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Abstract Morphological building index (MBI) and morphological shadow index
(MSI) are recently developed techniques that aim at automatically detect build-
ings/shadows using high-resolution remotely sensed imagery. The traditional mathe-
matical morphology operations are usually time-consuming as they are based on the
consideration of a wide range of image-object properties, such as brightness, contrast,
shapes, sizes, and in the application of series of repeated transformations (e.g., clas-
sical opening and closing operators). In the case of MBI and MSI, the computational
complexity is also increased due to the use of multiscale and multidirectional morpho-
logical operators. In this paper, we provide a computationally efficient implementation
of MBI and MSI algorithms which is specifically developed for commodity graphic
processing units using NVIDIA CUDA. We perform the evaluation of the parallel
version of the algorithms using two different NVIDIA architectures and three widely
used hyperspectral data sets. Experimental results show that the computational burden
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introduced when considering multidirectional morphological operators can be almost
completely removed by the developed implementations.

Keywords Mathematical morphology · High resolution · Remotely sensed imagery ·
Graphic processing units (GPUs)

1 Introduction

The efficient and precise location/identification of buildings is an increasingly impor-
tant task for a great part of the most developed countries of the world, as it provides
crucial information for population estimation and territorial planning [1]. This is pos-
sible due to the availability of high-resolution earth observation (EO) instruments that
now provide almost complete spatial information about the surface of the Earth that
can be efficiently used to complement available spectral information [2]. This allows
for an increase in the separability of spectrally similar classes. With this purpose,
several sophisticated (supervised or semi-supervised) segmentation techniques have
been developed for building extraction [3–5].

Recently, most efforts have been focused on the generation of a feature index that
can be applied to building detection without the need for training data or complex
segmentation processes. The morphological building/shadow index has recently been
proposedwith this aim [6]. Themain idea ofMBI is to relate the implicit characteristics
of buildings (e.g. brightness, size, and contrast) with morphological operators (e.g.,
top-hat reconstruction, granulometry, and directionality).

As mentioned before, while integrated spatial/spectral developments hold great
promise for the Earth science image analysis, they clearly introduce new processing
challenges that, combined with the complex and large size of EO data sets, limit the
possibility of utilizing those algorithms in time-critical applications [7,8]. Particu-
larly, the use of multiscale and multidirectional morphological operators introduces a
significant computational burden in the MBI algorithm [9] which can be alleviated if
parallel implementations are developed.

Even though EO data processing algorithms map nicely to clusters and heteroge-
neous networks [10,11], these systems are generally expensive and difficult to adapt
to on-board data processing scenarios, in which low-weight and low-power integrated
components are essential to reduce mission payload where field programmable gate
arrays (FPGAs) and graphic processing units (GPUs) can further provide a response
in (near) real time, which is believed to be acceptable in many remote sensing applica-
tions [12]. In this paper, we present the first GPU-based parallel implementation of the
MBI/MSI algorithm for EO data exploitation using the NVIDIA CUDA framework.

The remainder of the paper is organized as follows. Section 2 describes the origi-
nal implementation of MBI and MSI algorithms and our proposed C implementation
(optimized for memory usage). Section 3 briefly introduces GPU architectures and
the NVIDIA CUDA framework, and further describes the newly proposed GPU
implementation for MBI and MSI algorithms. Section 4 evaluates the proposed GPU
implementations in terms of building/shadow detection accuracy and computational
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performance. Section 5 concludes this paper with some remarks and hints at plausible
future research lines.

2 Morphological building/shadow index

Morphological building/shadow index is based on the construction of a relationship
between the implicit characteristics of buildings (e.g. brightness, size, and contrast)
with morphological operators (e.g. top-hat reconstruction, granulometry, and direc-
tionality). Some of the basics of this relationship are introduced below.

– Brightness We can define the brightness of a pixel as the maximum value of the
pixel at all the contained spectral bands. Building areas are characterized by high
brightness scores, while shadow areas brightness should be smaller due to their
low spectral reflectance. White/black top-hat transformation will be used to point
out bright/dark structures with a determined size to identify buildings/shadows.

– Contrast Building areas are generally characterized by their high contrast, due to
the difference between the spectral reflectance values of roof and spatially adjacent
shadows. The case of shadows is exactly the opposite (high contrast between
shadows and the neighboring areas). TheMBI algorithm is able to characterize the
local contrast of buildings extracting the differentialmorphological profiles (DMP)
of the white top-hat transformed data. MSI algorithm relies on the extraction of
the DMP over the black top-hat transformed data.

– ShapeThemostwidely adopted shape descriptor for building areas is the rectangle.
Therefore, the length–width ratio can be used to filter out structures with similar
spectral response.

– Size and directionality To assist with the removal of spectrally similar structures,
a series of linear structuring elements (SEs), designed to measure the size and
directionality of structures, is implemented in both MBI and MSI.

Based on the above concepts, we can describe the steps of the MBI algorithm as
follows (the main differences between MSI and MBI are also highlighted):

1. Calculation of the brightness. Using all the spectral bands of the considered image,
we select the brightest component of each pixel as follows:

b(x) = max
1<=k<=K

bandk(x), (1)

where x is the pixel,K is the number of components of the pixel’s spectral signature,
and bandk(x) is the pixel value in the k-th band.

2. The white top-hat by reconstruction for MBI and the black top-hat by reconstruc-
tion for MSI (2). White top-hat is then computed to highlight bright structures:

W-TH(d, s) = b − γ re
b (d, s), (2)

while the black top-hat aims at highlighting dark structures:

B-TH(d, s) = ϕre
b (d, s) − b, (3)
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where γ re
b represents the opening by reconstruction, ϕre

b represents the clos-
ing by reconstruction, and d denotes the size and directionality of the linear
SE.

3. The morphological profiles (MPs) of the white top-hat are now defined as:

{
MPW-TH(d, s) = W-TH(d, s)
MPW-TH(d, 0) = b

(4)

4. To complete the calculation of the MBI and MSI we need to define the differential
morphological profiles (DMP) as:

DMPW-TH(d, s) = |MPW-TH(d, s + Δs) − MPW-TH(d, s)|, (5)

DMPB-TH(d, s) = |MPB-TH(d, s + Δs) − MPB-TH(d, s)|, (6)

where Δs is the interval of the profiles between and smin <= s <= smax.
5. The MBI and MSI are defined as the average of the DMP of the white top-hat and

the black top-hat, respectively:

MBI =
∑

DMPW-TH(d, s)

D ∗ S
, (7)

MSI =
∑

DMPB-TH(d, s)

D ∗ S
, (8)

where D is the number of the directions applied to the linear SE and S = ((smax −
smin)/Δs) + 1. Buildings and shadows are, respectively, represented by larger
values in each index.

Algorithm 1 provides a pseudocode description of the original MBI/MSI algorithm
implemented in MATLAB. When calculating the black top-hat and white top-hat, it
should be noticed that opening and closing by reconstructionmorphological operations
are complementary.

For the C version, we introduce some changes to optimize the code to the new
language (specially focusing on the memory management). In the MATLAB ver-
sion, iteration t partially repeats operations from the previous iteration (t − 1)
oriented to the white top-hat and black top-hat creation, while in the C implemen-
tation, we preserve the operations already executed in the previous iterations due to
the absence of memory restrictions. Besides, we eliminate the creation of the lin-
ear SE by applying the direction of it to the erosion morphological operator. The
resulting pseudocode of the C implementation is provided in Algorithms 2 and 3.
Using this latest version as a reference, we have developed a CUDA version that
implements each step as a CUDA kernel. This version is described in the following
section.
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Algorithm1PseudocodeofMorphologicBuilding Index andMorphologicShadow
Index in MATLAB code

image = ReadImage
img = CalculationBrightest/DarkestScene(image)
for s = smin:Δs:smax
for dir = 1:1:D

se = CreateStructureElement(dir)
a = W-TH(se,s,img) / B-TH(se,s,imgC)
b = W-TH(se,s+Δs,img) / B-TH(se,s+Δs,imgC)
DMP(dir) = b - a

end
end
DMP = DMP/(D*S)
MBI/MSI =

∑
DMP(dir)

Scale(MBI,0,1)

Algorithm 2 Pseudocode of Morphologic Building Index in C code
image = ReadImage
img = CalculationBrightestScene(image)
for s = smin:Δs:smax
for dir = 1:1:D

erode=Erosion(dir, img)
recon=Reconstruction(erode,img)
wth1(dir) = img - recon
if(s != smin)

DMPWTH(dir) += (wth2(dir)-wth1(dir))
else

DMPWTH(dir) = 0
wth2(dir) = wth1(dir)

end
end
MBI =

∑
DMPWTH(dir)

Scale(MBI,0,1)

3 Parallel implementation

GPUs can be understood in terms of a stream model, under which all data sets are
represented as streams (i.e., ordered data sets), and each of them is processed by a
multiprocessor, which means that a GPU also can be seen as a set of multiproces-
sors (MPs). Each multiprocessor is characterized by a single instruction multiple data
(SIMD) architecture. Each processor has access to a local shared memory and also
to local cache memories in the multiprocessor, while the multiprocessors have access
to the global GPU (device)memory. Algorithms are constructed by chaining so-called
kernels which operate on entire streams and are executed by a multiprocessor, taking
one or more streams as inputs and producing one or more streams as outputs. The
kernels can perform a kind of batch processing arranged in the form of a grid of
blocks, where each block is composed by several threads which share data efficiently
through the shared local memory and synchronize their execution for coordinating
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accesses to memory. As a result, there are different levels of memory in the GPU for
the thread, block, and grid concepts. There is also a maximum number of threads that a
block can contain but the number of threads that can be concurrently executed is much
larger (several blocks executed by the same kernel can be managed concurrently, at
the expense of reducing the cooperation between threads, since the threads in different
blocks of the same grid cannot synchronize with the other threads). Our GPU imple-
mentation of MBI makes no use of library routines and is based on the following the
self-designed kernels:

Algorithm 3 Pseudocode of Morphologic Shadow Index in C code
image = ReadImage
img = CalculationDarkestScene(image)
for s = smin:Δs:smax
for dir = 1:1:D

erode=Erosion(dir, img)
recon=Reconstruction(erode,img)
wth1(dir) = recon - img
if(s != smin)

DMPWTH(dir) += (wth2(dir)-wth1(dir))
else

DMPWTH(dir) = 0
wth2(dir) = wth1(dir)

end
end
MBI =

∑
DMPWTH(dir)

Scale(MSI,0,1)

BrightnessImage This kernel implements the first step of MBI and MSI algorithm,
where the brightness is calculated according to Eq. 1. In the case of MSI, a final step
to complement the returned structure is performed. The number of threads is set to
the maximum allowed by the device and the number of blocks equals the number of
pixels divided by the number of threads.

ErodeOperator The morphological erosion operator is implemented using different
kernels depending on the direction of the linear SE being applied. The original work
explains that the number of directions is set to four (NE, N, NW, and W), because
changing to an eight-connected neighborhood resulted in a similar outcome with a
significant computational time increase. As result, one kernel computes the erosion
for the four directions storing the erode images consecutively in memory. This kernel
uses a two-dimensional grid, setting the x-dimension to the number of lines and the y-
dimension to the number of samples both divided by the block size for each dimension,
which is the same making a square block of size 32.

ReconstructionThis step performs themorphological reconstruction using two kernels
that perform the raster scan (x_forward) and the antiraster scan (x_backward) of the
four directions erode images; x_forward finds the maximum value within the NE, N,
NW, and W neighbors and the origin pixel from the top-left to the bottom-right of the
image; and x_backward computes the maximum value within the E, SE, S, and SW
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neighbors and the origin pixel from the bottom-right to the top-left of the image. The
same way as the erosion kernel, the reconstruction is performed for the four directions
considered in the same call. Both kernels set the number of block to the number of
samples divided by a number of threads empirically set to 32, to maintain a balance
between blocks and threads.

Subtraction This stage computes, in one kernel called subtract, the difference between
consecutive iterations reconstructed images, accumulating the results to perform the
average in a subsequent step. Once the iterative process is finished, other kernel per-
forms the averaging of the results based on the number of iterations between the
minimum,smin, and maximum, smax, structure size values used.

4 Experimental validation

4.1 Hyperspectral data and hardware architectures

Our experiments have been carried out using three different hyperspectral images. The
first considered hyperspectral image is the well-known Pavia University hyperspectral
data set (Fig. 1a), acquired by the ROSIS optical sensor during a flight campaign over
the urban area of the University of Pavia, Pavia, Italy. The original Pavia University
data set consists of 610 × 340 pixels, with high spatial resolution of 1.3 m per pixel.
The number of data channels in the acquired image is 103 (with the spectral range from
0.43 to 0.86µm). Nine thematic land-cover classes are available, fromwhichwe select
metal sheets, self-blocking bricks, and bitumen to generate the class building (see Fig.
1b). In addition, a shadow class is also provided in the ground-truth information (see
Fig. 1c).

Fig. 1 a False color composition, b building ground-truth, and c shadow ground-truth of the Pavia Uni-
versity image
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Fig. 2 False color composition of the Houston campus image

Fig. 3 Reference spatial distribution of the buildings

Fig. 4 False color composition of the World Trade Center hyperspectral data set acquired by the AVIRIS
instrument

The second hyperspectral data set used was acquired by the NSF-funded Center
for Airborne Laser Mapping (NCALM) over the University of Houston campus and
its neighboring area. This hyperspectral data have 144 spectral bands in the 380–1050
nm spectral region and spatial resolution of 2.5 m. The image size in pixels is 349 ×
1905. Figure 2 shows a false color composite of the image and Fig. 3 shows a reference
spatial distribution of the buildings in the image. Ground-truth information is available
as 15 different land-cover classes. The building ground-truth has been generated by
the fusion of residential and commercial original land-cover classes.

The last hyperspectral image scene used for experiments in this work was collected
by the AVIRIS sensor, which was flown by NASAs Jet Propulsion Laboratory over
the World Trade Center area in New York City on 16 September 2001, just 5 days
after the terrorist attacks that collapsed the two main towers and other buildings in
the WTC complex. The selected subset (see Fig. 4) consists of 500 × 1600 pixels,
224 spectral bands, and a total size of (approximately) 350 MB. The spatial resolution
is 1.7 m/pixel. Extensive reference information, collected by U.S. Geological Survey
(USGS), is available for the scene. For illustrative purposes, Figs. 5 and 6 respectively
show the building index and the shadow index obtained for this scene.
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Fig. 5 Building Index result obtained

Fig. 6 Shadow Index result obtained

We have used two different computer architectures for the experimental validation
of the proposed approaches: a compute cluster1 with 44 NVIDIA TESLA S2070 GPU
nodes (in our experiments only one node will be used, hereinafter Architecture 1) and
a desktop computer with an NVidia GTX 580 GPU (hereinafter Architecture 2).

4.2 Analysis of algorithm precision

In this section, we will focus on analyzing the parallel MBI and MSI implementations
using the two data sets with ground-truth information about building and shadows.
Particularly, Table 1 shows results based on the generation of a binary image applying
different threshold values (th1 = 1/255, th2 = 50/255, th3 = 100/255, th4 =
150/255, and th5 = 200/255) over the MBI and MSI estimation images over Pavia
University and Houston data sets (we remove all the pixels with a value below the
threshold, considering the range of 0 to 255 based on the original RGB algorithms
scale). Then, we calculate the MBI/MSI values (being 100 the best case and 0 the
worst) by comparing the each threshold image with the ground-truth. It can be seen
that the results obtained by theCPUandGPU implementations are almost the same (the
slight differences are due to the removal of the queue structure, which seem to benefit
the parallel implementations). It should be noticed that no ground-truth information
is available for the shadow class in the Houston data set, and therefore, no precision
results can be shown for this particular case.

1 http://www.ceta-ciemat.es.
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4.3 Analysis of parallel performance

Table 2 shows the obtained speedups in the two considered architectures for the three
selected scenes. The results obtained by theArchitecture 2 are better due to the fact that
the NVidia TESLA S2070 includes error checking and correction (NVidia GTX 580
does not include this characteristic) that guarantees more stable results at the expense
of a slightly reduced performance. The time taken by data transfers between the CPU
and the GPU is included in the execution times. As it can be seen, speedups around 5×
can be achieved when considering the two large data sets. It is important to emphasize
that parallel implementation is able to overlap the processing of the four considered
directions, thus providing a significant performance improvement with regard to the
serial implementation.

5 Conclusions and future research lines

In this paper, we have presented a GPU implementation of MBI/MSI algorithms for
building/shadowdetection in high-resolution remote sensing images. The implementa-
tion is based in optimized implementations developed in C, which reduces the amount
of memory required. In addition, an efficient raster image processing scheme is imple-
mented on the GPU. As a result, we achieve independence between the execution time
of the parallel implementation and the number of considered directions when apply-
ing the MBI/MSI multidirectional morphological operators. In our experiments, four
different directions have being processed simultaneously in the GPU implementation,
achieving speedups over 5× for some of the considered images. Future research lines
will focus on improving both the accuracy and the computational performance of the
proposed approaches. We will also explore the use of FPGAs as a specialized device
with low-power consumption and on-board processing capabilities to accelerate the
MBI/MSI algorithms. Last but not least, wewill also test otherGPUarchitectures (such
as the Jetson TX1) with good trade-off between low weight and power consumption.

Acknowledgements The authors gratefully acknowledge the Associate Editor and the Anonymous
Reviewers for their detailed and highly constructive criticisms, which greatly helped us to improve the
quality and presentation of our manuscript.
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