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ABSTRACT | Remote sensing is a powerful technology for 

Earth observation (EO), and it plays an essential role in many 

applications, including environmental monitoring, precision 

agriculture, resource managing, urban characterization, disaster 

and emergency response, etc. However, due to limitations in the 

spectral, spatial, and temporal resolution of EO sensors, there 

are many situations in which remote sensing data cannot be fully 

exploited, particularly in the context of emergency response 

(i.e., applications in which real/near-real-time response is 

needed). Recently, with the rapid development and availability 

of social media data, new opportunities have become available 

to complement and fill the gaps in remote sensing data for 

emergency response. In this paper, we provide an overview 

on the integration of social media and remote sensing in time-

critical applications. First, we revisit the most recent advances in 

the integration of social media and remote sensing data. Then, 

we describe several practical case studies and examples 

addressing the use of social media data to improve remote 

sensing data and/or techniques for emergency response.

KEYWORDS | Deep learning; emergency response; remote 

sensing; social media 

I .  IN TRODUCTION

Remote sensing [1], [2] involves the use of systems and 
algorithms to record information about the surface of the 
Earth from a remote location. Although reliable as a data 
source, remote sensing data may not be always available 
and can be complemented by other sources of data, such 
as geographic information systems (GIS) or social media 
[3], in order to address time-critical applications. For 
instance, relating publicly available social media informa-
tion with remote sensing or GIS data can lead to a more 
efficient management of emergency response (which, in 
our context, refers to applications in which real/near-real-
time response is needed). Social media [4]–[6] (generated 
from many individuals) is now playing a more relevant 
role in our daily lives and provides a unique opportunity 
to gain valuable insight on information flow and social 
networking within the society. Through data collection 
and analysis of its content, it supports a more detailed 
mapping and understanding of the evolving human land-
scape. As a result, there has been a growing interest in 
using social media to complement the information avail-
able from remote sensing and GIS systems.Digital Object Identifier: 10.1109/JPROC.2017.2684460
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In the following, we provide an overview of available 
strategies for emergency response grouped by the main 
source of information used in the process. First, we focus 
on techniques that mainly use remote sensing data for 
this purpose. Then, we describe techniques that are based 
mainly on social media data. Next, we describe strategies 
that are mainly based on GIS data. Finally, we provide a 
description of techniques that exploit both remote sensing 
and social media data in synergistic fashion.

A. Emergency Response Using Remote Sensing Data

There have been many techniques mainly based on 
remote sensing data (but also exploiting other sources of 
information) for emergency response. For instance, in [7], a 
new framework is developed to harvest the ambient geospa-
tial information from social media data, leading to improved 
support situational awareness as related to human activi-
ties. In [8], a single-band density slicing technique and the 
maximum-likelihood (ML) algorithm are used to detect water 
bodies from remote sensing images acquired by the Landsat 
multispectral instrument. The results exhibit a significant 
accuracy in the characterization task. In addition to optical 
remote sensing images, radar images have also been used for 
emergency response purposes. For instance, in [9], an auto-
matic and near-real-time flood water level extraction method 
is developed for the analysis of high-resolution synthetic 
aperture radar (SAR) images. This algorithm is shown to be 
successful in the task of improving estimates of an hydrau-
lic model parameter, taking assimilation into consideration. 
Another effort based on SAR images is presented in [10], in 
which coarse resolution SAR images are analyzed in near real 
time for timely flood management. The experiments reported 
show that flood inundation models can be verified and recali-
brated in a time shorter than the flood travel time. A more 
detailed review on the use of remote sensing data to provide 
information into flood inundation models is given in [11]. 
A more specific, application-oriented study is the one pre-
sented in [12], in which Dhakal et al. devise a methodology 
able to detect the flood and erosion areas effected by heavy 
rainfall using multitemporal Landsat data. In [13], Carrara et 
al. rely on GIS and remote sensing technologies in order to 
map landslide hazards. Despite the potential of such techno-
logical advancements, landslide hazard mapping remains a 
major and largely unsolved task. In addition to optical data, 
radar data have also been used for this purpose. For instance, 
in [14], Chen et al. develop a new flood mapping method for 
SAR images, and further evaluate the obtained result by a 
detailed comparison with multispectral images collected by 
the SPOT satellite. The effectiveness of using SAR data for 
flood monitoring is clearly demonstrated in this study. On 
the other hand, the study described in [15] is focused on 
the development of a new method to obtain the instantane-
ous profiles of flood waves using orbital remote sensing and 
topographic data. This approach is also shown to be useful to 

measure peak discharges and verify hydraulic models. In [16], 
Wang illustrates different strategies for the use of remote 
sensing in flood applications, including: 1) precipitation data 
sets derived from in situ observations; 2) airborne scanners 
or detectors; and 3) unmanned aircrafts and GIS-based flood 
analysis. In [17], André et al. show the potentials of flood map-
ping using radar/optical imagery and digital elevation models. 
Another relevant study is the one presented in [18],  in which 
a simple, efficient, and economical method integrating the 
advantages of Landsat imagery and digital elevation models 
is presented for mapping flood extent in coastal floodplains.

B. Emergency Response Using Social Media Data

The amount of techniques exploiting social media data 
for emergency response is quite numerous. An early survey 
is provided in [19], describing existing research on content-
based retrieval for multimedia databases from spatial, tempo-
ral, and spatio–temporal relations. The work in [20] analyzes 
the advantages of combining visual analytics with big data 
techniques, concluding that visual analysis of social media 
data enables a wide range of promising new applications. A 
similar study focused on big data (including new challenges 
and opportunities) is presented in [21] and [22]. In [23], 
Abel et al. develop an automatic social web stream filter sys-
tem called Twicident that allows users to search and analyze 
information about incidents available on Twitter. This sys-
tem takes advantage of data semantics to profile incidents 
and continuously improve stream filters. Another relevant 
work in this direction is presented in [24], in which Tan et 
al. explore how to use personal ad hoc clouds comprising 
individuals in social networks to address big data process-
ing challenges. In [25], a tutorial on models and algorithms 
for interactive sensing in social networks is presented and 
discussed. The focus is on the way individuals act as sensors, 
and on how the information exchange between individuals is 
exploited to optimize sensing. In this context, social learning 
is used to model the interaction between individuals that aims 
to estimate an underlying state of nature. In [26], Field and 
O’Brien introduce a new framework (called cartoblography) 
for mapping the spatial context of microblogging. Here, focus 
is on the possibility to use tweets to perform real-time map-
ping of different phenomena. Along the lines of this research 
direction, the work in [27] develops a Twitter-based event 
detection and analysis system (TEDAS) aimed at detecting 
new events, analyzing the spatial and temporal pattern of 
such events, and identifying their importance. On the other 
hand, the research presented in [28] is focused on modeling 
city dynamics by analyzing the check-in data of its residents 
from social media, which serves as a mechanism to study the 
structure and composition of the city on a large scale. Another 
relevant approach for processing massive social media data is 
described in [29], which transforms the resulting knowledge 
into suitable information to increase efficiency in disaster 
warning. A similar study based on Twitter data is recently 
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presented in [30], in which a technique for classification of 
data coming from this social network is developed for situa-
tion awareness based on semisupervised learning, developing 
online interactive maps of the vulnerable areas. In [31], an 
automatic filter is presented which can generate quantitative 
data derived from photos and eye-witnesses in social media 
posts to support emergency response for rapid inundation 
mapping, including information about inundation extent and 
water depth in floods. The research presented in [32] describes 
a methodology that also leverages social media content to sup-
port rapid inundation mapping. In [33], some insights on the 
role of social media in order to devise warning responses in 
extreme events are explored. The results obtained in the study 
indicate that local social media could facilitate such warning 
responses. The work in [34] presents a procedure to detect 
and identify earthquakes based on Twitter data, with a con-
clusion that it is greatly beneficial to exploit social media data 
for this purpose. Another research work focused on earth-
quakes is presented in [35], in which Acar and Muraki inves-
tigate the posted tweets during the Great Tohoku earthquake 
followed by a devastating tsunami. The authors particularly 
address four main aspects: 1) how to classify related tweets; 
2) the difference between the tweets posted directly and indi-
rectly; 3) the problems that users faced during the event; and 
4) the communication aspects of Twitter. In similar fashion, 
the study in [36] presents a probabilistic framework for esti-
mating the city-level location of Twitter users based only on 
the content of the tweets. The result is a list of possible loca-
tions for each user in descending order of confidence, show-
ing promising accuracy. A partially related work is presented 
in [37], in which the sociospatial properties of users of social 
networks are investigated by means of three popular online 
location-based platforms based on two randomized null 
models. The work in [38], on the other hand, analyzes the 
2013 Colorado flood by focusing on how communities in and 
outside the media spotlight obtained information about the 
event from social media platforms. Another application-ori-
ented work is presented in [39], in which a flood event in the 
Brisbane River is addressed. Here, Bunce et al. explore four 
categories of information experience: 1) monitoring informa-
tion; 2) community and communication; 3) affirmation; and 
4) awareness, all concerning the behavior of individuals using 
social media during the flooding. On the other hand, the work 
in [40] studies several floods in Australia during 2010–2011, 
applying social network analysis to identify active users and 
their effectiveness in disseminating critical information, and 
also identifying important online resources disseminated by 
online communities. In related fashion, the paper in [41] 
reviews the actions of administrators and users in public net-
work platforms during the Queensland and Victorian floods, 
elaborating on the value of social media to assist emergency 
services. Another relevant effort is presented in [42], in which 
an event notification system is presented that can monitor 
and identify tweets to predict and detect events automatically 
by exploiting the real-time nature of Twitter.

C. Emergency Response Using Geographical 
Information Systems

There has also been a significant amount of research on 
the use of GIS for emergency response purposes. In [43], 
Flanagin and Metzger explore the properties of a new system 
for volunteered geographic information (VGI), which refers 
to the harnessing of tools to create, assemble, and dissemi-
nate geographic data provided voluntarily by individuals. 
In [44], an assessment of flood risk analysis, management, 
and current GIS applications for flood damage modeling is 
presented and discussed, emphasizing the importance of 
GIS technology when used as a data management platform 
and decision support tool. In [45], the use of GIS in hydrol-
ogy and water management is discussed. Hydrological GIS 
has become a very important aspect in the water and river 
management domain. In [46], a prototype of a dynamic and 
collaborative mapping system for flooding events based on 
VGI is presented, which is supported by citizens during the 
event. It uses a questionnaire result to evaluate this system 
in the city of Sao Paulo, Brazil. The work in [47] gives an 
overview on spatial interpolation methods aiming to provide 
guidelines and suggestions for different applications. The 
work compares a number of commonly applied methods 
and also provides a list of software tools for spatial interpola-
tion. In [48], Poser and Dransch illustrate methods aiming to 
capture current research and future directions on VGIs used 
in preparedness and mitigation work. The work in [49] pre-
sents the design and prototypical implementation of a geo-
spatial exploratory data mining web agent which reads web-
page data and follows links to acquire knowledge in order 
to extract value on the geoinformation usable by a GIS. The 
agent creates a database from webpage text, mines it for loca-
tion information, and then converts it to a proper geospatial 
data format. In [50], a case study is presented in which a VGI 
addresses the quality problem from innocent mistakes and 
intentional falsifications by aggregating input from many dif-
ferent people. Specifically, the work presents a technique to 
maintain a comprehensive list of points of interest for digital 
maps. In [51], Elwood et al. examine the content and char-
acteristics of a VGI, including the technical and social pro-
cesses through which it is produced, and appropriate meth-
ods for synthesizing and using these data in research. The 
work also explores emerging social and political concerns 
related to this new form of information. In [52], Sui and 
Goodchild consider GIS as social media. On the one hand, 
it is concluded that various users and contributors of online 
mapping sites have formed their own virtual community for 
exchanging information. On the other hand, it is concluded 
that interactions of online GIS users or neogeographers or 
neocartographers are not confined to cyberspace. The work 
in [53] describes social media geographic information, which 
comprises VGI from social media platforms used to explore 
novel methods and tools for analysis and knowledge con-
struction. In [54], Yamamoto develops a social media GIS 
for disaster risk management in Japan, where the role of GIS 
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and social media are considered important for collection 
and transmission of disaster information. In [55], Croitoru 
et al. present a system prototype for harvesting, process-
ing, modeling, and integrating heterogeneous social media 
feeds toward the generation of geosocial knowledge. Using 
a different perspective, the work in [56] describes the main 
contributions and challenges in applying GIS and remote 
sensing methods for disaster risk governance. This work ana-
lyzes emerging concepts and concludes that GIS and remote 
sensing technologies have an important impact in data pro-
cessing and analysis. Finally, the work in [57] presents a case 
study of fast flood and waterlogging detection using GIS.

II .  EMERGENC Y R ESPONSE THROUGH 
THE IN TEGR ATION OF SOCI A L MEDI A 
A ND R EMOTE SENSING

In recent years, there has been a significant increase in the 
number of applications and techniques that use remote sens-
ing and social media jointly in the context of emergency 
response. For instance, in [58], Zhang et al. propose a trans-
fer learning framework for urban waterlogging analysis, 
which takes advantage of social media and satellite data to 
perform multiview discriminant analysis. In [38], Denis et al. 
develop a comprehensive system integrating remote sensing 
and social media data for decision making and quick informa-
tion broadcasting. This system is able to support evacuation 
strategies and real-time guidance during disasters (the 
authors specifically develop a tsunami risk map application in 
Padang, Indonesia). Zhang et al. [59] present a semantic 
method for social-sensor-based urban waterlogging monitor-
ing. In [60], Backstrom et al. introduce a physical location 
prediction algorithm which takes into account social infor-
mation such as population density. It produces measurable 
improvement in accuracy when compared to other related 
algorithms. In [61], Jones and Grandhi propose a people-to-
people-to-geographical-places system, which aims at describ-
ing the design space for location-aware community systems. 
The study in [62] presents a scalable system for the contex-
tual enrichment of satellite images by crawling and analyzing 
multimedia content from social media such as Twitter. This 
system benefits from an enhanced visualization system dem-
onstrating different aspects of the event under consideration. 
In [63], Brivio et al. propose a new procedure that integrates 
topographic information with SAR images to overcome the 
constraints of temporal resolution in the exploitation of SAR 
images for flood mapping purposes. Goodchild and Glennon 
[64] focus on the latest developments of crowdsourcing VGI. 
In [65], Herfort et al. address the geographical features that 
can be used between social media data and flood phenomena 
and present a new approach to extract useful crisis-relevant 
information from social media platforms. A free and open-
source web platform called CrisisTracker is built in [66] to 
extract distributed situation awareness from public tweets 
during large-scale events. In [67], the social media alert and 

response to threats to citizens (SMART-C) program devel-
oped by the U.S. Department of Homeland Security’s Science 
& Technology Directorate (DHS-S&T) is described. This pro-
gram aims to develop citizen participatory sensing capabili-
ties for decision support throughout the disaster life cycle via 
a multitude of devices and modalities. The authors provide an 
overview of the envisioned SMART-C system’s capabilities 
and discuss some of the most interesting and unique chal-
lenges that arise due to the combination of spatial computing 
and social media within the context of disaster management. 
A comprehensive survey [68] is presented on the processing 
of social media messages in mass emergencies. In [69], 
Middleton et al. develop a social media crisis mapping plat-
form for natural disasters that uses locations from gazetteer, 
street map, and VGI sources for areas at risk of disaster, and 
matches them to geoparsed real-time tweet data streams, 
where statistical analysis is performed to generate real-time 
crisis maps. In [70], Yin et al. propose a comprehensive 
framework that combines hydrological modeling and GIS 
spatial analysis for small-scale risk assessments of urban 
waterlogging. The authors further derive the risk curve of 
rainstorm waterlogging hazards damage of a study area in 
Shanghai, China. A framework for disaster assessment using 
social media is developed in [71]. Geospatially oriented social 
media communications [72] are presented as a common infor-
mation resource to support crisis management. In [73], Wang 
and Li propose a GIS and remote sensing-based urban waterlog-
ging monitoring and warning system which takes into account 
hydrology, water dynamics, meteorology, and urban sewerage 
systems. In [74], a participatory sensing-based model for mining 
spatial information related to urban emergency events is intro-
duced, where the Chan-hom typhoon is addressed as an exam-
ple. Semantic analysis on microblog data is conducted, and high-
frequency keywords in different provinces are extracted for 
different stages of the event. With the geo-tagged and time-
tagged data, the collected microblog data can be classified into 
different categories. Correspondingly, some public opinion and 
requirements can be obtained from the spatial and temporal 
information to enhance situation awareness and help govern-
ments offer more effective assistance. Deng et al.  [75] use social 
media data collected from Sina Weibo, which is a microblogging 
website like the hybrid of Twitter and Facebook, to analyze the 
public opinion on the spatial and temporal perspectives for 
emergency response, where the Chan-hom typhoon is again 
considered as an example. A crowdsourcing-based model is 
introduced in [76] for mining spatial information of urban emer-
gency events. In [77], Chae et al. present a visual analytics 
approach that provides users with scalable and interactive social 
media data analysis and visualization including the exploration 
and examination of abnormal topics and events within various 
social media data sources, such as Twitter, Flickr, and 
YouTube. In [78], Earle et al. provide a quick review of 
Twitter and its capabilities and investigate the possibility of 
using tweets to detect seismic events. De Longueville et al. 
[79] study how Twitter can be used as a source of 
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spatio–temporal information. By focusing on a recent case of 
forest fire, the authors demonstrate the role of Twitter to sup-
port emergency planning, risk assessment, and damage 
assessment activities. In [80], Yamamoto and Fujita develop 
a social media GIS which is specially tailored to mash up the 
information that local residents and governments provide to 
support information utilization from normal times to disaster 
outbreak times, in order to promote disaster reduction. The 
newly developed social media GIS integrates a Web-GIS with 
Twitter, and includes a function for classifying the submitted 
information. A real-time situation awareness viewer is devel-
oped in [81] for monitoring disaster impacts using location-
based social media messages in Twitter. In [82], Sakaki et al. 
develop an earthquake reporting system for use in Japan. 
Specifically, the authors investigate the real-time interaction 
of events such as earthquakes in Twitter and propose an algo-
rithm to monitor tweets and to detect a target event. Carley 
et al. [83] examine the use of Twitter in the context of disas-
ter management, with a focus on planning and early warn-
ings. Landwehr et al. focus on the potential use of Twitter to 
support tsunami warning and response. In [84], Twitter is 
again presented as a social media that can be used to help 
mitigate disasters. Here, the authors describe the strengths 
and limitations of Twitter in this context, and identify the 
features needed in a Twitter system to support disaster plan-
ning, warning, and response. In [85], Xiao et al. examine the 
spatial heterogeneity in the generation of tweets after a major 
disaster. They develop a new model to explain the number of 
tweets by mass, material, access, and motivation. Empirical 
analysis of tweets after the Hurricane Sandy in New York 
City largely confirms the newly developed model. The 
authors also find that community socioeconomic factors are 
more important than population size and damage levels in 
predicting disaster-related tweets. An advanced system is 
presented in [86] for emergency management which fuses 
the potentiality offered by mobile social data and bottom-up 
communication with smart sensors. In [87], Yin et al. 

present a system that uses social media to enhance emer-
gency situation awareness. The described system uses natural 
language processing and data mining techniques to extract 
situation awareness information from Twitter messages gen-
erated during various disasters and crises. Social media poses 
two types of challenges. The first is how to sift relevant infor-
mation from the social media data, and the second is that the 
traditional natural language processing techniques are inap-
plicable to the user-generated content. To deal with these dif-
ficulties, the authors develop a coherent set of integrated 
components for extracting situation awareness by using vari-
ous data mining techniques, including burst detection, text 
classification, online clustering, and geotagging. In [88], 
Crooks et al. analyze the spatial and temporal characteristics 
of the Twitter feed activity responding to an earthquake 
which occurred on the East Coast of the United States. They 
argue that these feeds represent a hybrid form of a sensor sys-
tem that allows for the identification and localization of the 
impact area of the event. Schnebele and Cervone  [89] pro-
pose a new pixel-based method to optimize and modify the 
contour of flood regions with VGI data obtained through 
Google news, videos and photos. In [90], Werts et al. build a 
Web-GIS framework which allows the public to upload pho-
tos and attributes of their sites and use these timely data in 
the context of soil and water conservation procedures.

III .  C A SE ST U DY: HE AV Y R A INFA LL 
E V EN T MONITOR ING USING DEEP 
LE A R NING

In order to illustrate the potential of integrating remote sens-
ing and social media data for emergency response, as a fol-
low-up to the previous review section we now discuss several 
case studies based on the exploitation of Sina Weibo social 
media data sets from central Wuhan and Shenzhen cities. 
The goal of these case studies is to monitor heavy rainfall 
events recently happening in both cities. As shown in Fig. 1, 

Fig. 1. Study areas considered in our case studies. The urban enters of Wuhan and Shenzhen (marked in purple) rather than the whole cities 
are taken as our target due to the larger number of Sina Weibo social media messages.
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the regions marked in purple are the study areas in Wuhan 
and Shenzhen. Notably, the number of Sina Weibo messages 
published in the central part of a city is much larger than 
the number of messages generated in noncentral areas. As a 
result, we choose the urban centers of Wuhan and Shenzhen 
(i.e., Jiangan, Jianghan, Qiaokou, Hanyang, Wuchang, 
Qingshan, and Hongshan districts in Wuhan, Baoan, 
Nanshan, Futian, and Luohu districts in Shenzhen) rather 
than the whole cities as our target areas. In the following, 
we briefly review the existing emergency monitoring meth-
odologies, followed by an introduction of our heavy rainfall 
monitoring framework. We show that, after analyzing the 
data collected from Sina Weibo websites, we can further 
explore the relationship between environmental phenomena 
and social media responses in the considered study areas.

A. Emergency Monitoring Methodologies

Monitoring of emergencies is fundamental for decreas-
ing the potential impact of unexpected events, such as natu-
ral or human disasters. Making timely decisions and taking 
preventive actions saves human lives, reduces economic 
losses, and enhances the stability of the communities in the 
incident. Much work has been carried out to improve the 
monitoring performance in the literature. One of the most 
outstanding research aspects is based on machine learning 
algorithms, including the support vector machine (SVM) 
[91]–[94], multitask learning [95], probabilistic mod-
els [82], maximum entropy [96], logistic regression [92], 
etc. [97]–[100]. Recently, deep learning [101]–[110] has 
emerged as a state-of-the-art machine learning technique. 
It learns the representative and discriminative features in 
hierarchical architectures and shows successful results in a 
broad area of applications, such as image processing [111]–
[115], computer vision [116], [117], and speech recognition 
[118], [119]. Many kinds of deep neural networks have been 
designed, e.g., deep belief networks (DBNs), convolutional 
neural networks (CNNs), deep stack networks (DSNs), and 
recurrent neural networks (RNNs). Specifically, deep learn-
ing has also been studied in the field of emergency monitor-
ing. For example, a Chinese emergency event recognition 
model is proposed in [120] by applying the DBN. In our case 
study, CNN [121]–[123] is adopted to classify the clawed 
Sina Weibo data sets. The reasons for adopting CNN are 
that: 1) CNN is the first truly successful deep learning archi-
tecture benefited from the successful training of hierarchi-
cal layers; 2) CNN is an end-to-end learning process, from 
the raw data rather than hand-coded features to semantic 
labels, and thus no longer needs to manually devise the fea-
tures; and 3) the shared weights within layers can reduce the 
free parameters and ease the burden of the computing. It is 
notable that this paper does not limit to the CNN but offers 
a general architecture (i.e., deep learning) for heavy rain-
fall event monitoring. As such, although CNN is adopted as 
a typical deep learning method in the case study, it is also 

allowed to use other state-of-the-art deep learning methods 
(e.g., DBN, DSN, or RNN).

The CNN, proposed by Lecun et al. [121] in 1998, is a 
biologically inspired variant of the multilayer perceptron 
(MLP). This type of hierarchical network is one of the most 
popular deep learning architectures consisting of various 
layers, including convolutional layers, pooling/subsampling 
layers, and fully connected layers. The layers can vary with 
how the data are sampled and trained. Favored by the devel-
opment of computer hardware and software technologies, 
CNN has been of growing interest recently in many appli-
cations. In [124], three strategies are proposed to exploit 
the CNN for remote sensing scene classification. In [125], 
CNN models are directly trained to produce classification 
maps out of the input large-scale remote sensing images. In 
[126], predatory conversations are automatically identified 
by CNN-based method. In [127], opinion summarizations 
in Chinese microblogging systems are effectively mined by 
the CNN. Based upon the CNN, our newly developed frame-
work for heavy rainfall monitoring is portrayed in Fig. 2. 
As shown in Fig. 2, the data sets with time and geospatial 
information are crawled by the Sina Weibo open platform 
API, and then a CNN model is designed to classify the Sina 
Weibo messages into positive and negative classes. Finally, 
the heavy rainfall emergence event can be detected accord-
ing to the classification results.

Fig. 2. Framework of the heavy rainfall monitoring methodology 
used for this case study.
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B. Data Collection

The experimental data sets used in this paper are Sina 
Weibo messages with specific keywords (in Chinese) like 
“ ,” “ ,” “ ,” “ ,” “ ,” and/or “ ”1 from both central 
Wuhan and Shenzhen. For example, Fig. 3 displays some ran-
dom Sina Weibo posts that contain the keyword “ ” (rain). 
Wuhan, which is known as a “Thoroughfare to Nine 
Provinces,” is the capital and the most populous city of central 
China’s Hubei Province. Wuhan’s climate is humid subtropi-
cal, with abundant rainfall. The summer season is the wettest 
period during which lots of disasters can happen, such as tor-
rential rains and floods. Heavy rainfall can cause huge losses 
of life and property. For example, Wuhan saw 570 mm (about 
22.44 in) of rainfall (see Fig. 4) during July 1–7, 2016, sur-
passing the record of the city in 1991. Red alerts for heavy 
rainfall were released on July 2 and 6, respectively. More than 
27 people died and the economic losses reached ¥5.7 billion 
(about $850 million). On the other hand, Shenzhen is a major 
city in South China’s Guangdong Province. The city is located 
north of the Hong Kong Special Administrative Region and is 
the first special economic zone in China. Shenzhen has a 
humid subtropical climate. It is affected by monsoons, which 
leads to hot weather and typhoons, together with thunder-
storms in the summer. Due to the heavy rainfall and floods, 
Shenzhen suffers severe water crises. For example, during 
May 8–11, 2014, as many as 1500 houses were destroyed and 
three people were killed by the torrential rain. The direct eco-
nomic loss was more than ¥80 million (about $12.8 million). 
Figs. 4 and 5 show the influences of the heavy rainfall in 
Wuhan and Shenzhen. Moreover, it is notable that Sina 
Weibo is one of the most popular social media websites in 
China. It was launched by Sina Corporation in 2009 and as of 
March 2016 had more than 261 million monthly active users. 
It is able to convey information quickly since each message is 
limited to 140 characters. 

As described above, two data sets crawled from Sina 
Weibo are used to detect the heavy rainfall events in the 

experiments. The first is a collection of Weibo data from 
June 29, 2016 to July 10, 2016, located in the center of 
Wuhan, while the second data are from May 8, 2014 to May 
11, 2014, located in the center of Shenzhen. We adopt the 
Sina Weibo open platform API to collect data from Weibo 
websites. To assess the API’s information, it is necessary to 
get the authentication of the Sina Weibo through the OAuth 
protocol. As depicted in Fig. 6, the geospatial Weibo data are 
collected by defining circular zones with different centers 
and fixed radius in a period to make the obtained data cover 
the whole city. In total, 8519 and 2442 significant Weibo 
messages are crawled in Wuhan and Shenzhen, respectively. 
Each Weibo message relates to a time and location, which 
includes the latitude and longitude coordinates.

1The keywords “ ,” “ ,” “ ,” “ ,” “ ,” and/or “ ” refer to 
“rain,” “water,” “waterlogging,” “f lood,” “river,” and/or “ocean” in 
English.

Fig. 3.  Some random Sina Weibo posts (in Chinese) that contain the 

keyword ª º (rain).

Fig. 4.The heavy rainfall in Wuhan. (a) A flooded stadium was 
turned into a giant bathtub (http://www.ibtimes.co.uk/china-
photos-flooded-cities-after-recordamounts-rain-1569379). (b) A 
bus went through a flooded street (http://thehimalayantimes.com/
multimedia/photo-gallery/inundated-wuhan/). 
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C. Classification of Sina Weibo Data by CNN

To perform the analysis of our considered heavy rainfall 
event using Sina Weibo data, it is important to identify use-
ful information from the raw data. The crawled data with 
specific keywords usually include mention of the target 
event. For example, users may post Weibo messages such 
as “Torrential rain!,” “The rain just keeps pouring down,” 
or “Streets are all flooded.” However, users might also pub-
lish Weibo messages such as “Eventually, the rain stopped,” 

“Storms always give way to the sun,” or “I like to swim, 
especially in the sea.” Moreover, even though a message is 
associated with the heavy rainfall event, it may not be right 
to take the message as an event report. For example, users 
make Weibo messages such as “It was raining so hard yes-
terday” or “Three rains in two days.” Although the descrip-
tions are truly related to the heavy rainfall event, they can-
not reflect the real-time situation. In order to better conduct 
the analysis, it is worthwhile to distinguish whether a Weibo 
message truly reflects the actual occurrence of heavy rainfall 

Fig. 5. The heavy rainfall in Shenzhen. (a) Pedestrians walked in a flooded street (http://slide.news.sina.com.cn/weather/
slide_1_29155_60229.html#p=6). (b) A car waded through the rainwater (http://slide.news.sina.com.cn/weather/slide_1_29155_60229.
html#p=10).

Fig. 6. Circular zones with different centers and fixed radius are utilized to make the Sina Weibo data sets cover the research areas. 
(a) Circular zones of central Wuhan. (b) Circular zones of central Shenzhen.
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events. Specifically, the true and real-time descriptions are 
denoted as positive class, whereas the others are labeled as 
negative class. In the case study, all of the Sina Weibo mes-
sages are manually labeled as positive or negative classes. 
As will be shown later, the classification performance of 
the CNN model can be evaluated by comparing the manual 
labels and the classified labels.

To classify a Sina Weibo message as belonging to the 
positive class or the negative class, we adopt the CNN model 
[122], [123], which has proven to be a powerful tool for 
machine learning tasks. Providing that a training set with 
positive and negative samples is available, the Sina Weibo 
data can be automatically classified into two classes by the 
CNN model. In the Wuhan data set, the samples used for 
training are 850, while the training set of Shenzhen dataset 
contains 100 samples.2

The structure of the CNN considered in our experiments 
is shown in Fig. 7. In the CNN, the first layer embeds the 
words of the input sentence into low-dimensional vectors. 
Word embeddings compute the distributed representations 
of the input words in the form of continuous vectors. It can 
alleviate the data sparsity problem by capturing meaning-
ful semantic and syntactic regularities. Mapping the words 
to vectors of real numbers facilitates subsequent processing 
of the CNN model. The subsequent layer conducts convolu-
tions on the embedded word vectors with multiple filter win-
dows. Different sizes of filter windows can slide a different 
number of words at a time. Next, max-pooling is performed 
on the result of the convolutional layer. Finally, dropout 
regularization is added in the fully connected layer and the 
classification results are obtained by a softmax operation. 
Moreover, it is essential to choose proper hyperparameters 
in the CNN model. We set the filter windows as 1, 2, 3, 4, 5, 
6, and 8, the learning rate as 0.0001, the dropout rate as 0.5, 
the   l 2    constraint as 3 (i.e., the weight vectors are rescaled to  
‖w  ‖ 2   = 3  whenever the   l 2   -norm of the weight vectors is 
larger than 3), the vector size of the word embedding as 50, 

and the batch size as 32. We initialize the word vectors by 
an unsupervised neural language model to obtain improved 
performance. The word embeddings are trained by the Skip-
gram algorithm with default parameters in Word2Vec.3

Wikipedia dumps in Chinese are used in the word 
embeddings. Words that are not contained in the pretrained 
vectors are initialized randomly.

D. Monitoring Results of the Heavy Rainfall Events

The classification performance in our experiments is 
evaluated by precision, recall, and  F -value. Precision refers 
to the fraction of true positives in total determined positives 
(i.e., the sum of true positives and false positives). Recall is 
the ratio of true positives to the sum of true positives and 
false negatives.  F -value measures both the precision and 
recall synthetically. The definitions of precision, recall, and  
F -value are given by

  

Precision    =

  

  TP ______ TP + FP   

   Recall           =    TP _______ TP + FN     

F-value     =

  

  2 * Precision * Recall  ________________  Precision + Recall  

      

(1)

  (2)  

(3)

   

where  TP ,  FP , and  FN  denote the number of true positives, 
false positives, and false negatives, respectively.

The classification results of both data sets are depicted in 
Fig. 8, from which we can observe that the precision, recall, 
and  F -value of the center of Wuhan heavy rainfall event are 
lower than those of Shenzhen, respectively. In both data 
sets, the precision is not as high as the recall, and the  F 
-value offers a compromise between precision and recall. For 
visualization purposes, we display the heat maps in Figs. 9 
and 10, which show the location estimation of heavy rain-
fall events occurred in the center of Wuhan and Shenzhen, 
respectively. Without loss of generality, Fig. 9 presents the 

2Although only a few training samples are used, the classification 
results of the CNN-based method are still satisfactory.

Fig. 7. The structure of the convolutional neural network used in 
our experiments.

Fig. 8. Classification results obtained from the center of Wuhan and 
Shenzhen using Sina Weibo data sets.

3https://code.google.com/p/word2vec/
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rainfall monitoring results on June 30 and July 2 and 6, 2016, 
while Fig. 10 depicts the results on May 8, 9, and 11, 2014. 
It can be observed from Fig. 9 that the rainfall on July 2 and 
6 is heavier than on June 30 in the center of Wuhan. This 
corresponds to the actual case. In reality, the rainfall started 
from June 30, and became heavy in the next weeks. Red rain-
storm warnings were issued on July 2 and 6. Furthermore, 
as shown in Fig. 10, the rainfall on May 11 is much larger 
than on May 8 and 9 in the center of Shenzhen city. This 
observation is also consistent with reality. In a nutshell, the 
classification results obtained for the central areas of Wuhan 
and Shenzhen using Sina Weibo data sets demonstrate the 
effectiveness of the CNN-based method in monitoring the 
heavy rainfall event that occurred in those areas.

I V.  CONCLUSION

In this paper, we have presented a comprehensive review 
of the state of the art in the use of social media data as 
a complement to remote sensing and GIS data in emer-
gency response scenarios. First, we have focused on strat-
egies that mainly use remote sensing data for emergency 
response. Then, we have described techniques that are 
based mainly on social media data. Next, we describe strat-
egies that are mainly based on GIS data. The limitations of 
these techniques are pointed out by including a thorough 
review of techniques that exploit both remote sensing and 
social media data. In order to provide a realistic illustra-
tion of such techniques, a specific application case study 
is further discussed in detail. The case study addresses 

Fig. 9. Spatial distribution of the estimated heavy rainfall event occurred in the center of Wuhan: (a) June 30, 201; (b) July 2, 2016; and  
(c) July 6, 2016.

Fig. 10. Spatial distribution of the estimated heavy rainfall event occurred in the center of Shenzhen: (a) May 8, 2014; (b) May 9, 2014; and 
(c) May 11, 2014.
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the possibility of monitoring heavy rainfall events using 
a combination of remote sensing data and social media 
data. Specifically, we study heavy rainfall events in the 
cities of Wuhan and Shenzen, China, by exploiting mes-
sages published on Sina Weibo. The analysis and clas-
sification is conducted using a CNN architecture. The 
classification results obtained for the central parts of 

Wuhan and Shenzhen (in which the Sina Weibo mes-
sages were more numerous) demonstrate the effective-
ness of the considered CNN-based method in monitoring 
the heavy rainfall event that happened in both cities. This 
illustrates the potential of using social media data as a  
complement to remote sensing data sets for emergency 
response applications. 
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