
J Supercomput (2017) 73:514–529
DOI 10.1007/s11227-016-1896-3

Cloud implementation of the K-means algorithm
for hyperspectral image analysis

Juan Mario Haut1 · Mercedes Paoletti1 ·
Javier Plaza1 · Antonio Plaza1

Published online: 18 October 2016
© Springer Science+Business Media New York 2016

Abstract Remotely sensed hyperspectral imaging offers the possibility to collect
hundreds of images, at different wavelength channels, for the same area on the sur-
face of the Earth. Hyperspectral images are characterized by their large volume and
dimensionality, which makes their processing and storage difficult. As a result, sev-
eral techniques have been developed in previous years to perform hyperspectral image
analysis on high-performance computing architectures. However, the application of
cloud computing techniques has not been as widespread. There are many potential
advantages in exploiting cloud computing architectures for distributed hyperspectral
image analysis. In this paper, we present a cloud implementation (developed using
Apache Spark) of the popular K-means algorithm for unsupervised hyperspectral
image clustering. The experimental results suggest that cloud architectures allow for
the efficient distributed processing of large hyperspectral image data sets.

Keywords Hyperspectral imaging · Cloud computing · K-means clustering

B Javier Plaza
jplaza@unex.es

Juan Mario Haut
juanmariohaut@unex.es

Mercedes Paoletti
mpaolett@alumnos.unex.es

Antonio Plaza
aplaza@unex.es

1 Department of Technology of Computers and Communications, University of Extremadura,
Escuela Politecnica, Avda. de la Universidad s/n, Cáceres, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1896-3&domain=pdf
http://orcid.org/0000-0002-2384-9141

Cloud implementation of the K-means algorithm… 515

1 Introduction

Hyperspectral images comprise hundred of spectral bands collected at nearly contigu-
ous wavelengths, thus imposing significant requirements in terms of storage and data
processing [12]. These requirements have increased exponentially with the technolog-
ical advances in satellite and airbone remote sensing [6], leading to the development
of high-dimensional hyperspectral data repositories [13].

The increased availability of new hyperspectral missions is now generating an
almost continuous stream of multi/hyperspectral data [9], and this has introduced
important challenges for scalable and efficient hyperspectral data processing in dif-
ferent application domains [11]. For instance, the NASA Jet Propulsion Laboratory’s
AirboneVisible/Infrared Imaging Spectrometer (AVIRIS) [4] has a data collection rate
of 2.5 MB/s (nearly 9 GB/h). The space-borne Hyperion instrument [11] collects data
at a rate of almost 71.9 GB/h (over 1.6 TB/day). New satellite missions will be soon
in operation, such as the Environmental Mapping and Analysis Program (EnMAP),1

exhibiting similar data collection rates. Hyperspectral data repositories are becoming
increasingly massive and often distributed among several geographic locations, which
makes it difficult to meet the storage and computational requirements of large-scale
hyperspectral data processing applications without resorting to distributed computing
facilities.

In recent years, cloud computing platforms have been increasingly adopted for
remotely sensed data processing [15]. The cloud is now a standard for distributed com-
puting due to its advanced capabilities for internet-scale computing, service-oriented
computing, and high-performance computing. The use of cloud computing for the
analysis of large hyperspectral data repositories can be considered a natural solution
and an evolution of previously developed techniques for other kinds of computing
platforms [8]. However, there are few efforts in the recent literature oriented to the
exploitation of cloud computing infrastructure for hyperspectral imaging techniques
in general, and for unsupervised clustering algorithms in particular.

Clustering can be defined as a segmentation process in which pixels are assigned
into a group that represents a specific land-cover class [5]. The main advantage of
clustering is that there is no need for labeled samples which are difficult and expen-
sive to obtain in remote sensing scenarios [10]. In this regard, clustering offers an
alternative to supervised classifiers that has been widely used in various fields. How-
ever, clustering is also a very challenging task due to the large spectral variability
and complex spatial structures present in hyperspectral images. A widely used family
of clustering algorithms is represented by centroid-based clustering methods such as
K-means [5], which assumes that similar pixels form clusters in feature space. When
applied to hyperspectral images, these methods can provide satisfactory results but
are hampered by their large computational complexity.

In this paper, we explore for the first time in the literature the possibility of using a
distributed framework for clustering of massive hyperspectral images based on cloud
computing architectures. We use unsupervised clustering as a case study, focusing

1 http://www.enmap.org/.

123

http://www.enmap.org/

516 J. M. Haut et al.

on the popular K-means algorithm to demonstrate the applicability of utilizing cloud
computing technologies to efficiently perform distributed parallel processing of hyper-
spectral data and accelerate computations.

The remainder of the paper is organized as follows. Section 2 presents the distrib-
uted framework design that will be used in our implementation. Section 3 presents
the original K-means algorithm. Section 4 describes distributed and multicore imple-
mentations of the K-means algorithm. Section 5 presents the experimental validation
of the considered implementations. Section 6 concludes the paper with some remarks
and hints at future research lines.

2 Distributed framework design

To develop a distributed framework for implementing the K-means algorithm on cloud
computing architectures, two main issues need to be addressed: (1) the distributed
programming model, and (2) the computing engine.

For distributed programming, we resort to the MapReduce model [15], taking full
advantage of the high-performance capabilities provided by cloud computing archi-
tectures. In this model, a task is processed by two distributed operations: map and
reduce. The datasets are organized as key/value pairs, and the map function processes
a key/value pair to generate a set of intermediate pairs, dividing a task into several
independent subtasks to be run in parallel. The reduce function is in charge of process-
ing all intermediate values associated with the same intermediate key, then collecting
all the subtask results to gather the result for the whole task.

Regarding the distributed computing engine, a first solution consideredwasApache
Hadoop2 due to its reliability and scalability, as well as its completely open source
nature. However, Apache Hadoop only supports simple one-pass computations and is
generally not appropriate for iterative algorithms such as K-means. Apache Spark3 is
a new computing engine for large-scale data processing on cloud computing architec-
tures, which implements a fault-tolerant abstraction for in-memory cluster computing,
and provides fast and general data processing on large distributed platforms. It not only
supports simple one-pass computations, but can also be extended to the case of multi-
pass, iterative algorithms.

With the aforementioned issues inmind, the design of our distributed parallel frame-
work for hyperspectral data clustering using Apache Spark is graphically sketched in
Fig. 1. As shown by Fig. 1, the considered cloud architecture has two main parts:

– The hardware zone It contains the physical machines that support our virtual
machines, which are created in the OpenStack4 platform, a cloud operating system
that controls large pools of compute, storage, and networking resources throughout
a datacenter, all managed through a dashboard that gives administrators control
while empowering their users to provision resources through a web interface.

2 http://hadoop.apache.org.
3 http://spark.apache.org/.
4 https://wiki.openstack.org/wiki/Main_Page.

123

http://hadoop.apache.org
http://spark.apache.org/
https://wiki.openstack.org/wiki/Main_Page

Cloud implementation of the K-means algorithm… 517

Fig. 1 Integrated Apache Spark
and OpenStack framework used
for the implementation of
K-means

Fig. 2 Description of the
Apache Spark architecture used
in our experiments

– The platform zone The Apache Spark framework in Fig. 1 is installed over a set
of Ubuntu Linux virtual machines, created by OpenStack. Our cluster has various
types of nodes. The K-means algorithm is designed using the MLib machine
learning library,5 and the implementation is embedded into a joint Apache Spark
and OpenStack framework (see Fig. 2). When we launch an instance of K-means,
the master node manages the resources of the cluster and the slaves (workers)
perform individual tasks on the data. The driver node divides the work into tasks,
and the master node coordinates the allocation of tasks so that all the task are
executed by the worker nodes, following the MapReduce model.

3 The K-means clustering algorithm

K-means is one of the most widely used unsupervised algorithms to group data in a
specified number of clusters. The procedure begins with a set of data or observations,
X = [x1, x2, . . . , xn], in R

d (so xi = [xi1, xi2, . . . , xid], with i = 1, 2, . . . , n),
that needs to be grouped into a number of clusters (k <= n). Iteratively, K-means
calculates the centers of the k groups, optimizing the error of each group as follows:

5 https://spark.apache.org/docs/latest/mllib-guide.html.

123

https://spark.apache.org/docs/latest/mllib-guide.html

518 J. M. Haut et al.

min
k∑

j=1

nk∑

i=1

‖ x j
i − C j , ‖2 (1)

where ‖ x j
i − C j ‖2 is the distance between a data point x j

i of the cluster j (nk is the
number of observations within each cluster) and the cluster center C j .

Besides its high computational cost (execution time can be exponential in the worst
case), the K-means algorithm strongly depends on the choice of the initial centers (it
can converge to a local minimum). So, a proper initialization will result in a final best
solution. To obtain a set of good initial cluster centers, several methods have been
proposed. One of them is the K-means++ method [1]. This algorithm obtains a set of
k initial centers which are generally very close to the final solution by the following
five steps:

1. An initial point is chosen from the set of samples X = [x1, x2, . . . , xn] by an
uniform random variable. This point c1, is the first center.

2. For each sample xi , the distance D(x) between xi and the center c1 is calculated.
3. Then, a new candidate to become center is randomly selected using the probability-

weighted distribution D(x)2∑k
i=0 D(xi)2

.

4. Steps 2 and 3 are repeated until k initial centers have been selected.
5. Once the k initial centers have been chosen, we apply the standard K-means algo-

rithm.

Despite the fact that it is a standard algorithm which provides a good solution,
K-means++ has two main problems: (1) it is not scalable, since its initialization needs
k passes over the whole dataset (which is not recommended for very large images),
and (2) the choice of the next set of centers depends on the current set of centers.

4 Multicore/distributed implementation of K-means

In this section, we describe two different implementations of the original K-means++
algorithm: a distributed implementation and a multicore implementation.

4.1 Distributed implementation on Apache Spark

Apache Spark implements a parallel version of the K-means++ method, called K-
means|| [2] that takes advantage of the MapReduce model of computation. K-means||
consists of a modification of the original K-means++ that manages noisy outliers and
also reduces the number of iterations. In fact, its operation is very similar to the original
K-means++. The difference is in the initialization method of the set of centroids. Like
K-means++, K-means|| starts by randomly choosing a point with uniform distribution
as the first centroid, C ← c1, and computes the initial cost of the clustering after this
selection: ψ = φx(C), where φx(C) = ∑

x∈X d2(x,C). It then samples each x ∈ X

with probability px = l·d2(x,C)
φx(C)

in logψ iterations, adding the sampled points to C .
The expected number of points chosen in each iteration is l, that is the oversampling

123

Cloud implementation of the K-means algorithm… 519

factor. At the end of the algorithm, l logψ points are obtained, which are clustered in
k centers. This process is illustrated in Algorithm 1.

Algorithm 1 K-means|| algorithm
1: procedure K- means||(k, l) � k → number of clusters, l → Θ(K)

2: C ← uniform_rand(X)
3: ψ ← φX (C)

4: for O(logψ) do

5: C ′ ← x ∈ X with p(x) = l·D(x)2

φX (C)
� Probability-weighted distribution

6: C ← C
⋃

C ′
7: end for
8: For x ∈ C , set wx to be the number of points in X

closer to x than any other point in C
9: Recluster (C , k)
10: end procedure

To use the K-means|| method in Apache Spark, the user must specify the following
parameters: number of desired clusters, k; maximum number of iterations that the
algorithm can be executed,max I terations; and number of times to execute the algo-
rithm completely, runs.6 The parameter ini tiali zationMode indicates the type of
initialization. Also, a set of initial centers can be introduced using the ini tialModel
option. Finally, the number of steps to be executed during the K-means++ phase,
ini tiali zationSteps, and a pre-defined error threshold for convergence, ε, should
also be specified.

The operations performed by K-means|| in Apache Spark can be summarized as
follows. First, the data are distributed among the slave nodes. Then, the master node
prepares the algorithm environment, while the slave nodes run in parallel the for loop
in line 4 of Algorithm 1 over its data portion. In this loop, 2k points are sampled on
average for each run, with a probability proportional to their squared distance from
that run’s centers. When the loop is finished, more than k candidate centers have been
calculated for each run. Each candidate center is weighed by the number of points
in the dataset mapped to it. Finally, the algorithm runs a local K-means++ on the
weighted centers to pick just k of them.

4.2 Multicore implementation on Scikit-Learn

Scikit is a Python Library for machine learning. This library contains its own K-
means++ version, as an option of the k−means class into the sklearn.cluster package,
allowing the multicore execution of K-means method with the parameter n_ jobs.
Giving this parameter a positive value uses a number of processors equal to n_ jobs.
A value of −1 uses all available processors, while −2 uses one less, and so on. The
default value of this parameter is 1.

6 Since the K-means may not find the optimal overall solution, it is recommended to run it several times to
converge to a better final solution. So, if runs > 1, for each iteration the total number of sets with different
centroids that will be executed equals the number of runs.

123

520 J. M. Haut et al.

The parameters of the K-means++ algorithm in Scikit are very similar to those in
K-means||, since it is necessary to indicate the number of clusters, n_clusters; the
number of iterations of one complete execution of the algorithm, max_i ter ; and the
number of times the K-means process will run with different centers, n_ini t .7 Much
like the Apache Spark version, Scikit’s implementation has the option to initialize the
first set of centroids randomly, using K-means++ or through an array of data, called
ini t . Finally, it is necessary to indicate the relative increment (tol) in the results before
declaring convergence, and the number of jobs that will be used during the execution,
n_ jobs. Each one of the jobs will execute a number of n_ini t runs in parallel (the
number of total n_ini t runs will be distributed among the available jobs), thus there
will be no speedup if a single run of theK-means algorithm is executed in themulticore
implementation.

5 Experimental validation

5.1 Hyperspectral datasets

For the consistent experimental validation of the aforementioned implementations, we
used two hyperspectral scenes from the well-known Indian Pines dataset,8 acquired
by AVIRIS [4] in 1992 over an agricultural site composed of agricultural fields with
regular geometry and multiple crops:

1. The first scene has a size of 145 × 145 pixels, and it was collected over a mixed
forest and agricultural area. It has 220 spectral bands in the range from 400 to
2500 nm, with spectral resolution of 10 nm, moderate spatial resolution of 20 nm,
and 16 bits radiometric resolution. After an initial analysis, eight bands have been
removed due to noise, ending up with a total of 212 bands. About half of the pixels
in the image (10,366 of 21,025) have ground-truth information associated, which
comes in the form of a single label assignment having a total of 16 ground-truth
classes.

2. The second scene has amuch larger size of 2678× 614 pixels. It was collected over
the same area, but spanning a much larger extent. It contains 220 spectral bands
in the range from 400 to 2500 nm, with spectral resolution of 10 nm, moderate
spatial resolution of 20 nm and 16 bits of radiometric resolution. The percentage
of pixels with ground-truth information is about 20 % (334245 of 1644292) and
the total number of classes is 58.

5.2 Hardware and software configuration

To evaluate the performance of both implementations, the underlying hardware archi-
tecture is composed of Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz (8 cores), 16 GB
RAM, Shared storage, NetApp FAS3140.

7 After iterating, the algorithm takes only the best solution reached.
8 Available online: https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.

123

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

Cloud implementation of the K-means algorithm… 521

The distributed environment in which we have tested our cloud implementation is
the one described in Sect. 2.Aswehavementioned before,we have used theOpenStack
over the hardware architecture as the cloud computing platform for experimental
evaluation. This software is a collection of Open Source technologies that provide a
scalable deployment of a cloud computing environment. Above this software we have
implemented virtual nodes that have two VCPUs with 4GB of RAM and 40 GB hard
disk each.

To establish a fair comparison between multicore and distributed version, we have
also virtualized the hardware for the multicore experiments exactly with the same
features as the ones used in Apache Spark. Therefore, the multicore algorithm has
been executed on Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz (8 cores) with shared
storage NetApp FAS3140. It should be noted that this version needs 4GB of additional
RAM due to particular storage requirements of the implementation. That means that
we need 8GB of RAM in each CPU. On the software side, we used Java 1.8.0_92-b14,
Ubuntu 14.04 ×64 LTS as operating system, Python 2.7.10, the newest (Scikit-Learn
0.18.dev0) version and the active development branch 1.6.2 of Apache Spark in our
experiments.

5.3 Multicore and distributed algorithm configurations

Our first experiment is dedicated to evaluate the performance of the multicore
implementation of the K-means++ algorithm developed with the Python Library,
Scikit-learn. For each of the considered hyperspectral datasets, we run the K-means++
algorithm increasing the number of processing cores (2, 4, 6 and 8 cores), and repeat
each test five times. The number of clusters is set to 16 different groups for the small
Indian Pines image, and to 58 for the large Indian Pines image, with the tolerance
threshold set to 1e − 15. We consider ten different sets of centroids in the initializa-
tion process, and K-means++ iterates a maximum of 50 times over them. As already
mentioned in Sect. 4.2, Scikit implements a multicore K-means version. If we want
to execute the K-means++ variant, we must indicate it with the init={’k-means++’,
’random’ or an array} parameter. Moreover, this algorithm parallelizes using multi-
processing by default only when we introduce the parameter n_ job. With n_ job = 1,
no parallel computing code is used at all (only one job will be launched). However,
if n_ jobs is set below -1, (n_cpus + 1 + n_ jobs) CPUs are used. Our n_ini t = 10
different centroid initializations are distributed among the available number of cores).

Our second experiment is focused on evaluating the performance of the distributed
implementation K-means|| in Apache Spark. The execution of this implementation
has exactly the same configuration as the multicore version: we have launched the
K-means|| algorithm changing the number of computing nodes (1, 2, 3 and 4, with 2
virtual cores or VCPUs each). The number of clusters is set to 16 and 58, depending on
the considered dataset, and the tolerance threshold is set to 1e− 15. As in the previous
version, K-means|| iterates a maximum of 50 times over the set of centroids. Apache
Spark architecture needs a master node and several slave nodes (although there is no
need that the master and the slaves execute physically in the same machine). In our
experiments, we have one machine for each role. In all cases, we used one master node

123

522 J. M. Haut et al.

and: (1) 1 slave node with 1 virtual core (to calculate the speedup); (2) 1 slave node
with 2 virtual cores; (3) 2 slave nodes with 4 virtual cores in total; (4) 3 slave nodes
with 6 virtual cores in total, and (5) 4 slave nodes with 8 virtual cores in total.

5.4 Performance evaluation

5.4.1 Clustering accuracy assessment

In this section, our goal is to highlight that both implementations (multicore and
distributed) provide comparable clustering results with regards to the serial algorithm.
We analyze the clustering results using two standard metrics: purity [7] and entropy
[3].

– Purity is calculated as the ratio between the number of correctly classified samples
and the total samples, n, as follows: puri ty(ω,C) = 1

n

∑
k max j |wk ∩c j |, where

ω = w1, w2, . . . , wk is the set of clusters and C = c1, c2, . . . , c j is the set of
classes. Perfect clusterings have a puri ty of 1.

– Entropy gives a measure of disorder (or uncertainty) of the clustering. It is cal-
culated as follows: H(ω) = −∑n−1

k=0 p(wk) · log2(p(wk)), where p(wk) is the
probability of a pixel belonging to cluster ωk . Entropy is maximized (H(ω) = 1)
when all p(wk) have the same value, indicating that uncertainty is largest; and
minimized (H(ω) = 0) when p(wk) = 1 and

∑n−1
i=0,i 	=k p(wi) = 0, when there is

absolute certainty.

Table 1 shows the puri ty and entropy scores for the clustering results obtained by
the multicore and the distributed implementations (note that for the experiments with
the large image in the multicore, some of the clustering results could not be computed
due to excessive memory requirements). The table reveals that both implementations
provide almost exactly the same results for all executions. In addition, we use confu-
sion matrices [14] to evaluate the agreement between the ground-truth classes and the
clusters identified in the process (see Figs. 3, 4). Finally, we also show the clustering
results obtained by the K-means++ and K-means|| algorithms for the small and large
Indian Pines images (Figs. 5, 6) for visual inspection. Both figures show the clusters
with the background of the image removed (i.e., those pixels that do not have asso-
ciated ground-truth) and also without removing the background. Although the color
assignment is different in the ground-truth and in the clustering results, the consistency
of the clusters (obtained in fully unsupervised fashion) can be visually appreciated.

5.4.2 Performance of the multicore implementation

This section analyzes the execution time and speedup that can be achieved by the
multicore implementation of K-means++. The results obtained by the Scikit imple-
mentation are summarized in Table 2, which shows the average and standard deviation
for the execution time across the different repetitions of each execution ofK-means++
over the two considered datasets. To calculate the speedup of the algorithm, we have
also executed it using one single core. Table 2 shows how the execution time is reduced

123

Cloud implementation of the K-means algorithm… 523

Ta
bl
e
1

Pu
ri
ty

an
d
en
tr
op
y
sc
or
es

fo
r
th
e
cl
us
te
ri
ng

re
su
lts

ob
ta
in
ed

by
th
e
m
ul
tic
or
e
an
d
di
st
ri
bu
te
d
im

pl
em

en
ta
tio

ns
(n
.a
.m

ea
ns

no
ta
va
ila
bl
e
du
e
to

ex
ce
ss
iv
e
m
em

or
y

re
qu
ir
em

en
ts
)

H
yp
er
sp
ec
tr
al
da
ta
se
t

Sm
al
lI
nd
ia
n
Pi
ne
s
im

ag
e

L
ar
ge

In
di
an

Pi
ne
s
im

ag
e

M
ul
tic
or
e

D
is
tr
ib
ut
ed

M
ul
tic
or
e

D
is
tr
ib
ut
ed

C
or
es
/n
od

es
(c
or
es
)

Pu
ri
ty

E
nt
ro
py

Pu
ri
ty

E
nt
ro
py

Pu
ri
ty

E
nt
ro
py

Pu
ri
ty

E
nt
ro
py

1/
1
(1
)

0.
50

80
0.
46

02
0.
50

80
0.
46

08
0.
35

63
0.
60

54
0.
35

60
0.
60

91

2/
1
(2
)

0.
50

80
0.
46

09
0.
50

87
0.
47

03
0.
35

42
0.
60

03
0.
35

39
0.
60

29

4/
2
(4
)

0.
50

85
0.
46

44
0.
50

84
0.
46

02
0.
35

44
0.
60

41
0.
35

65
0.
60

29

6/
3
(6
)

0.
50

81
0.
46

02
0.
50

90
0.
46

78
n.
a.

n.
a.

0.
35

70
0.
60

14

8/
4
(8
)

0.
50

90
0.
46

56
0.
50

80
0.
46

00
n.
a.

n.
a.

0.
35

55
0.
61

00

123

524 J. M. Haut et al.

Fig. 3 Confusion matrix obtained after applying the K-means++ (a) and the K-means|| (b) algorithms to
the small Indian Pines image a multicore execution, b distributed execution

Fig. 4 Confusion matrix obtained after applying the K-means++ (a) and the K-means|| (b) algorithms to
the large Indian Pines image a multicore execution, b distributed execution

Fig. 5 Example of the clustering results obtained by the distributed K-means implementation over the
small Indian Pines image. From left to right, we show the ground-truth information, the clustering result
(without background) and the clustering result (with background)

123

Cloud implementation of the K-means algorithm… 525

Fig. 6 Example of the clustering results obtained by the distributed K-means implementation over the large
Indian Pines image. From top to bottom, we show the ground-truth information for the scene, the clustering
result (without background) and the clustering result (with background)

by increasing the number of computation cores, obtaining an speedup of almost 2.2×
when processing the small dataset with all eight Lavailable cores. It can also be seen
in Fig. 7 that we obtain an acceleration factor of about 2.15× when processing the
large datasets using four computation cores. The experimental configuration of the
hardware does not allow the execution of the K-means++ over the large dataset using
6 or 8 cores due to excessive memory requirements.

5.4.3 Performance of the distributed implementation

This section focuses on the evaluation of the execution time and speedup that can be
achieved by the distributed implementation of K-means||. The results obtained by the
Apache Spark implementation are summarized in Table 3. As in Table 2, we show the
average and standard deviation for the execution time across different repetitions of
each execution of K-means|| over the two considered datasets.

As in the previous experiment, to calculate the speedup of the distributed version
the algorithm has been executed with a single slave node, which has a single core. As
we increase the number of machines, we can see in Fig. 8 how the speedup grows,
reaching almost twice as fast with the small Indian Pines and almost six times faster
with the large Indian Pines scene, using 4 nodes (8 virtual cores). We can clearly see
how the algorithm scales better with large datasets. The K-means|| implementation

123

526 J. M. Haut et al.

Ta
bl
e
2

A
ve
ra
ge

ex
ec
ut
io
n
tim

e
(i
n
s)
an
d
sp
ee
du
p
fa
ct
or

m
ea
su
re
d
fo
r
ea
ch

of
th
e
m
ul
tic
or
e
ex
ec
ut
io
n
of

K
-m

ea
ns
+
+
w
ith

Sc
ik
it
us
in
g
bo
th

im
ag
es

an
d
in
cr
ea
si
ng

nu
m
be
r

of
av
ai
la
bl
e
co
m
pu
tin

g
co
re
s
(n
.a
.m

ea
ns

no
ta
va
ila
bl
e
du
e
to

ex
ce
ss
iv
e
m
em

or
y
re
qu
ir
em

en
ts
)

H
yp
er
sp
ec
tr
al
da
ta
se
t

Sm
al
lI
nd
ia
n
Pi
ne
s
im

ag
e

L
ar
ge

In
di
an

Pi
ne
s
im

ag
e

N
um

be
r
of

co
re
s

A
V
G
E
xe
c.
tim

e
St
d
E
xe
c.
tim

e
Sp

ee
du
p

A
V
G
E
xe
c.
tim

e
St
d
E
xe
c.
tim

e
Sp

ee
du
p

1
9.
25

49
0.
27

68
1

74
0.
04

27
1.
04

32
1

2
5.
96

28
0.
11

23
1.
55

21
44

5.
59

25
3.
40

84
1.
66

1

4
4.
82

39
0.
11

52
1.
93

86
34

5.
06

00
1.
07

15
2.
14

47

6
4.
37

42
0.
07

08
2.
11

58
n.
a.

n.
a.

n.
a.

8
4.
23

35
0.
06

82
2.
18

61
n.
a.

n.
a.

n.
a.

123

Cloud implementation of the K-means algorithm… 527

Fig. 7 Graphical representation of the K-means multicore implementation speedup with the Indian Pines
images. For the large Indian Pines image, the execution using 6 or 8 cores was not possible due to excessive
memory requirements a speedup small Indian Pines, b speedup large Indian Pines

Table 3 Average execution time (in s) and speedup factor measured for each of the distributed execution
of K-means|| with Spark Apache using both images and increasing number of available computing nodes
(the number of total cores is also shown in brackets)

Hyperspectral dataset Small Indian Pines image Large Indian Pines image

Number of
nodes (cores)

AVG Exec.
time

Std Exec.
time

Speedup AVG Exec.
time

Std Exec.
time

Speedup

1 (1) 22.7896 0.2885 1.0 1239.7509 52.4981 1.0

1 (2) 13.9397 0.3071 1.6349 785.4585 36.9667 1.5784

2 (4) 12.9756 0.2476 1.7563 385.3718 9.0872 3.2170

3 (6) 12.9973 0.1441 1.7534 264.3419 6.7339 4.6900

4 (8) 13.0955 0.6274 1.7403 210.7660 10.3756 5.8821

uses both data-level and task-level parallelism, thus it is able of taking more advantage
of the available hardware capabilities. In addition, the memory requirements are much
more relaxed than in the multicore implementation.

6 Conclusions and future lines

In this paper, we have discussed the possibility of exploiting cloud computing archi-
tectures for hyperspectral image processing. As a case study, we have presented a
cloud computing implementation of the popular K-means, an unsupervised clustering
algorithm which is commonly used in the hyperspectral image analysis community.
Our experimental results show the effectiveness of the proposed distributed implemen-
tation, not only in terms of clustering accuracy (comparable to the serial and multicore
implementations of the algorithm) but also in terms of computational performance,
particularly in the case of large hyperspectral datasets, forwhichwe can fully exploit its
parallel scheme. In addition, the distributed implementation is able to greatly alleviate

123

528 J. M. Haut et al.

Fig. 8 Graphical representation of the K-means distributed implementation speedup for execution with
the Indian Pines images a speedup small Indian Pines, b speedup large Indian Pines

the significant memory requirements of the serial and multicore versions. As a result,
the distributed implementation of K-means is more amenable to be applied to large
hyperspectral data repositories, while the multicore implementation can achieve better
performance in the case of small datasets. As future work, we will implement other
distributed algorithms for hyperspectral data processing with the aim of improving
their performance.

Acknowledgements The authors would like to take this opportunity to gratefully thank the Editors and
Anonymous Reviewers for their outstanding comments and suggestions, which greatly helped us improve
the technical quality and presentation of the manuscript. This work has been supported by the Spanish
Ministry of Science andEducation (FPUgrants). Thiswork has also been supported by Junta deExtremadura
(GR15005 grant). We acknowledge the use of the computing facilities at Extremadura Research Centre for
Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF),
and particularly the system administrators Abel Francisco Paz Gallardo and Alfonso Pardo Diaz.

References

1. Arthur D, Vassilvitskii S (2007) K-means++: The Advantages of Careful Seeding. In: ACM (ed.)
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for
Industrial and Applied Mathematics, New Orleans, Louisiana . 1283494

2. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S (2012) Scalable K-means++. Proc VLDB
Endow (PVLDB) 5(7):622–633

3. Chang CI (2003) Hyperspectral imaging: techniques for spectral detection and classification. Kluwer
Academic/Plenum Publishers, New York

4. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri
BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–248

5. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means
clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–
892

6. León G, Molero JM, Garzón EM, García I, Plaza A, Quintana-Ortí ES (2015) Exploring the
performance-power-energy balance of low-power multicore and manycore architectures for anomaly
detection in remote sensing. J Supercomput 71(5):1893–1906

123

Cloud implementation of the K-means algorithm… 529

7. ManningCD,RaghavanP, SchtzeH (2008) Introduction to information retrieval. CambridgeUniversity
Press, New York

8. Martínez JA, Garzón EM, Plaza A, García I (2011) Automatic tuning of iterative computation on
heterogeneous multiprocessors with adithe. J Supercomput 58(2):151–159

9. Molero JM, Paz A, Garzón EM, Martínez JA, Plaza A, García I (2011) Fast anomaly detection in
hyperspectral images with rx method on heterogeneous clusters. J Supercomput 58(3):411–419

10. Plaza A, Plaza J, Martin G, Sanchez S (2011) Hyperspectral data processing algorithms. In: Prasad
AH, Thenkabail S, John G. Lyon (ed.) Hyperspectral remote sensing of vegetation, chap. 5, Taylor and
Francis, Abingdon, United Kingdom, pp 121–137

11. Plaza A, Plaza J, Paz A, Sanchez S (2011) Parallel hyperspectral image and signal processing. IEEE
Signal Process Mag 28:196–218

12. Plaza A, Plaza J, Valencia D (2007) Impact of platform heterogeneity on the design of parallel algo-
rithms for morphological processing of high-dimensional image data. J Supercomput 40(1):81–107

13. Sevilla J, Bernabe S, Plaza A (2014) Unmixing-based content retrieval system for remotely sensed
hyperspectral imagery on gpus. J Supercomput 70(2):588–599

14. Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote
Sens Environ 62(1):77–89

15. Wu Z, Li Y, Plaza A, Li J, Xiao F, Wei Z (2016) Parallel and distributed dimensionality reduction of
hyperspectral data on cloud computing architectures. IEEE J Sel Topics Appl Earth Obs Remote Sens
9(6):2270–2278

123

	Cloud implementation of the K-means algorithm for hyperspectral image analysis
	Abstract
	1 Introduction
	2 Distributed framework design
	3 The K-means clustering algorithm
	4 Multicore/distributed implementation of K-means
	4.1 Distributed implementation on Apache Spark
	4.2 Multicore implementation on Scikit-Learn

	5 Experimental validation
	5.1 Hyperspectral datasets
	5.2 Hardware and software configuration
	5.3 Multicore and distributed algorithm configurations
	5.4 Performance evaluation
	5.4.1 Clustering accuracy assessment
	5.4.2 Performance of the multicore implementation
	5.4.3 Performance of the distributed implementation

	6 Conclusions and future lines
	Acknowledgements
	References

