table 3). Figure 7 
presents a false color image 
of ROSIS-03 Pavia University 
data and their  corresponding 
reference samples. These sam-
ples are usually obtained by 
manual labeling of a small num -
ber of pixels in an image or 
based on some field measurements. Thus, the collection of 
these samples is expensive and time demanding [2]. As a re-
sult, the number of available training samples is usually limit-
ed, which is a challenging issue in supervised classification.

INDIAN PINES
This data set was acquired by the Airborne Visible/Infra-
red Imaging Spectrometer (AVIRIS) sensor over the agri-
cultural Indian Pines test site in northwestern Indiana. 

Asphalt

Meadows

Gravel

Trees
Metal
Sheets
Bare Soil

Bitumen

Bricks

Shadows

(a) (b) (c)

FIGURE 7. Some ROSIS-03 Pavia University hyperspectral data: (a) 
the three-band false color composite, (b) the reference data, and (c) 
the color code.

TABLE 3. PAVIA UNIVERSITY:  
THE NUMBER OF TRAINING AND TEST SAMPLES.

CLASS NUMBER OF SAMPLES

NUMBER NAME TOTAL 

1 Asphalt 6,304

2 Meadow 18,146 

3 Gravel 1,815

4 Tree 2,912 

5 Metal sheets 1,113 

6 Bare soil 4,572 

7 Bitumen 981 

8 Brick 3,364 

9 Shadow 795 

Total 40,002 

DEEP LEARNING OPENS A 

NEW WINDOW FOR FUTURE 

RESEARCH, SHOWCASING 

THE DEEP LEARNING-

BASED METHODS’  

HUGE POTENTIAL. 
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Its spatial dimensions are 145 145#  pixels, and its spa-
tial resolution is 20 m per pixel. This data set originally 
included 220 spectral channels, but 20 water absorption 
bands (104–108, 150–163, 220) have been removed, and 
the rest (200 bands) were taken into account for the experi-
ments. The reference data contain 16 classes of interest that 

represent mostly different types of crops and are detailed in 
Table 4. Figure 8 shows a three-band false color image and 
its corresponding reference samples.

HOUSTON DATA
This data set was captured by the Compact Airborne Spec-
trographic Imager (CASI) over the University of Houston 
campus and the neighboring urban area in June 2012. 
With a size of 349 1905#  pixels and a spatial resolution 
of 2.5 m, this data set is composed of 144 spectral bands 
ranging from 0.38 to 1.05 m. These data consist of 15 class-
es, including healthy grass, stressed grass, synthetic grass, 
trees, soil, water, residential, commercial, road, highway, 
railway, parking lot 1, parking lot 2, tennis court, and run-
ning track. Parking lot 1 includes parking garages at the 
ground level and also in elevated areas, while parking lot 
2 corresponds to parked vehicles. Table 5 demonstrates the 
different classes with the corresponding number of train-
ing and test samples. Figure 9 shows a three-band false col-
or image and its corresponding already-separated training 
and test samples.

ALGORITHM SETUP
In this article, two different scenarios were defined to 
evaluate different approaches. In the first scenario, differ-
ent percentages of the available reference data were chosen 
as training samples. In this scenario, only Indian Pines 
and Pavia University were considered. For Indian Pines, 1, 
5, 10, 15, 20, and 25% of the whole sample were random-
ly selected as training samples, except for classes alfalfa, 

(a) (b)

Grass/TreesCorn-No Till

Grass/Pasture-MowedCorn-Minimum Till

Hay-WindrowedCorn

OatsSoybeans-No Till

WheatSoybeans-Minimum Till

WoodsSoybeans-Clean Till

Building/Grass/Tree-DrivesAlfalfa

Stone-Steel Towers Grass/Pasture

(c)

FIGURE 8. Some AVIRIS Indian Pines hyperspectral data: (a) the 
three-band false color composite, (b) the reference data, and 
(c) the color code.  

TABLE 5. HOUSTON:  
THE NUMBER OF TRAINING AND TEST SAMPLES.

CLASS NUMBER OF SAMPLES

NUMBER NAME TRAINING TEST 

1 Grass-healthy 198 1,053 

2 Grass-stressed 190 1,064 

3 Grass-synthetic 192 505

4 Tree 188 1,056 

5 Soil 186 1,056

6 Water 182 143 

7 Residential 196 1,072

8 Commercial 191 1,053 

9 Road 193 1,059 

10 Highway 191 1,036 

11 Railway 181 1,054 

12 Parking lot 1 192 1,041 

13 Parking lot 2 184 285 

14 Tennis court 181 247 

15 Running track 187 473 

Total 2,832 12,197

TABLE 4. INDIAN PINES:  
THE NUMBER OF TRAINING AND TEST SAMPLES.

CLASS NUMBER OF SAMPLES

NUMBER NAME TOTAL 

1 Corn-no till 1,434

2 Corn-minimum till 834 

3 Corn 238

4 Grass/pasture 497 

5 Grass/trees 747 

6 Hay-windrowed 489

7 Soybean-no till 968 

8 Soybean-minimum till 2,468 

9 Soybean-clean 614 

10 Wheat 212 

11 Woods 1,294 

12 Building/grass/tree-drives 380 

13 Stone-steel towers 95 

14 Alfalfa 54 

15 Grass/pasture-mowed 26 

16 Oats 20 

Total 10,366 
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grass/pasture-mowed, and oats. These classes contain only 
a small number of samples in the reference data. Therefore, 
only 15 samples in each of these classes were chosen at ran-
dom as training samples and the rest as the test samples. For 
Pavia University, 1, 5, 10, 15, and 20% of the whole samples 
were randomly selected as training samples and the rest as 
test samples. The experiments were repeated ten times, and 
the mean and the standard deviation of the  obtained overall 
accuracy (OA) are reported.

For the second scenario, the Houston data were taken 
into account. The training and test samples of these data 
were separated (Table 5). The results were evaluated using 
OA, average accuracy (AA), kappa coefficient (Kappa), and 
class-specific accuracies.

The following classifiers were investigated and com-
pared in the two different scenarios discussed previously:
◗ SVM 
◗ RF 
◗ BP (also known as multilayer perceptron)
◗ ELM 
◗ KELM 

◗ 1-D CNN 
◗ MLR.

For the MLR classifier, which is executed by the LOR-
SAL algorithm [36,] [37], we use a Gaussian RBF kernel 
given by ( ( / ),expK 2x,z) x z 2 2v= - -  which is widely 
used in hyperspectral image classification problems 
[146]. For the parameters involved in the algorithm, we 
use the default settings provided in the online demo 
(http://www.lx.it.pt/~jun/demo_LORSAL_AL.rar), where 
it illustrates that the MLR classifier is insensitive to the 
parameter settings, which also can be observed in the fol-
lowing experiments.

In terms of the SVM, the RBF kernel is taken into ac-
count. The optimal hyperplane parameters C  (the pa-
rameter that controls the amount of penalty during the 
SVM optimization) and c (the spread of the RBF kernel) 
have been traced in the range of , , ...,C 10 10 102 1 4= - -

and , , ...,10 10 103 2 4c = - -  using fivefold cross validation. 
In terms of the RF, the number of trees is set to 300. The 
number of the prediction variable is set approximately to 
the square root of the number of input bands. The same 

Thematic Classes

Healthy Grass Stressed Grass Synthetic Grass Tree Soil

Water Residential Commercial Road Highway

Railway Parking Lot 1 Parking Lot 2 Tennis Court Running Track

(a)

(b)

(c)

(d)

FIGURE 9. Some CASI Houston hyperspectral data: (a) a color composite representation of the data, using bands 70, 50, and 20 as R, G, and 
B, respectively; (b) training samples; (c) test samples; and (d) a legend of the different classes. 
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parameters were used for all experiments, stating that the 
RF is insensitive to the parameter initialization.

Regarding the BP-based neural network classifier, the 
network has only one hidden layer, and the number of 
hidden nodes has been empirically set within the range 

/ .n K 2 3 10# !+^^ h h  The number of input nodes equals 
the number of spectral bands of the image, while the num-
ber of output nodes equals the number of spectral classes. 
Hidden nodes have sigmoid activation functions while 
output nodes implement softmax activation function. The 
implemented learning algorithm is scaled conjugate gradi-
ent backpropagation [64]. During the experiments, we em-
pirically adjusted the early stopping parameters to achieve 
reasonable performance goals.

In the case of the ELM, the network also has one sin-
gle hidden layer. The number of nodes L  and the regu-
larization parameter C [147] were traced in the ranges of 

, , , ...,L 400 600 800 2000=  and , , ...,C 10 10 103 2 4= - -  using 
fivefold cross validation.

For the KELM, the RBF kernel is considered. Again, the 
regularization parameter C  and the kernel parameter y
were searched in the ranges , , ...,C 10 10 103 1 4= - -  and 

, , ...,2 2 23 2 4c = - -  also using fivefold cross validation. For 
the 1-D CNN, the important parameters are the kernel size,  
the number of layers, the number of feature maps, the num-
ber of neurons in the hidden layer, and the learning rate. 
 Figure 10 shows the architectures of the deep 1-D CNN used 
for the experimental part. As an example, for the Indian Pines 
data set, there are 13 layers, denoted as I1, C2, S3, C4, S5, C6, 
S7, C8, S9, C10, S11, F12, and O13 in sequence. I1 is the input 
layer. C refers to the convolution layers, and S to the pooling 
layers. F12 a fully connected layer, and O13 is the output layer 
of the whole neural network. The input data are normalized 
into [−1 1]. The learning rate is set to 0.005, and the training 
epochs are 700 for the Indian Pines data set. For the Pavia 
University data set, we set the learning to 0.01 and the num-
ber of epochs to 300. For the Houston data set, the learning is 
0.01 with 500 epochs.
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FIGURE 11. Scenario 1: OA. The OA of different approaches 
(i.e., the average value over ten runs) using different percentages 
of training samples from (a) Indian Pines and (b) Pavia University 
obtained by different classification approaches. 
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FIGURE 10. The architectures of the 1-D CNN on three data sets. 
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Figure 11 shows the OA of different approaches (i.e., 
the average value over ten runs) on different percentages 
of  training samples on Indian Pines and Pavia University. 
To evaluate the stability of different classifiers on the change 
of training samples, the standard deviation value over ten 
runs for each percentage is estimated and shown in  Figure 12.

For the Houston hyperspectral data, since the training 
and test sets were already separated, we performed the clas-
sifiers on the standard set of training and test samples. The 
classification accuracies (i.e., OA, AA, Kappa, and class spe-
cific accuracies) are reported in Table 6. The classification 
maps of this data set are shown in Figure 13.

RESULTS AND DISCUSSION
The main observations obtained from our experimental re-
sults are listed systematically as follows:

◗ SVM versus RF: Although both classifiers have the same 
number of hyperparameters to tune (i.e., the RBF SVM has 
c and ,C  and RFs have the number of trees and the depth 
of the tree), RFs’ parameters are easier to set. In practice, 
the more trees we have, the higher the classification ac-
curacy of RFs that can be obtained. RFs are trained faster 
than a kernel SVM. A suggested number of trees can be 
varied from 100 to 500 for the classification of hyperspec-
tral data. However, with respect to our experiments, the 
SVM established higher classification accuracies than RFs.

◗ SVM versus BP: The SVM classifier presents a series of ad-
vantages over the BP classifier. The SVM exhibits less com-
putational complexity, even when the kernel trick is used, 
and usually provides better results when a small number 
of training samples is available. However, if the BP con-
figuration is properly tuned, both classifiers can provide 
comparable classification accuracies. Last but not least, the 
BP is much more complex from a computational point of 
view. Actually, in this work we use the scaled conjugate gra-
dient BP algorithm, which presents a practical complexity 
of (( (( ) )) )O n dLK L K 2+ +  (the square of the number of 
weights of the network), where n is the number of training 
patterns, d the number of spectral bands, L the number of 
hidden nodes, and K  the number of classes [64].

◗ SVM versus ELM: From an optimization point of view, 
the ELM presents the same optimization cost function 
as the least squares SVM [148] but much less computa-
tional complexity. In general terms, ELM training is tens 
or hundreds of times faster than a traditional SVM. 
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FIGURE 12. Scenario 1: stability. The standard deviation value 
over ten runs using different percentages of training samples from 
(a) Indian Pines and (b) Pavia University obtained by different 
 classification approaches. 

TABLE 6. SCENARIO 2: THE CLASSIFICATION ACCURACIES (%) 
OBTAINED BY DIFFERENT CLASSIFICATION APPROACHES  
ON THE HOUSTON HYPERSPECTRAL DATA.  

CLASS SVM RF BP ELM KELM 1D CNN MLR 

1 82.24 82.62 81.86 97.25 95.37 82.91 82.62

2 82.99 83.46 85.63 98.39 98.75 83.65 83.55 

3 99.80 97.62 99.90 100.00 100.00 99.8 99.80

4 92.33 92.14 90.11 96.09 99.49 90.06 92.23 

5 98.30 96.78 98.08 96.80 97.84 97.82 98.39

6 99.30 99.30 86.43 99.03 100.00 99.3 95.10 

7 79.10 74.72 79.64 53.26 73.63 85.63 78.73

8 50.62 32.95 51.80 66.04 76.18 41.41 53.46 

9 79.13 68.65 77.26 76.81 73.88 79.41 79.79

10 57.92 43.15 57.46 71.39 76.08 53.38 58.10 

11 81.31 70.49 85.76 82.25 67.28 70.49 82.44 

12 76.08 55.04 81.76 72.21 59.74 72.72 76.36 

13 69.82 60.00 74.42 42.65 41.74 63.86 68.42 

14 100.00 99.19 99.31 89.81 90.41 99.6 98.78 

15 96.83 97.46 98.08 94.15 94.34 98.52 97.88 

OA 80.18 72.99 80.98 79.55 80.64 78.21 80.60 

AA 83.05 76.9 83.17 82.4 82.98 81.23 83.04 

Kappa 0.7866 0.7097 0.7934 0.7783 0.7901 0.7846 0.7908
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Regarding the classification accuracy, it can be seen that 
the ELM achieves comparable results.

◗ SVM versus KELM: The computational complexity of the 
SVM is much bigger than the KELM. It can be seen that 
the KELM slightly outperforms the SVM in terms of clas-
sification accuracy. Experimental validation shows that 
the kernel used in the KELM and SVM is more efficient 
than the activation function used in ELM.

◗ BP versus ELM versus KELM: In light of the results, it can be 
seen how the three versions of the SLFN  provide compet-
itive results in terms of accuracy. However, it should be 
noticed that both the ELM and KELM are on the order of 
hundreds or even thousands of times faster than the BP. 
Actually, the ELM and KELM have a practical complex-
ity of ( ( ) )O L L n K d Ln3 2+ + +  and ( ( ) )O n K d n2 3 2+ + , 
respectively [149].

◗ SVM versus 1-D CNN: The main advantage of 2-D and 3-D 
CNNs is that they use local connections to handle  spatial de-
pendencies. In this work, however, the 1-D CNN is taken 

to have a fair comparison with 
other spectral approaches. In 
general, the SVM can obtain 
higher classification accura-
cies and work faster than the 
1-D CNN, so the use of SVMs 
over the 1-D CNN is recom-
mended. In terms of central 
processing unit (CPU) pro-
cessing time, deep-learning 
methods are time consuming 

in the training step. Compared to the SVM, the training 
time of the 1-D deep CNN is about two or three times 

longer than the RBF-SVM. On the other hand, the advan-
tage of the deep CNN is that it is extremely fast on the 
testing stage.

◗ MLR (executed via LORSAL) versus other methods: Some of 
the MLR advantages are as follows: 1) It converges very 
fast and is relatively insensitive to parameter settings. In 
our experiments, we used the same settings for all data 
sets and received very competitive results in comparison 
with those obtained by other methods. 2) MLR has a 
very low computational cost, with a practical complex-
ity of ( ( )) .O d K 12 -

For illustrative purposes, Figure 11 provides a compari-
son of the different classifiers tested in this work with the 
Indian Pines and Pavia University scenes (in terms of OA). 
As shown by Figure 11, different classifiers provide differ-
ent performances for the two considered images, indicat-
ing that there is no classifier consistently providing the 
best classification results for different scenes. The stability 
of the different classifiers with the two considered scenes 
is illustrated in Figure 12, which demonstrates how much 
a classifier is stable with respect to some changes in the 
available training sets. Furthermore, Table 6 gives detailed 
infor mation about the classification accuracies obtained by 
different approaches in a different application domain, rep-
resented by the Houston data set. In this case, the optimized 
classifiers also perform similarly in terms of classification 
accuracy; so, ultimately, the choice of a given classifier is 
more driven by the simplicity of tuning the parameters and 
configurations rather than by the obtained classification 
results. This is an important observation, as it is felt that 
the hyperspectral community has reached a point at which 
many classifiers are able to provide very high classification 
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(c) (d)
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Thematic Classes
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FIGURE 13. Scenario 2: classification maps for Houston data using (a) RF, (b) SVM, (c) BP, (d) KELM, (e) MLR, and (f) 1-D CNN. 
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accuracies. However, the competitive differences between 
existing classifiers are more related to their simplicity and 
tuning configurations. In this regard, our assessment of the 
characteristics of different algorithms and their tuning is 
believed to provide helpful insights regarding the choice of 
a given classifier in a certain application domain.

With the aforementioned observations in mind, we can 
interpret the results provided in Table 7 in more detail. In this 
table, one bullet denotes to the worst performance while four 
bullets denotes the best. It can be observed that the KELM 
can provide high classification accuracies in a short period of 
time, while the obtained results are also stable with respect 
to some changes of the input training samples. The SVM and 
MLR also show a fair balance between accuracy, automation 
(obtained with respect to the number of parameters needed 
to be adjusted), speed (evaluated based on the demanded 
CPU processing time of different classifiers), and stability, 
which can be advantageous for applications where a tradeoff 
between these elements is needed. In contrast, the 1-D CNN 
does not display enough advantages, either in terms of clas-
sification accuracy and stability or speed and automation.

CONCLUSIONS
In this article, we have provided a review and critical com-
parison of different supervised hyperspectral classification 
approaches from different points of view, with particular 
emphasis on the configuration, speed, and automation 
capacity of various algorithms. The compared techniques 
include popular approaches such as SVMs, RFs, neural 
networks, deep approaches, logistic regression-based tech-
niques, and sparse representation-based classifiers, which 
have been widely used in the hyperspectral analysis com-
munity but never investigated systematically using a quan-
titative and comparative approach. The critical comparison 
conducted in this work leads to interesting hints about 
the logical choice of an appropriate classifier based on the 
application at hand. The main conclusion that can be ob-
tained from the present study is that there is no classifier 
that  consistently provides the best performance among the 
considered metrics (particularly, from the viewpoint of clas-
sification accuracy). Instead, different solutions depend on 
the complexity of the analysis scenario (e.g., the availability 
of training samples, processing requirements, tuning pa-
rameters, and speed of the algorithm) and on the consid-
ered application domain. Combined, the insights provided 
in this article may facilitate the selection of a specific classi-
fier by an end user depending on his/her expectations and/
or exploitation goals.

ACKNOWLEDGMENTS
The authors would like to thank the National Center for 
Airborne Laser Mapping for providing the Houston data 
set. The ROSIS Pavia University and Indian Pines data 
and the corresponding reference information were kindly 
provided by Prof. P. Gamba, University of Pavia, Italy, and 
Prof. D. Landgrebe, Purdue University, West Lafayette, 

Indiana, respectively. This research was supported by the 
Chinese 1000 people program B under project 41090427 
and by the Guangdong Provincial Science Foundation un-
der project 42030397. This work was also partly supported 
by the Alexander von Humboldt Fellowship for postdoc-
toral researchers.

AUTHOR INFORMATION
Pedram Ghamisi (p.ghamisi@gmail.com) received his B.Sc. 
degree in civil (survey) engineering from the Tehran 
South Campus, Azad University, Iran. He received his M.E. 
degree with first-class honors in remote sensing at K.N. 
Toosi  University of Technology in 2012, and he received 
his Ph.D. degree in electrical and computer engineering 
from the University of Iceland, Reykjavik, in 2015. He then 
worked as a postdoctoral research fellow at the University 
of Iceland. In 2015, he won the prestigious Alexander von 
Humboldt Fellowship and started his work as a postdoc-
toral research fellow at Technische Universität München 
(TUM), Signal Processing in Earth Observation, Munich, 
Germany. He has also been working as a researcher at the 
German Aerospace Center, Remote Sensing Technology 
 Institute, Germany, on deep learning since October 2015. His 
research interests include machine learning, deep learn-
ing, and hyperspectral image analysis. He is a  Member of 
the IEEE.

Javier Plaza (jplaza@unex.es) received his B.S. degree 
in 2002, his M.Sc. degree in 2004, and his Ph.D. degree in 
2008, all in computer engineering. In 2008, he was the re-
cipient of the Outstanding Ph.D. Dissertation Award at the 
University of Extremadura, Spain, where he is an associate 
professor in the Department of Technology of Comput-
ers and Communications. He has authored or coauthored 
more than 120 scientific publications. He is currently serv-
ing as associate editor of IEEE Geoscience and Remote Sensing 
Letters. He has served as a reviewer for more than 180 pa-
pers submitted to more than 30 different journals, and he 
has served as a proposal evaluator for the Spanish Ministry 
of Science and Innovation since 2008. He has also served 
as a proposal evaluator for the Czech Science Foundation 

TABLE 7. THE PERFORMANCE EVALUATION OF DIFFERENT  
SPECTRAL CLASSIFIERS. 

TECHNIQUES ACCURACY AUTOMATION 
SIMPLICITY 
AND SPEED STABILITY 

RF • •••• •••• ••

SVM •••• ••• ••• •••

BP •••• •• •• ••

ELM •• •• ••• •••

KELM •••• •• ••• •••

1-D CNN •• • • ••

MLR •••• •••• •••• ••

One bullet indicates the worst performance while four bullets indicates the best.



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MARCH 201728 

and the Chilean National Science and Technology Com-
mission. He is a Senior Member of the IEEE.

Yushi Chen (chenyushi@hit.edu.cn) received his Ph.D. 
degree from Harbin Institute of Technology, China, in 
2008, where he is currently an associate professor in the 
School of Electrical and Information Engineering. His re-
search interests include remote sensing data processing 
and machine learning. He is a Member of the IEEE.

Jun Li (lijun48@mail.sysu.edu.cn) received her B.S. de-
gree in geographic information systems from Hunan Nor-
mal University, Changsha, China, in 2004; her M.E. degree 
in remote sensing from Peking University, Beijing,  China, 
in 2007; and her Ph.D. degree in electrical engineering 
from the Instituto de Telecomunicaes, Instituto Superior 
 Técnico (IST), Universidade Técnica de Lisboa, Lisbon, Por-
tugal, in 2011. From 2007 to 2011, she was a Marie Curie 
Research Fellow with the Departamento de Engenharia 
Electrotécnica e de Computadores and the Instituto de Teleco-
municaes, IST, Universidade Técnica de Lisboa, in the frame-
work of the European Doctorate for Signal Processing. Since 
2011, she has been a postdoctoral researcher with the Hyper-
spectral Computing Laboratory, Department of Technology 
of Computers and Communications, Escuela Politécnica, 
University of Extremadura, Cáceres, Spain. Currently, she is 
a professor with Sun Yat-Sen University, Guangzhou, China.  
Her research interests include hyperspectral image clas-
sification and segmentation, spectral unmixing, signal 
processing, and remote sensing. She is a Senior Member of  
the IEEE. 

Antonio Plaza (aplaza@unex.es) received his M.Sc. degree 
in 1999 and his Ph.D. degree in 2002 from the University 
of Extremadura, Spain, both in computer engineering. 
He is head of the Hyperspectral Computing Laboratory, 
Department of Technology of Computers and Communi-
cations, at the University of Extremadura, and his main 
research interests lie in hyperspectral data processing and 
parallel computing of remote sensing data. He has au-
thored more than 500 publications, including 182 Journal 
Citation Report papers (132 in IEEE journals), 20 book 
chapters, and over 250 peer-reviewed conference proceed-
ing papers. In 2015, he received the Best Column Award of 
IEEE Signal Processing Magazine. He served as the director of 
education activities for the IEEE Geoscience and  Remote 
Sensing Society (GRSS) in 2011–2012, and he is currently 
serving as president of the Spanish Chapter of the IEEE 
GRSS. He has reviewed more than 500 manuscripts for 
over 50 journals. He currently serves as the editor-in-chief 
of IEEE Transactions on Geoscience and Remote Sensing. He is 
a Fellow of the IEEE.

REFERENCES
[1] J. A. Benediktsson and P. Ghamisi, Spectral-Spatial Classification 

of Hyperspectral Remote Sensing Images. Norwood, MA: Artech 
House, 2015.

[2] P. Ghamisi and J. A. Benediktsson, “Feature selection based on 
hybridization of genetic algorithm and particle swarm optimiza-

tion,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 309–313, 
2015.

[3] P. Ghamisi, A. R. Ali, M. Couceiro, and J. Benediktsson, “A novel 
evolutionary swarm fuzzy clustering approach for hyperspectral 
imagery,” IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., 
vol. 8, no. 6, pp. 2447–2456, 2015.

[4] A. K. Jain, R. P. Duin, and J. Mao, “Statistical pattern recognition: 
A review,” IEEE Trans. Pattern. Anal. Mach. Intell., vol. 22, no. 1, 
pp. 4–37, 2000. 

[5] B. Waske and J. A. Benediktsson, Pattern Recognition and Classi-
fication, Encyclopedia of Remote Sensing, E. G. Njoku, Ed. Berlin, 
Germany: Springer-Verlag, 2014.

[6] J. B. MacQueen, “Some methods for classification and analysis of 
multivariate observations,” in Proc. 5th Berkeley Symp. Mathemati-
cal Statistics and Probability, 1967, pp. 281–297.

[7] G. Ball and D. Hall, “ISODATA: A novel method of data analysis 
and classification,” Tech. Rep. AD-699616, Stanford Univ., Stan-
ford, CA, 1965.

[8] J. C. Bezdek and R. Ehrlich, “FCM: The fuzzy c-means cluster-
ing algorithm,” Comput. Geosci., vol. 10, no. 22, pp. 191–203, 
1981.

[9] W. Wang, Y. Zhang, Y. Li, and X. Zhang, “The global fuzzy  
c-means clustering algorithm,” Intell. Cont. Aut., vol. 1, pp. 3604–
3607, June 2006.

[10] B. M. Shahshahani and D. A. Landgrebe, “The effect of unla-
beled samples in reducing the small sample size problem and 
mitigating the Hughes phenomenon,” IEEE Trans. Geosci. Remote 
Sens., vol. 32, no. 5, pp. 4–37, 1995.

[11] Q. Jackson and D. Landgrebe, “Adaptive Bayesian contextual 
classification based on Markov random fields,” IEEE Trans. Geos-
ci. Remote Sens., vol. 40, no. 11, pp. 2454–2463, 2002.

[12] X. Jia and J. A. Richards, “Cluster-space representation for hyper-
spectral data classification,” IEEE Trans. Geosci. Remote Sens., vol. 
40, no. 3, pp. 593–598, 2002.

[13] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. 
San Diego, CA: Academic, 1990.

[14] D. W. Scott, Multivariate Density Estimation, New York, NY: Wiley, 
1992.

[15] E. J. Wegman, “Hyperdimensional data analysis using parallel 
coordinates,” J. Amer. Stat. Assoc., vol. 85, no. 411, pp. 664–675, 
1990.

[16] L. Jimenez and D. Landgrebe, “Supervised classification in high-
dimensional space: Geometrical, statistical, and asymptotical 
properties of multivariate data,” IEEE Trans. Syst., Man, Cybern. 
A, Syst., Humans, vol. 28, no. 1, pp. 39–54, 1998.

[17] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote 
Sensing. Hoboken, NJ: Wiley, 2003.

[18] Y. Qian, F. Yao, and S. Jia. (2009). Band selection for hyper-
spectral imagery using affinity propagation. IET Comput. Vis. 
3(4), p. 213. [Online]. Available: http://dx.doi.org/10.1049/ 
iet-cvi.2009.0034

[19] F. Canters, “Evaluating the uncertainty of area estimates derived 
from fuzzy landcover classification,” Photogrammetric Eng. Re-
mote Sens., vol. 63, pp. 403–414, 1997.

[20] J. L. Dungan, “Toward a comprehensive view of uncertainty in 
remote sensing analysis,” in Uncertainty in Remote Sensing and 



MARCH 2017    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        29 

GIS, 2nd ed. G. M. Foody and P. M. Atkinson, Eds. Hoboken, 
NJ: Wiley, 2002.

[21] M. A. Friedl, K. C. McGwire, and D. K. McIver, “An overview 
of uncertainty in optical remotely sensed data for ecological 
applications,” in Spatial Uncertainty in Ecology, C. T. Hunsaker, 
M. F. Goodchild, M.A. Friedl, and T.J. Case, Eds. New York, NY: 
Springer-Verlag, 2001.

[22] X. Wang, “Learning from big data with uncertainty editorial,” J. 
Intell. and Fuzzy Syst., vol. 28, no. 5, pp. 2329–2330, 2015.

[23] D. Lu and Q. Weng, “A survey of image classification methods 
and techniques for improving classification performance,” Int. 
Jour. Remote Sens, vol. 28, no. 5, pp. 823–870, 2007.

[24] C. E. Woodcock and A. H. Strahler, “The factor of scale in remote 
sensing,” Remote Sens. Env., vol. 21, no. 3, pp. 311–332, 1987.

[25] P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, “A survey on 
spectral–spatial classification techniques based on attribute pro-
files,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–
2353, 2015.

[26] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and 
J. C. Tilton, “Advances in spectral-spatial classification of hy-
perspectral images,” Proc. IEEE, vol. 101, no. 3, pp. 652–675, 
2013.

[27] C. Xu, H. Liu, W. Cao, and J. Feng. (2012, Jan.). Multispectral 
image edge detection via Clifford gradient. Sci. China Inform. Sci. 
55(2), pp. 260–269, Jan. 2012. [Online]. Available: http://dx.doi 
.org/10.1007/s11432-011-4540-0

[28] Z. Su, X. Luo, Z. Deng, Y. Liang, and Z. Ji. (2013, Apr.). Edge-
preserving texture suppression filter based on joint filtering 
schemes. IEEE Trans. Multimedia. 15(3), pp. 535–548. [Online]. 
Available: http://dx.doi.org/10.1109/TMM.2012.2237025

[29] Z. Zhu, S. Jia, S. He, Y. Sun, Z. Ji, and L. Shen, “Three-dimensional 
Gabor feature extraction for hyperspectral imagery classification 
using a memetic framework,” Inform. Sci., vol. 298, pp. 274–287, 
2015. 

[30] J. L. Cushnie, “The interactive effect of spatial resolution and 
degree of internal variability within land-cover types on classi-
fication accuracies,” Int. J. Remote Sens., vol. 8, no. 1, pp. 15–29, 
1987.

[31] Y. Zhong, Q. Zhu, and L. Zhang. (2015, Nov.). Scene classifica-
tion based on the multifeature fusion probabilistic topic model 
for high spatial resolution remote sensing imagery. IEEE Trans. 
Geosci. Remote Sens. 53(11), pp. 6207–6222. [Online]. Available: 
http://dx.doi.org/10.1109/TGRS.2015.2435801

[32] D. Böhning, “Multinomial logistic regression algorithm,” Ann. 
Inst. Statist. Math., vol. 44, no. 1, pp. 197–200, 1992. 

[33] J. Li, J. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspec-
tral image segmentation using multinomial logistic regression 
with active learning,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 
11, pp. 4085–4098, 2010. 

[34] P. Zhong, P. Zhang, and R. Wang, “Dynamic learning of SMLR 
for feature selection and classification of hyperspectral data,” IEEE 
Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 280–284, Apr. 2008.

[35] J. S. Borges, J. M. Bioucas-Dias, and A. R. S. Marcal, “Bayesian 
hyperspectral image segmentation with discriminative class 
learning,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 
2151–2164, June 2011.

[36] J. Bioucas-Dias and M. Figueiredo, “Logistic regression via vari-
able splitting and augmented Lagrangian tools,” Instituto Supe-
rior Técnico, TULisbon, Portugal, Tech. Rep., 2009.

[37] J. Li, J. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmen-
tation using a new Bayesian approach with active learning,” IEEE 
Trans. Geosci. Remote Sens., vol. 49, no. 19, pp. 3947–3960, 2011.

[38] J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspec-
tral image segmentation using subspace multinomial logistic re-
gression and Markov random fields,” IEEE Trans. Geosci. Remote 
Sens., vol. 50, no. 3, pp. 809–823, 2012.

[39] P. Zhong and R. Wang, “Learning conditional random fields for 
classification of hyperspectral images,” IEEE Trans. Image Process., 
vol. 19, no. 7, pp. 1890–1907, July 2010.

[40] Y. Qian, M. Ye, and J. Zhou, “Hyperspectral image classification 
based on structured sparse logistic regression and three-dimen-
sional wavelet texture features,” IEEE Trans. Geosci. Remote Sens., 
vol. 51, no. 4, pp. 2276–2291, Apr. 2013.

[41] P. Zhong and R. Wang, “Jointly learning the hybrid CRF and 
MLR model for simultaneous denoising and classification of hy-
perspectral imagery,” IEEE Trans. Neural Netw. Learn. Syst., vol. 
25, no. 7, pp. 1319–1334, July 2014.

[42] M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias, “A 
subspace-based multinomial logistic regression for hyperspec-
tral image classification,” IEEE Geosci. Remote Sens. Lett., vol. 11, 
no. 12, pp. 2105–2109, Dec. 2014.

[43] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial classifi-
cation of hyperspectral data using loopy belief propagation and 
active learning,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, 
pp. 844–856, Feb. 2013.

[44] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bi-
oucas-Dias, and X. Li, “Spectral-spatial classification of hyper-
spectral data using local and global probabilities for mixed pixel 
characterization,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, 
pp. 6298–6314, Oct. 2014.

[45] L. Sun, Z. Wu, J. Liu, L. Xiao, and Z. Wei, “Supervised spectral-
spatial hyperspectral image classification with weighted Markov 
random fields,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 
1490–1503, Mar. 2015.

[46] S. Sun, P. Zhong, H. Xiao, and R. Wang, “An MRF model-based 
active learning framework for the spectral-spatial classification 
of hyperspectral imagery,” IEEE J. Sel. Topics Signal Process., vol. 9, 
no. 6, pp. 1074–1088, Sept. 2015.

[47] J. Li, M. Khodadadzadeh, A. Plaza, X. Jia, and J. M. Bioucas-Di-
as, “A discontinuity preserving relaxation scheme for spectral-
spatial hyperspectral image classification,” IEEE J. Sel. Topics 
Appl. Earth Observ. in Remote Sens., vol. 9, no. 2, pp. 625–639, 
Feb. 2016.

[48] J. Zhao, Y. Zhong, H. Shu, and L. Zhang. (2016, Sept.). High-
resolution image classification integrating spectral-spatial-
location cues by conditional random fields. IEEE Trans. Image 
Process. 25(9), pp. 4033–4045. [Online]. Available: http://dx.doi 
.org/10.1109/TIP.2016.2577886

[49] J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. A. Benediktsson, 
“Generalized composite kernel framework for hyperspectral im-
age classification,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, 
pp. 4816–4829, Feb. 2013.



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MARCH 201730 

[50] Y. Zhang and S. Prasad, “Locality preserving composite kernel 
feature extraction for multi-source geospatial image analysis,” 
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 3, pp. 
1385–1392, Mar. 2015.

[51] J. Li, X. Huang, P. Gamba, J. M. Bioucas-Dias, L. Zhang, J. A. 
Benediktsson, and A. Plaza, “Multiple feature learning for hy-
perspectral image classification,” IEEE Trans. Geosci. Remote Sens., 
vol. 53, no. 3, pp. 1592–1606, Mar. 2015.

[52] C. Zhao, X. Gao, Y. Wang, and J. Li, “Efficient multiple-feature 
learning-based hyperspectral image classification with limited 
training samples,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, 
pp. 4052–4062, July 2016.

[53] C. Bishop, Pattern Recognition and Machine Learning. New York, 
NY: Springer-Verlag, 2006.

[54] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Conjugate 
gradient neural networks in classification of very high dimen-
sional remote sensing data,” Int. J. Remote Sens., vol. 14, no. 15, 
pp. 2883–2903, 1993.

[55] H. Yang, “A backpropagation neural network for mineralogical 
mapping from AVIRIS data,” Int. J. Remote Sens., vol. 20, no. 1, 
pp. 97–110, 1999.

[56] J. A. Benediktsson, “Statistical methods and neural network ap-
proaches for classification of data from multiple sources,” Ph.D. 
dissertation, School of Elect. Eng., Purdue Univ., West Lafayette, 
IN, 1990.

[57] J. A. Richards, “Analysis of remotely sensed data: The formative 
decades and the future,” IEEE Trans. Geosci. Remote Sens., vol. 43, 
no. 3, pp. 422–432, 2005.

[58] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network 
approaches versus statistical methods in classification of multi-
source remote sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 
28, no. 4, pp. 540–552, 1990.

[59] E. Merényi, W. H. Farrand, J. V. Taranik, and T. B. Minor, “Clas-
sification of hyperspectral imagery with neural networks: com-
parison to conventional tools,” Eurasip J. on Advances in Signal 
Processing, vol. 2014, no. 1, pp. 1–19, 2014.

[60] F. D. Frate, F. Pacifici, G. Schiavon, and C. Solimini, “Use of 
neural networks for automatic classification from high-resolu-
tion images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 
800–809, 2007.

[61] F. Ratle, G. Camps-Valls, and J. Wetson, “Semisupervised neu-
ral networks for efficient hyperspectral image classification,” 
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, 
2010.

[62] Y. Zhong and L. Zhang, “An adaptive artificial immune network 
for supervised classification of multi-/hyperspectral remote 
sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, 
pp. 894–909, 2012.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning 
representations by back-propagating errors,” Nature, vol. 323, no. 
6088, pp. 533–536, 1986.

[64] M. Moller, “A scaled conjugate gradient algorithm for fast super-
vised learning,” Neural Netw., vol. 6, no. 4, pp. 525–533, 1993.

[65] M. T. Hagan and M. Menhaj, “Training feed-forward networks 
with the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, 
no. 6, pp. 989–993, 1994.

[66] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning ma-
chine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, 
pp. 489–501, Dec. 2006.

[67] G. Huang, G. B. Huang, S. Song, and K. You, “Trends in extreme 
learning machines: A review,” Neural Netw., vol. 61, pp. 32–48, 
Jan. 2015. 

[68] J. Tang, C. Deng, and G. B. Huang, “Extreme learning machine 
for multilayer perceptron,” IEEE Trans. Neural Netw. Learn. Syst., 
vol. 27, no. 4, pp. 809–21, Apr. 2016.

[69] G. B. Huang and C. K. Siew, “Extreme learning machine: RBF 
network case,” in Proc. 8th Control, Automation, Robotics and Vision 
Conf., (ICARCV 2004), vol. 2, 2004, pp. 1029–1036.

[70] G. B. Huang, “An insight into extreme learning machines: Ran-
dom neurons, random features and kernels,” Cognitive Computa-
tion, vol. 6, no. 3, pp. 376–390, Sept. 2014. 

[71] Y. Zhou, J. Peng, and C. L. P. Chen, “Extreme learning machine 
with composite kernels for hyperspectral image classification,” 
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, 
pp. 2351–2360, 2015.

[72] A. B. Santos, A. Araujo, and D. Menotti, “Combining multiple 
classification methods for hyperspectral data interpretation,” 
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, 
pp. 1450–1459, 2013.

[73] J. Li, Q. Du, W. Li, and Y. Li, “Optimizing extreme learning 
machine for hyperspectral image classification,” J. Appl. Remote 
Sens., vol. 9, no. 1, pp. 097296, 2015.

[74] A. Samat, P. Du, S. Liu, and L. Cheng, “E2LMs: Ensemble ex-
treme learning machines for hyperspectral image classfication,” 
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, 
pp. 1060–1069, 2014.

[75] V. N. Vapnik, Statistical Learning Theory. New York, NY: Wiley, 1998.
[76] B. Pan, J. Lai, and L. Shen. (2014, Aug.). Ideal regulariza-

tion for learning kernels from labels. Neural Netw. 56, pp. 
22–34. [Online]. Available: http://dx.doi.org/10.1016/j.neunet 
.2014.04.003

[77] B. Scholkopf and A. J. Smola, Learning with Kernels. Cambridge, 
MA: MIT Press, 2002.

[78] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel prin-
cipal component analysis for the classification of hyperspectral 
remote-sensing data over urban areas,” EURASIP J. Adv. Signal 
Process., pp. 1–14, 2009.

[79] L. Gómez-Chova, G. Camps-Valls, J. Muoz-Mar, and J. Calpe, 
“Semisupervised image classification with Laplacian support 
vector machines,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, 
pp. 336–340, 2008.

[80] E. Blanzieri and F. Melgani, “Nearest neighbor classification 
of remote sensing images with the maximal margin principle,” 
IEEE Geosci. Remote Sens. Lett., vol. 46, no. 6, pp. 1804–1811, 
2008.

[81] D. Tuia and G. Camps-Valls, “Semisupervised remote sensing 
image classification with cluster kernels,” IEEE Geosci. Remote 
Sens. Lett., vol. 6, no. 2, pp. 224–228, 2005.

[82] C. Castillo, I. Chollett, and E. Klein, “Enhanced duckweed detec-
tion using bootstrapped SVM classification on medium resolu-
tion RGB MODIS imagery,” Int. J. Remote Sens., vol. 29, no. 19, 
pp. 5595–5604, 2008.



MARCH 2017    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        31 

[83] J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. A. Benediktsson, 
“Generalized composite kernel framework for hyperspectral im-
age classification,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, 
pp. 4816–4829, 2013.

[84] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, 
“Sparse multinomial logistic regression: Fast algorithms and 
generalization bounds,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 27, no. 6, pp. 957–968, 2005.

[85] S. R. Safavian and D. Landgrebe, “A survey of decision tree clas-
sifier methodology,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 21, 
no. 3, pp. 660–674, 1991.

[86] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone, Classifica-
tion and Regression Tree. London, U.K.: Chapman & Hall, 1984.

[87] M. A. Friedl and C. E. Brodley, “Decision tree classification of 
land cover from remotely sensed data,” Remote Sens. Env., vol. 61, 
no. 3, pp. 399–409, 1997.

[88] M. Pal and P. Mather, “An assessment of the effectiveness of de-
cision tree methods for land cover classification,” Remote Sens. 
Env., vol. 86, no. 4, pp. 554–565, 2003.

[89] G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, “Multiple 
classifiers applied to multisource remote sensing data,” IEEE 
Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2291–2299, 2003.

[90] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random 
forests for land cover classification,” Pattern Recog. Lett., vol. 27, 
no. 4, pp. 294–300, 2006.

[91] L. Breiman, “Arcing classifier,” Ann. Statist., vol. 26, no. 3, 
pp. 801–849, 1998.

[92] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 1, 
pp. 123–140, 1994.

[93] L. Breiman, “Random forests,” Mach. Learn, vol. 45, no. 1, 
pp. 5–32, 2001.

[94] J. Xia, P. Du, X. He, and J. Chanussot, “Hyperspectral remote 
sensing image classification based on rotation forest,” IEEE Geos-
ci. Remote Sens. Lett., vol. 11, no. 1, pp. 239–243, 2014.

[95] B. Waske, J. A. Benediktsson, K. Arnason, and J. R. Sveinsson, 
“Mapping of hyperspectral AVIRIS data using machine-learning 
algorithms,” Canadian J. Remote Sens., vol. 35, suppl. 1, pp. 106–
116, 2009.

[96] Z. Zhi-Hua, Ensemble Methods: Foundations and Algorithms. Boca 
Raton, FL: CRC, 2012.

[97] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image 
classification using dictionary-based sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973–3985, 
Oct. 2011.

[98] Z. Lai, W. K. Wong, Y. Xu, C. Zhao, and M. Sun. (2014, Oct.). 
Sparse alignment for robust tensor learning. IEEE Trans. Neural 
Netw. Learn. Syst. 25(10), pp. 1779–1792. [Online]. Available: 
http://dx.doi.org/10.1109/TNNLS.2013.2295717

[99] A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G. Sapiro, 
“Learning discriminative sparse representations for modeling, 
source separation, and mapping of hyperspectral imagery,” IEEE 
Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4263–4281, Dec. 
2011.

[100] Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

[101] L. G. Chova, D. Tuia, G. Moser, and G. C. Valls, “Multimodal 
classification of remote sensing images: A review and future di-
rections,” Proc. IEEE, vol. 103, no. 9, pp. 1560–1584, 2015.

[102] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-
based classification of hyperspectral data,” IEEE J. Sel. Topics 
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107, 
2014.

[103] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised spectral-spatial 
feature learning with stacked sparse autoencoder for hyperspec-
tral imagery classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, 
no. 12, pp. 2438–2442, 2015.

[104] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of 
hyperspectral data based on deep belief network,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381–2292, 
2015.

[105] A. Romero, C. Gatta, and G. C. Valls, “Unsupervised deep fea-
ture extraction for remote sensing image classification,” IEEE 
Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1–14, 2016.

[106] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 
4th ed. Berlin, Germany: Springer-Verlag, 2006.

[107] P. C. Smits, S. G. Dellepiane, and R. A. Schowengerdt, “Qual-
ity assessment of image classification algorithms for land-cover 
mapping: A review and a proposal for a cost-based approach,” 
Int. J. Remote Sens., vol. 20, no. 8, pp. 1461–1486, 1999.

[108] W. D. Hudson and C. V. Ramm, “Correct formulation of the 
kappa coefficient of agreement,” Photogrammetric Eng. Remote 
Sens., vol. 53, pp. 21–422, Aug. 1987.

[109] R. G. Congalton, “A review of assessing the accuracy of classifi-
cation of remotely sensed data,” Remote Sens. Env., vol. 37, no. 1, 
pp. 35–46, July 1991.

[110] L. L. F. Janssen and F. J. M. Vanderwel, “Accuracy assessment of 
satellite derived land-cover data: A review,” Photogrammetric Eng. 
Remote Sens., vol. 60, no. 4, pp. 419–426, Apr. 1994.

[111] G. M. Foody, “Status of land cover classification accuracy assess-
ment,” Remote Sens. Env., vol. 80, no. 1, pp. 185–201, Apr. 2002.

[112] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bru-
zzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. 
Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent 
advances in techniques for hyperspectral image processing,” Re-
mote Sens. Env., vol. 113, suppl. 1, pp. 110–122, Sept. 2009.

[113] F. Melgani and L. Bruzzone, “Classification of hyperspectral re-
mote sensing images with support vector machines,” IEEE Trans. 
Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, 2004.

[114] M. Pal, “Extreme-learning-machine-based land cover classifica-
tion,” Int. J. Remote Sens., vol. 30, no. 14, pp. 3835–3841, 2009.

[115] M. Pal, A. E. Maxwell, and T. A. Warner, “Kernel-based extreme 
learning machine for remote-sensing image classification,” Re-
mote Sens. Lett., vol. 4, no. 9, pp. 853–862, 2013.

[116] K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural Netw., vol. 4, pp. 251–257, 1991.

[117] S. Tamura and M. Tateishi, “Capabilities of a four-layered feed-
forward neural network: Four layers versus three,” IEEE Trans. 
Neural Netw., vol. 8, no. 2, pp. 251–255, 1997.

[118] G. B. Huang, “Learning capability and storage capacity of two 
hidden-layer feedforward networks,” IEEE Trans. Neural Netw., 
vol. 14, no. 2, pp. 274–281, 2003.



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MARCH 201732 

[119] L. Prechelt, “Automatic early stopping using cross validation: 
Quantifying the criteria,” Neural Netw., vol. 11, no. 4, pp. 761–
767, 1998.

[120] G. Mountrakis, J. Im, and C. Ogole, “Support vector machines 
in remote sensing: A review,” ISPRS J. Photogrammetry Remote 
Sens., vol. 66, no. 3, pp. 247–259, 2011.

[121] P. Ghamisi, M. S. Couceiro, and J. A. Benediktsson, “A novel 
feature selection approach based on FODPSO and SVM,” IEEE 
Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2935–2947, 2015.

[122] M. Pal and P. Mather, “Some issues in the classification of dais 
hyperspectral data,” Int. J. Remote Sens., vol. 27, no. 14, pp. 2895–
2916, 2006.

[123] C. J. C. Burges, “A tutorial on support vector machines for pat-
tern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 
2, pp. 121–167, 1998.

[124] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, 
“Choosing multiple parameters for support vector machines,” 
Mach. Learn., vol. 46, no. 1, pp. 131–159, 2002.

[125] Y. Bazi and F. Melgani, “Toward an optimal SVM classification 
system for hyperspectral remote sensing images,” IEEE Trans. 
Geosci. Remote Sens., vol. 44, no. 11, pp. 3374–3385, 2006.

[126] S. S. Keerthi and C. Lin, “Asymptotic behaviors of support vec-
tor machines with Gaussian kernel,” Neur. Comp, vol. 15, no. 7, 
pp. 1667–1689, 2003.

[127] G. Foody and A. Mathur, “A relative evaluation of multiclass 
image classification by support vector machines,” IEEE Trans. 
Geosci. Remote Sens., vol. 42, no. 6, pp. 1335–1343, 2002.

[128] N. Cristianini and J. Shawe-Taylor, An Introduction to Sup-
port Vector Machines. Cambridge, U.K.: Cambridge Univ. Press, 
2000.

[129] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, 
“Sparse multinomial logistic regression: Fast algorithms and 
generalization bounds,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 27, no. 6, pp. 957–968, 2005.

[130] S. R. Joelsson, J. A. Benediktsson, and J. R. Sveinsson, “Random 
forest classification of remote sensing data,” in Signal and Image 
Processing for Remote Sensing, C. H. Chen, Ed. Boca Raton, FL.: 
CRC, 2007, pp. 327–344.

[131] B. Waske, J. A. Benediktsson, and J. R. Sveinsson, “Random 
forest classification of remote sensing data,” in Signal and Image 
Processing for Remote Sensing, C. H. Chen, Ed. New York, NY: CRC, 
2012, pp. 363–374.

[132] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Ol-
mo, and J. P. Rigol-Sanchez, “An assessment of the effective-
ness of a random forest classifier for land-cover classification,” 
ISPRS J. Photogrammetry Remote Sens., vol. 67, pp. 93–104, Jan. 
2012.

[133] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statisti-
cal Learning, 2nd ed. New York, NY: Springer-Verlag, 2008.

[134] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Reading, MA: 
Addison-Wesley, 2009.

[135] J. C. Chan and D. Paelinckx, “Evaluation of random forest 
and Adaboost tree-based ensemble classification and spectral 
band selection for ecotope mapping using airborne hyperspec-
tral imagery,” Remote Sens. Env., vol. 112, no. 6, pp. 2999–3011, 
2008.

[136] D. R. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, and K. T. 
Hess, “Random forests for classification in ecology,” Ecology, vol. 
88, no. 11, pp. 2783– 2792, 2007.

[137] J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investiga-
tion of the random forest framework for classification of hyper-
spectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 
492– 501, 2005.

[138] S. R. Joelsson, J. A. Benediktsson, and J. R. Sveinsson, “Ran-
dom forest classifiers for hyperspectral data,” in Proc. IEEE 
Int. Geoscience Remote Sensing Symp., (IGARSS 05), 2005, pp. 
25–29.

[139] J. L. Cushnie, “Analysis of a random forests model,” J. Mach. 
Learn. Res., vol. 13, pp. 1063–1095, Apr. 2012. 

[140] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, 
“Stacked denoising autoencoders,” J. Mach. Learn. Res., vol. 11, 
no. 12, pp. 3371–3408, 2010.

[141] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 
1106–1114, 2012.

[142] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Neural 
Information Processing Systems 25, Lake Tahoe, NV, USA, 2012, pp. 
1527–1554.

[143] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature 
extraction and classification of hyperspectral images based on 
convolutional neural networks,” IEEE Trans. Geosci. Remote Sens., 
vol. 54, no. 10, pp. 6232–6251, Oct. 2016.

[144] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based 
learning applied to document recognition,” Proc. IEEE, vol. 86, 
no. 11, pp. 2278–2324, 1998.

[145] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sens-
ing data: A technical tutorial on the state of the art,” IEEE Geosci. 
Remote Sens. Mag., vol. 4, no. 2, pp. 22–40, 2016.

[146] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for 
hyperspectral image classification,” IEEE Trans. Geosci. Remote 
Sens., vol. 43, no. 6, pp. 1351–1362, June 2005. 

[147] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learn-
ing machine for regression and multiclass classification,” IEEE 
Trans. Syst. Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, 
2012.

[148] J. A. K. Suykens and J. Vandewalle, “Least squares support vec-
tor machine classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 
293–300, 1999.

[149] A. Iosifidis, A. Tefas, and I. Pitas, “On the kernel extreme learn-
ing machine classifier,” Pattern Recog. Lett., vol. 54, pp. 11–17, 
Mar. 2015.

 GRS




