
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017 1247

Parallel Implementation of Spatial–Spectral
Endmember Extraction on Graphic

Processing Units
Luis Ignacio Jiménez, Sergio Sánchez, Gabriel Martı́n, Javier Plaza, Senior Member, IEEE,

and Antonio J. Plaza, Fellow, IEEE

Abstract—The identification of pure spectral signatures (end-
members) in remotely sensed hyperspectral images has tradition-
ally focused on the spectral information alone. Recently, techniques
such as the spatial–spectral endmember extraction (SSEE) have in-
corporated both the spectral and the spatial information contained
in the scene. Since hyperspectral images contain very detailed in-
formation in the spatial and spectral domain, the integration of
these two sources of information generally comes with a significant
increase in computational complexity. In this paper, we develop a
new computationally efficient implementation of SSEE using com-
modity graphics processing units (GPUs). The relevance of GPUs
comes from their very low cost, compact size, and the possibil-
ity to obtain significant acceleration factors by exploiting properly
the GPU hardware architecture. Our experimental results, focused
on evaluating the candidate endmembers produced by SSEE and
also the computational performance of the GPU implementation,
indicated significant acceleration factors that allow exploiting the
SSEE method in computationally efficient fashion.

Index Terms—Graphics processing units (GPUs), hyperspectral
imaging, spatial–spectral endmember extraction (SSEE).

I. INTRODUCTION

S PECTRAL unmixing [1] is an important technique for
the exploitation of remotely sensed hyperspectral datasets.

Over the last years, many techniques have been developed for the
identification of pure spectral constituents (called endmembers
in unmixing jargon) and their corresponding fractional abun-
dances at a subpixel level [2]. The remaining problem is how
to automatically identify endmembers, which are representative

Manuscript received April 9, 2016; revised September 17, 2016; accepted
December 25, 2016. Date of publication January 8, 2017; date of current version
March 22, 2017. This work was supported in part by the Junta de Extremadura
(decreto 297/2014, ayudas para la realizacion de actividades de investigacion y
desarrollo tecnologico, de divulgacion y de transferencia de conocimiento por
los Grupos de Investigacion de Extremadura, Ref. GR15005) and in part by
the computing facilities of Extremadura Research for Advanced Technologies
(CETA-CIEMAT), funded by the European Regional Development Fund. The
CETA-CIEMAT belongs to the Spanish Ministry of Science and Innovation.
(Corresponding author: Antonio J. Plaza.)

L. I. Jiménez, S. Sánchez, J. Plaza, and A. J. Plaza are with the Hyperspectral
Computing Laboratory, Department of Computer Technology and Communica-
tions, University of Extremadura, Cáceres E-10071, Spain (e-mail: luijimenez@
unex.es; sersanmar@unex.es; jplaza@unex.es; aplaza@unex.es).

G. Martı́n is with the Instituto de Telecomunicações, Lisbon 1049-001
Portugal (e-mail: gabriel.hernandez@lx.it.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2016.2645718

of both the spectral and the spatial information contained in the
scene. For instance, it is generally difficult to obtain endmem-
bers, which are representative in spatial sense, as endmember
identification algorithms are often driven by the spectral infor-
mation alone and are therefore sensitive to noise, outliers, and
anomalous endmembers [3].

To address this issue, several strategies have been proposed in
order to guide the endmember identification process to spatially
homogeneous areas, expected to contain the purest signatures
available in the scene [4]–[6]. For this purpose, several spectral–
spatial techniques have been developed for the identification of
endmembers in hyperspectral scenes.

One of the first algorithms in the literature designed to inte-
grate the spatial and the spectral information was the automatic
morphological endmember extraction (AMEE) [4], which used
extended morphological operations of erosion and dilation to
account for endmembers that are sufficiently pure (in spectral
terms) and cover a large area (in spatial sense). The algorithm
had several shortcomings, including the need to define a spatial
search area around each pixel in the scene and its computa-
tional complexity. Another important method is the spatial–
spectral endmember extraction (SSEE) [5], which uses spatial
constraints to improve the relative spectral contrast of endmem-
ber spectra that have minimal unique spectral information, thus
improving the potential for these subtle, yet potentially impor-
tant endmembers to be selected. With the SSEE, the spatial
characteristics of image pixels are used to increase the rela-
tive spectral contrast between spectrally similar, but spatially
independent endmembers.

Finally, several spatial preprocessing (SPP) methods have
been used prior to endmember identification [7]–[9]. These
methods are intended to be combined with a spectral-based
endmember extraction algorithm. The SPP in [7] introduces
the spatial information in the endmember extraction process,
so that the preprocessing can be combined with classic meth-
ods for endmember identification [10]. The main idea behind
this preprocessing is to estimate, for each input pixel vector, a
scalar factor, which is related to the spatial similarity between
that pixel and its spatial neighbors, defined in a spatial window
that defines a neighborhood around each pixel vector, and then
use this scalar factor to spatially weigh the spectral informa-
tion associated to the pixel. An extension of this concept was

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1248 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

presented in [8] in which the use of fixed spatial neighborhoods
adopted by SPP was replaced by the incorporation of regions
intended to better characterize the spatial context. However, the
RBSPP strongly depends on a prior region growing algorithm
that makes the procedure sensitive to the selected technique for
region segmentation. Another more recent technique is the spa-
tial and spectral preprocessing (SSPP) presented in [9], which
integrates both spatial and spectral information at the prepro-
cessing level. The process is divided in following four different
steps.

1) Multiscale Gaussian filtering, in which the original hy-
perspectral image is filtered to characterize the spatial
context.

2) Spatial homogeneity calculation, in which the filtered im-
age is processed in order to obtain a spatial homogeneity
index for each pixel in the original image.

3) Spectral purity index calculation, which first reduces the
hyperspectral image using principal component analysis
(PCA) [11] and then creates a spectral purity index using
an approach similar to the one adopted by the pixel purity
index algorithm in [12].

4) Fusion of spatial and spectral information, so that only
pixels that are both spectrally pure and spatially homoge-
neous are selected, without giving priority to any of these
sources of information as they are treated separately at the
preprocessing stage.

All the aforementioned techniques for SSEE are characterized
by their very high computational complexity, resulting from the
need to account for the very rich spectral and spatial information
contained in hyperspectral scenes. However, due to the regular-
ity of their computations, most of these techniques have been
efficiently implemented using latest-generation hardware accel-
erators such as commodity graphics processing units (GPUs).
GPUs generally offer a good performance/cost ratio when com-
pared against alternative high-performance architectures such
as multicores or clusters. In addition, GPU accelerators offer
the advantage that they are easy to program. In the future, they
may be fully adapted to onboard processing for real-time pro-
cessing (although currently their power consumption is still high
for these missions, there are already some efforts toward using
low-power GPU architectures in remote sensing missions). This
is the main reason why we have targeted GPUs for our imple-
mentations. For instance, the SPP was implemented in GPUs in
[13]. The SSPP was also implemented in GPUs in [14], whereas
the RBSPP is also amenable for parallel implementation due to
the regularity of its computations (with the main difficulty of the
segmentation step that generally results on irregular load distri-
bution in parallel versions). The AMEE was also implemented
in GPUs in [15]. However, the SSEE (a highly representative
and successful algorithm for SSEE) has not been implemented
in parallel as of yet.

In this work, we develop a GPU implementation of the SSEE
in [5]. In this algorithm, the hyperspectral image is processed
in order to select a group of signatures that will be the end-
member candidates from which the final set of endmembers are
extracted. As a result, the SSEE can also be considered as an SPP
algorithm. Reducing the number of candidate endmembers can

Fig. 1. First step of the SSEE algorithm (eigenvector calculation). An image
region (a) containing three different components (i, j, and k) is divided in four
subsets (b), which have the same size and do not overlap with each other. The
SVD is used to obtain a set of eigenvectors (c).

significantly reduce the computational time of the subsequent
endmember extraction algorithm and, therefore, the SSEE can
also be used in combination with traditional endmember extrac-
tion methods as other preprocessing algorithms such as SPP,
SSPP, and RBSPP. Although the SSEE is characterized by high
computational complexity and processing times, we conduct
several optimizations that allow us to efficiently implement this
method on GPUs using NVidia’s compute device unified ar-
chitecture (CUDA).1 The proposed parallel implementation has
been tested on two different NVidia GPU architectures using
real data. We conducted comparisons of our newly proposed
SSEE implementation with the available GPU implementations
of SPP and SSPP, revealing that these algorithms can be effi-
ciently exploited in GPUs to include the spatial information into
the endmember extraction process.

The remainder of the paper is organized as follows. Section II
describes the SSEE algorithm and its optimizations. Section III
presents the GPU implementation of SSEE. The experiments
conducted in order to evaluate the accuracy of the extracted
signatures and the computational performance achieved by our
parallel implementation are described in Section IV, which also
describes a comparison with other methods. Finally, Section V
concludes the paper with some remarks and hints at plausible
future research lines.

II. SSEE AND ITS OPTIMIZATIONS

The original SSEE algorithm can be summarized by the fol-
lowing steps [5].

1) First, the original hyperspectral image is partitioned into a
set of subsets and singular value decomposition (SVD) is
used to determine a set of eigenvectors that describe most
of the spectral variance of each of the image subsets. This
step is the most time-consuming. The original implemen-
tation of SSEE requires that the subsets of the image are
square and do not overlap with each other (see Fig. 1).

2) Then, the entire image data are projected onto the afore-
mentioned eigenvectors and the maxima and minima pro-
jection values are selected to determine a set of candidate
endmember pixels (see Fig. 2).

3) In a third step (expansion and averaging of candidate pix-
els), the SSEE uses spatial constraints to combine and

1https://developer.nvidia.com/cuda-zone

JIMÉNEZ et al.: PARALLEL IMPLEMENTATION OF SPATIAL–SPECTRAL ENDMEMBER EXTRACTION ON GRAPHIC PROCESSING UNITS 1249

Fig. 2. Second step of the SSEE algorithm (data projection). The original
image (a), represented in feature space as indicated in (b), is projected onto the
eigenvectors derived in Fig. 1(c), identifying the maxima and minima projections
to select a set of candidate pixels (d).

Fig. 3. Third step of the SSEE algorithm. After selecting the initial candidate
pixels distributed spatially with respect to classes i, j, and k (a), the expansion
begins around each candidate by selecting the pixels that are spatially close
and spectrally similar to the ones already selected in (b). A spectral averaging
process (using the same sliding window centered on each candidate endmember
pixel) is performed in (c). In each case, the spectral distribution in feature space
is shown. For instance, in (d) the candidate pixels are not averaged. The spatial–
spectral averaging process starts in (e) for each class. This step continues during
a number of iterations so that candidates are better grouped into spectrally
separated classes (f).

average spectrally similar candidate endmember pixels.
In other words, the set of candidate endmembers obtained
after the previous step is now extended based on the spec-
tral similarity between the candidates and the pixels lo-
cated within a spatial window around them, followed by
an averaging process also within a window of the same
size the previous one. This process separates the endmem-
ber classes in spectral space, as illustrated in Fig. 3. At
this point, the SSEE has obtained a set of candidate end-
members that contain the final set of endmembers. As a
result, up to this point the SSEE produces a similar output
to that provided by other spatial preprocessing algorithms
such as SPP, RBSPP, or SSPP.

4) In the last step, the SSEE performs a ranking based on the
distance from each candidate to the first of the set. After
that, the endmembers can be extracted using a manual
procedure, as discussed in the original SSEE contribution
[5], or using spectral-based techniques for endmember
extraction such as orthogonal subspace projection [16],
vertex component analysis [17], or N-FINDR [18].

The SSEE method described above is characterized by its high
computation complexity. Most of the processing time consumed
by the algorithm (around a 99%) is spent in the candidate selec-
tion process (steps 1–3 above), due mainly to the computational
cost of the SVD and the subsequent projections over the entire
image. Prior to addressing our GPU implementation of SSEE,
we describe two optimizations of the method aimed at reduc-
ing its computational complexity. The main modifications are
focused on the method used to determine the eigenvectors, and
the spatial subsampling process performed to select the initial
candidate pixels. In the following, we describe the considered
optimizations.

A. PCA Instead of SVD for Eigenvector Calculation

SVD is not the only projection technique that can be used
to determine the eigenvectors needed for SSEE method. We
studied the possibility of using a fast implementation of PCA
[19] for this purpose. PCA performs a reduction while keeping
most of the information contained in the scene. This has the
potential to reduce the complexity of the projection calculations.
In addition, PCA is highly parallelizable with many parallel
implementations available.

B. Spatial Subsampling

An important optimization of the SSEE presented in [20] is
to retain local endmembers together with the local eigenvec-
tors, as these are calculated for the spatial partitions. The main
difference with the original SSEE is that local endmembers are
also retained and these are used to represent the spatial sub-
sampling of the data. This approach was originally thought for
larger images, in which computing the projections over the en-
tire dataset was too expensive in computational terms. In this
way, the amount of data involved in the eigenvector projections
is reduced and the computational complexity is significantly
improved. Here, we consider this spatial subsampling approach
developed by the authors of SSEE in [20] to speed up the pro-
cess. With this subsampling approach, the number of candidates
is larger than in the original SSEE implementation because it
tends to obtain similar candidates in different regions. However,
the averaging process conducted in step 3 is expected to reduce
(yet not completely remove) the redundant candidates.

To conclude this section, Fig. 4 provides a diagram with the
four implementations of SSEE adopted in this work, resulting
from the two considered modifications. In the figure, we have
the original SSEE implementation using SVD eigenvectors pro-
jected onto the whole image (hereinafter called SSEE-SVD),
the SSEE implementation using PCA eigenvectors projected
onto the whole image (hereinafter called SSEE-PCA), the SSEE
implementation using SVD eigenvectors projected into images
obtained after spatial subsampling (hereinafter called SSEE SS-
SVD), and the SSEE implementation using PCA eigenvectors
projected onto the images obtained after spatial subsampling
(hereinafter called SSEE SS-PCA). From these four options
(which cover steps 1 and 2 of the original SSEE implemen-
tation), an extension of the candidate set and spatial averag-
ing is conducted (step 3 in the original SSEE implementation)

1250 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

Fig. 4. Block diagram illustrating the different implementations of SSEE considered in this paper.

and finally the endmembers can be extracted after sorting the
candidates and/or applying a spectral-based endmember extrac-
tion algorithm (step 4 in the original SSEE implementation).

III. GPU IMPLEMENTATION

The GPU implementation of SSEE has been developed using
Nvidia CUDA 6.5.12 for Unix platforms, which uses the gcc
compiler (version 4.8.2) with -O3 as optimization level with
some calls to predefined functions available in cuBLAS2 and
using Linear Algebra PACKage (LAPACK) routines.3 Among
these routines the dgesvd performs the SVD, meanwhile the
PCA algorithm uses both the dgesvd and dgemm functions
besides other functions. In the following, we describe the general
GPU architecture and the individual implementation of each of
the SSEE modules in Fig. 4.

A. GPU Architecture

GPUs can be abstracted in terms of a stream model, un-
der which all datasets are represented as streams (i.e., ordered
datasets). The architecture of a GPU can be seen as a set of
multiprocessors (MPs). Each MP is characterized by a single
instruction multiple data architecture, i.e., in each clock cy-
cle, each processor executes the same instruction but operating
on multiple data streams. Each processor has access to a local
shared memory and also to local cache memories in the MP,

2https://developer.nvidia.com/cublas
3http://www.netlib.org/lapack/

while the MPs have access to the global GPU (device) mem-
ory. Algorithms are constructed by chaining so-called kernels,
which operate on entire streams and are executed by an MP,
taking one or more streams as inputs and producing one or more
streams as outputs. Thereby, data-level parallelism is exposed
to hardware, and kernels can be concurrently applied without
any sort of synchronization. The kernels can perform a kind
of batch processing arranged in the form of a grid of blocks,
where each block is composed by several threads, which share
data efficiently through the shared local memory and synchro-
nize their execution for coordinating accesses to memory. As a
result, there are different levels of memory in the GPU for the
thread, block, and grid concepts. There is also a maximum num-
ber of threads that a block can contain but the number of threads
that can be concurrently executed is much larger (several blocks
executed by the same kernel can be managed concurrently at the
expense of reducing the cooperation between threads since the
threads in different blocks of the same grid cannot synchronize
with the other threads).

B. GPU Implementation of SSEE

The GPU implementation of the different SSEE steps can be
summarized as follows.

1) Eigenvector Calculation: A significant part of the com-
putational time of SSEE is used to calculate the eigen-
vectors. This step can be performed using the SVD or the
PCA. The SVD has been implemented by simply resorting
to the dgesvd function available in the BLAS/LAPACK
library, which has been experimentally evaluated to be

JIMÉNEZ et al.: PARALLEL IMPLEMENTATION OF SPATIAL–SPECTRAL ENDMEMBER EXTRACTION ON GRAPHIC PROCESSING UNITS 1251

computationally very fast for our purpose. For the GPU
implementation of PCA, we conduct the following steps.
First, a kernel that normalizes the subset data subtracting
the average pixel from the subset image is developed. This
kernel, called avgXCUDA, sets a one-dimensional (1-D)
grid where the size is the number of bands of the image
and the block size is equal to the maximum number of
threads, which the GPU is capable of allocating. After
that, a call to cuBLAS function cublasDgemm is per-
formed in order to obtain the result of multiplying the data
matrix by its transpose. Finally the SVD transformation is
computed in the CPU, as we have experimentally tested
that parallelization is not needed in order to conduct this
final result in computationally efficient fashion.

2) Data Projection: Once the eigenvectors are calculated and
have been transferred to the GPU, a call to cuBLAS func-
tioncublasDgemm is performed so that the full scene (or
the subset image, depending on the considered method)
is processed. This step is the most important in terms of
computational time, specially if the subsampling is not
used, and the size of the window used for the processing
is very important as it can significantly increase the com-
plexity of the computation. For this step, a kernel called
maxminProjection has been designed to select the
maxima and minima projection values of each band, using
a reduction operation corresponding to the given number
of bands that represents the percentage of the total defined
by a threshold value svd th. Here, the number of blocks
is set to the considered number of bands and the number
of threads per block is set to the maximum value allowed
by the GPU device.

3) Expansion and Averaging of Candidate Pixels: In order
to implement this step, we first compute the Euclidean
norm of each pixel present in the image using a kernel
called euclideanNorm. The number of threads for this
kernel is set to the maximum capability of the device,
and the number of blocks is established as the ratio be-
tween the number of pixels in the image and the size of
the block plus one. A second kernel called expandCan-
didatePixels is designed to perform the expansion
of the candidate set within the range of the window size,
where parameter ws (window size) is set according to
the similarity between candidates already established and
other pixels in that range. Finally, a kernel called aver-
ageStep computes the averaging process between the
candidate pixels located within the spatial window. Both
kernels are defined by a 2-D_ grid set in which the num-
ber of rows and columns are, respectively, defined to the
number of rows and columns of the original image, and
the maximum number of threads is set as the block size.

4) Ranking: The last step just ranks the candidate pixels by
computing the distance between them. In this paper, we
use a kernel called BitonicSort to calculate the rank-
ing by performing a bitonic sorting algorithm in the GPU.
Here, the number of threads is empirically set to 256
and the number of blocks is calculated according to the

following expression:

n blocks = exp
(

log2

⌊
n pixels
n threads

⌋)

where n blocks, n pixels, and n threads, respectively, de-
note the number of blocks, the number of pixels, and the
number of threads. We emphasize that this last step is op-
tional and can be replaced by an endmember extraction
algorithm since steps 1–3 provide a SPP of the original
image. We also emphasize that this step represents a negli-
gible amount of the total computation time, even for large
datasets and candidate pixel sets.

IV. EXPERIMENTAL RESULTS

Our experimental results were conducted using a subset of
the dataset collected by the airborne visible infrared imaging
spectrometer (AVIRIS), operated by the NASA’s Jet Propulsion
Laboratory, over the Cuprite mining district in Nevada in
the summer of 1997 (these data are available online from
http://aviris.jpl.nasa.gov). The portion used in the experiments
corresponds to a 350 × 350 pixel subset of the sector labeled
as f970619t01p02r02 in the online data (available online:
ftp://popo.jpl.nasa.gov/pub/free_data/f970619t01p02r02c_rfl.
tar), which contains four 512 × 512 images comprising 224
spectral bands in the range from 400 to 2500 nm and a total
size of around 50 MB. The 350 × 350 pixel subset was
extracted at the upper rightmost corner of the fourth 512 × 512
pixel image available in the aforementioned online file. Water
absorption bands as well as bands with low signal-to-noise
ratio were removed, retaining 188 spectral bands (after
specifically removing bands 1–4, 105–115, and 150–170. The
main reason for selecting this specific subset in experiments
is the fact that this particular area is well understood min-
eralogically, with many reference ground signatures of the
main minerals of interest present in the scene available in the
form of a United States Geological Survey (USGS) library
(http://speclab.cr.usgs.gov/spectral-lib.html), which has been
used in this paper to perform the accuracy evaluation.

Two kinds of experiments were conducted in order to evaluate
the quality of the candidate pixels as well as the computational
complexity of our GPU implementation of SSEE. First, we an-
alyzed the quality of the candidates selected by different ap-
proaches (not only our SSEE implementations, but also the SPP
and SSPP) as compared to a set of reference signatures available
in the USGS library, using the spectral angle distance (SAD) as
a quantitative metric. We emphasize that the SSEE can be seen
as a spatial preprocessing method, much like SPP and SSPP.
As a result, a comparison with these methods is established to
properly analyze the quality of the candidate pixels provided by
these different methods. For our purposes, we have selected a
total of 25 reference mineral signatures from the USGS library,
which are displayed in Fig. 5. Then, we analyzed the parallel
performance of the GPU implementations, using two different
GPU architectures. Since the SSEE algorithm requires to split
the original image in square disjoints parts of the same size, the

1252 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

Fig. 5. Set of 25 reference USGS signatures selected for our experiments:
Alunite GDS84 Na03, Alunite GDS83 Na63, Alunite GDS82 Na82, Alunite
AL706 Na, Alunite HS295.3B, Alunite SUSTDA-20, Buddingtonite GDS85
D-206, Calcite WS272, Calcite HS48.3B, Chalcedony CU91-6A, Chlorite
HS179.3B, Chlorite SMR-13.a 104-150, Dickite NMNH106242, Halloysite
NMNH106236, Jarosite GDS99 K-y 200C, Kaolinite KGa-1 (wxyl), Kaoli-
nite KGa-2 (pxyl), Kaolin/Smect KLF506 95%K, Montmorillonite SWy-1,
Montmorillonite SAz-1, Muscovite GDS107, Muscovite HS146.3B, Muscovite
HS24.3, Nontronite GDS41, and Pyrophyllite PYS1A fine g.

influence of this spatial subsetting has been evaluated using four
different sizes (35 × 35, 50 × 50, 70 × 70, and 175 × 175)—
which are multiples of the 350 × 350 pixel scene considered in
experiments—to generate the spatial square disjoint subsets of
the original image during all the experimental validation. Our
reason to consider different sizes (from smaller to greater) is
to analyze the difference obtained in the algorithm performance
with spatially closer candidates. In the following, we summarize
the conducted experiments.

A. Quality of Candidate Pixels

In order to evaluate the quality of the candidate pixels selected
by the GPU implementation of SSEE as compared to the ref-
erence USGS signatures, we considered two different matching
algorithms [9]. The first matching algorithm obtains the average
matching results after 100 iterations, reordering both sets (i.e.,
candidate pixels and reference USGS signatures) randomly in
each iteration and selecting the best match (in terms of SAD),
from the first reference signature to the last, as shown in Table I.
This table includes the results of the four considered implemen-
tations of SSEE in Fig. 4, as well as the results provided by SPP
and SSPP. The second matching algorithm matches a pair of
signatures (i.e., one from the set of candidate pixels and another
one from the reference signatures) by taking the minima SAD
distance of all possible combinations, as shown in Table II. In
both cases, the 25 mineral signatures from the USGS library
shown in Fig. 5 are used as reference signatures for the match-
ing. In order to establish a fair comparison, we need to compare
the number of candidate signatures that are matched to USGS
reference signatures. However, a problem is how to decide if a
candidate pixel was matched to a reference USGS signature. In
our experiments, we consider that a USGS signature is found

by the candidate when their SAD is below 10◦ (the worst case
for the SAD between two signatures is 90◦). Based on the afore-
mentioned observations, we use the following metric to show
the percentage of success S of a certain method:

S(%) =
m
P + [1 − n

N]
2

× 100

where n is the number of candidate pixels extracted by the
method, N is the total number of pixels in the original image,
m is the number of signatures, which have been successfully
matched (i.e., they are below the SAD threshold of 10◦), and P
is the number of reference USGS signatures. Tables I and II both
include the results of the aforementioned metric. In the case of
SPP, the number of candidates pixels is equal to the size of the
original image as the SPP does not perform a reduction in the
number of candidates, but for the SSPP and all variants of SSEE
the number of candidate pixels is smaller than the number of
pixels in the original image.

As shown by Tables I and II, some of the 25 reference USGS
signatures could not be matched by the candidate pixels pro-
vided by different methods, e.g., Alunite HS295.3B or Chlorite
SMR-13.a 104–150. This is because it is difficult to guarantee
that these signatures are present in the original image, as some
minerals are represented by different alterations in the set of 25
USGS reference signatures used for validation. In any event,
most of thealgorithms were able to provide candidate pixels
that were similar, spectrally, to the USGS reference signatures,
even when considering a very string similarity threshold of 10◦.
In general terms, we can conclude from Tables I and II that the
SSEE provided good results in most cases, with the subsampling
implementations (SSEE SS-SVD and SSEE SS-PCA) providing
generally worse results than the implementations working with
the full image (SSEE-SVD and SSEE-PCA). Interestingly, the
SSEE SS-PCA provides better results than the SSEE SS-SVD,
even if the number of candidate pixels is much smaller for ev-
ery window size tested. Overall, the best results are obtained
by the SPP method due to the fact that it does not reduce the
number of candidate pixels, but it is remarkable that the SSEE-
PCA method obtains very similar results using a much smaller
set of candidate pixels, which will have a strong impact in the
computational performance results discussed in the following
section.

B. Computational Performance

Before describing the computational performance results ob-
tained, we emphasize that all the GPU implementations of
SSEE, SPP, and SSPP discussed in this section provide ex-
actly the same results as their serial versions, reported in the
previous section. In order to evaluate the computational perfor-
mance, several experiments were conducted in the following
two different architectures.

1) Architecture 1 is based on an Intel Core i7 920 CPU
at 2.67 GHz and 6 GB of RAM with a GPU NVidia
GTX 580, which features 512 processor cores operating at
1.54 GHz.

JIMÉNEZ et al.: PARALLEL IMPLEMENTATION OF SPATIAL–SPECTRAL ENDMEMBER EXTRACTION ON GRAPHIC PROCESSING UNITS 1253

TABLE I
AVERAGE SPECTRAL ANGLE DISTANCE (IN DEGREES)

Between the Set of Candidate Pixels Obtained by Different Spatial Preprocessing Methods (SSEE, SPP, and SSPP) and the USGS Reference Signatures for the AVIRIS Cuprite Image

TABLE II
SPECTRAL ANGLE DISTANCES (IN DEGREES)

Between the Set of Candidate Pixels Obtained by Different Spatial Preprocessing Methods (SSEE, SPP, and SSPP) and the USGS Reference Signatures for the AVIRIS Cuprite Image

2) Architecture 2 is a cluster made up of Intel Xeon CPUs
E5645 at 2.40 GHz and 24 GB DDR3, divided in 12
modules of 2 GB each, with an Nvidia TESLA S2070
GPU with 2 M2075 per node (we only use one of the
nodes for experiments).

A reason for including Architecture 2 in experiments (in ad-
dition to the standard Architecture 1) is that the TESLA S2070
GPU performs error checking, making the execution a little
slower in some cases but providing more reliable results than
the GTX 580 GPU. We believe that the two considered GPU
architectures, although not latest generation, are quite general
and illustrative, so that they provide quite representative results.
In both cases, the serial algorithms were executed in one of the
available cores, and the parallel times were measured using all
the resources from each GPU platform. The speedups are calcu-
lated between each CPU/GPU pair using the mean values after
ten Monte Carlo runs. In our context, the Monte Carlo approach
was used to obtain a representative processing time after several

runs of the parallel version (the execution time slightly differs
from one run to another due to threads scheduling and different
initialization in an inner sorting step of the algorithm). In any
event, we have experimentally tested that the standard deviation
between different runs is very small so our Monte Carlo runs
confirm that the parallel execution times remain very stable.

Table III shows the performance of the parallel implementa-
tions of SSEE in the two considered architectures (for a compari-
son with the parallel versions of SPP and SSPP, we refer to works
[13] and[14], respectively, describing the GPU implementations
of these algorithms). From Table III, we can conclude that the
SSEE implementations, which involve the PCA instead of the
SVD, exhibit a lower computational cost, mostly due to the data
volume reduction in addition to a higher parallelization order.
SVD approaches are limited by this operation because only
parallelization of very large datasets can obtain a significant
performance improvement [21] when executed on GPUs. If we
take into account the accuracy results reported in Section IV-A,

1254 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

TABLE III
EXECUTION TIMES (SECONDS) AND PARALLEL PERFORMANCE (SPEEDUP)

SVD PCA SSE SS-SVD SSEE SS-PCA

Architecture 1: Intel core i7 920 CPU at 2.67 GHz and 6 GB of RAM with a GPU NVidia GTX 580

Window size Total time (s) Speedup Total time (s) Speedup Total time (s) Speedup Total time (s) Speedup

35 × 35 7,2530 15,1616 8,7473 11,4655 10,2661 5,0818 4,0162 1,9642
50 × 50 5,2137 11,4076 4,3565 11,4519 7,4948 6,1597 2,1512 2,7603
70 × 70 4,0422 9,1843 2,3778 11,0915 5,8285 7,5405 1,3844 3,6789
175 × 175 4,4371 5,1112 0,6876 8,9735 5,2349 6,7613 0,6262 6,4053

Architecture 2: Intel Xeon CPU E5645 at 2.40 GHz and 24 GB DDR3, with an Nvidia TESLA S2070 GPU

Window size Total time (s) Speedup Total time (s) Speedup Total time (s) Speedup Total time (s) Speedup

35 × 35 10,1880 61,2082 8,7600 70,4919 14,5560 3,9652 4,5600 3,5300
50 × 50 8,0400 38,6563 4,5230 67,6003 11,3480 4,4413 2,5920 5,4471
70 × 70 7,3590 22,8132 2,5300 62,8731 10,0100 4,9502 1,7550 7,5379
175 × 175 7,6640 5,9659 0,9030 35,3189 8,6188 4,8518 0,8830 16,1687

For GPU Implementation of Different SSEE Approaches, Considering Four Different Spatial Subset Sizes, After Processing the AVIRIS
Cuprite Image using Architecture 1 (Top Row) and Architecture 2 (Bottom Row) Ten Monte-Carlo runs are conducted in each experiment,
and the average values are reported.

we can conclude that PCA-based implementations clearly im-
prove the results obtained by the SVD-based methods. The re-
sults reported on Architecture 2 also exhibit lower performance
for subsampling-based approaches, although the overall compu-
tational times achieved are better. This is due to the significant
improvement achieved by the projection operation in this par-
ticular architecture. Overall, the SSEE SS-PCA achieves better
performance with larger window sizes, which is an important
observation in terms of scalability.

V. CONCLUSION AND FUTURE LINES

In this paper, we have presented a new implementation of the
SSEE algorithm, which can be considered as an SPP module able
to select suitable candidate pixels for subsequent endmember
extraction. Several different implementations have been con-
sidered, based on the way eigenvectors are extracted and the
amount of data that are projected onto them. The proposed GPU
implementations are compared with other well-established spa-
tial preprocessing methods, such as SPP and SSPP. The results
obtained suggest that the GPU implementation of SSEE pro-
vides competitive results with such algorithms and allows a
very significant reduction of computational times while retain-
ing high-quality candidate pixels for endmember extraction pur-
poses. Our future work will focus on the addition of new spatial–
spectral preprocessing algorithms to the comparison and on the
development of strategies for parallelization of preprocessing
algorithms on GPUs and other high-performance computing ar-
chitectures such as field programmable gate arrays. In the future,
we will also perform additional experiments with more recent
GPU hardware.

ACKNOWLEDGMENT

The authors would like to thank the Editors and Reviewers for
their outstanding comments and suggestions for improvement,

which have greatly helped them to improve the technical quality
and presentation of the manuscript.

REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[2] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical and sparse regression-based approaches,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[3] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and com-
parative analysis of endmember extraction algorithms from hyperspectral
data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663,
Mar. 2004.

[4] A. Plaza, P. Martinez, R. Pérez, and J. Plaza, “Spatial/spectral endmember
extraction by multidimensional morphological operations,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 2025–2041, Sep. 2002.

[5] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng,
“Integration of spatial–spectral information for the improved extraction
of endmembers,” Remote Sens. Environ., vol. 110, no. 3, pp. 287–303,
2007.

[6] S. Lopez, J. F. Moure, A. Plaza, G. M. Callico, J. F. Lopez, and
R. Sarmiento, “A new preprocessing technique for fast hyperspectral end-
member extraction,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5,
pp. 1070–1074, Sep. 2013.

[7] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679–2693,
Aug. 2009.

[8] G. Martin and A. Plaza, “Region-based spatial preprocessing for endmem-
ber extraction and spectral unmixing,” IEEE Geosci. Remote Sens. Lett.,
vol. 8, no. 4, pp. 745–749, Jul. 2011.

[9] G. Martin and A. Plaza, “Spatial-spectral preprocessing prior to endmem-
ber identification and unmixing of remotely sensed hyperspectral data,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2,
pp. 380–395, Apr. 2012.

[10] J. Plaza, E. M. T. Hendrix, I. Garcia, G. Martin, and A. Plaza, “On
endmember identification in hyperspectral images without pure pixels:
A comparison of algorithms,” J. Math. Imaging Vis., vol. 42, no. 2–3,
pp. 163–175, 2012.

[11] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis. Berlin,
Germany: Springer-Verlag, 1999.

[12] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures
via partial unmixing of AVIRIS data,” in Proc. Jet Propulsion Laboratory
Airborne Earth Sci. Workshop, 1995, pp. 23–26.

JIMÉNEZ et al.: PARALLEL IMPLEMENTATION OF SPATIAL–SPECTRAL ENDMEMBER EXTRACTION ON GRAPHIC PROCESSING UNITS 1255

[13] J. Delgado, G. Martin, J. Plaza, L. I. Jimenez, and A. Plaza, “Fast spatial
preprocessing for spectral unmixing of hyperspectral data on graphics
processing units,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 9, no. 2, pp. 952–961, Feb. 2016.

[14] L. I. Jimenez et al., “GPU implementation of spatial-spectral pre-
processing for hyperspectral unmixing,” IEEE Geosci. Remote Sens.
Lett., vol. 13, no. 11, pp. 1671–1675, Nov. 2016. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7563405
&isnum ber=4357975

[15] J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, “Parallel mor-
phological endmember extraction using commodity graphics hardware,”
IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 441–445, Jul. 2007.

[16] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification
and dimensionality reduction: An orthogonal subspace projection ap-
proach,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785,
Jul. 1994.

[17] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analy-
sis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[18] M. Winter, “N-FINDR: An algorithm for fast autonomous spectral end-
member determination in hyperspectral data,” Proc. SPIE, vol. 3753,
pp. 266–270, 1999.

[19] I. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley,
2002.

[20] D. Rogge, M. Bachmann, B. Rivard, and J. Feng, “Spatial sub-sampling
using local endmembers for adapting OSP and SSEE for large-scale hyper-
spectral surveys,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 5, no. 1, pp. 183–195, Feb. 2012.

[21] S. Lahabar and P. J. Narayanan, “Singular value decomposi-
tion on GPU using CUDA,” in Proc. IEEE Int. Symp. Paral-
lel Distrib. Process., May 2009, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5161058
&isnum ber=5160846

Author’s photographs and biographies are not available at the time of
publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

