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Abstract— Spectral–spatial classification of remotely sensed
hyperspectral images has attracted a lot of attention in recent
years. Although Gabor filtering has been used for feature
extraction from hyperspectral images, its capacity to extract
relevant information from both the spectral and the spatial
domains of the image has not been fully explored yet. In this
paper, we present a new discriminative low-rank Gabor filter-
ing (DLRGF) method for spectral–spatial hyperspectral image
classification. A main innovation of the proposed approach is
that our implementation is accomplished by decomposing the
standard 3-D spectral–spatial Gabor filter into eight subfilters,
which correspond to different combinations of low-pass and
bandpass single-rank filters. Then, we show that only one of
the subfilters (i.e., the one that performs low-pass spatial filtering
and bandpass spectral filtering) is actually appropriate to extract
suitable features based on the characteristics of hyperspectral
images. This allows us to perform spectral–spatial classification
in a highly discriminative and computationally efficient way, by
significantly decreasing the computational complexity (from cubic
to linear order) compared with the 3-D spectral–spatial Gabor
filter. In order to theoretically prove the discriminative ability
of the selected subfilter, we derive an overall classification risk
bound to evaluate the discriminating abilities of the features
provided by the different subfilters. Our experimental results,
conducted using different hyperspectral images, indicate that
the proposed DLRGF method exhibits significant improvements
in terms of classification accuracy and computational perfor-
mance when compared with the 3-D spectral–spatial Gabor
filter and other state-of-the-art spectral–spatial classification
methods.
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I. INTRODUCTION

HYPERSPECTRAL imaging collects hundreds of bands,
at different wavelength channels, for the same area on

the surface of the earth [1]–[3]. Classification is one of the
most important techniques for remotely sensed hyperspectral
image exploitation [4]–[6], [8]–[10]. The goal of classification
is to assign the pixels (vectors) of a hyperspectral image
into a set of unique and mutually exclusive class labels.
Techniques for hyperspectral image classification can be
roughly divided into two groups, namely, pixel-wise and
spectral–spatial approaches [5]–[7]. The former group exclu-
sively utilizes the spectral signatures of individual pixels to
perform classification, whereas the latter exploits both the
spectral and the spatial–contextual information [8].

Spectral–spatial classification techniques have become very
popular due to their potential to better exploit available
sources of information in hyperspectral images in order to
achieve higher discriminability. They can be further divided
into three categories according to the way spatial infor-
mation is integrated into the (traditionally spectral-based)
classification process: integrated spectral–spatial techniques,
preprocessing-based techniques, and postprocessing-based
techniques [8], [11].

1) Integrated techniques combine both the information
derived from spectral signatures and spatial–contextual
information into the classification decision directly.
In this case, the exploitation of spectral and spatial
information is not explicitly separated in the classifi-
cation process. Among such a group of approaches,
Bruzzone and Persello [12] and Li et al. [13] used
spatial–contextual information to modify the objective
and constraints of the support vector machine (SVM)
pixel-wise classifier. Chen et al. [14], Li et al. [15],
and Fang et al. [16] constructed a training sample-
based collaborative dictionary and subsequently intro-
duced contextual regression signals (pixels) to build
a joint sparse/collaborative representation for classifi-
cation purposes. Veganzones et al. [17] developed a
spectral–spatial region model in which a region merg-
ing criterion and a set of spectral unmixing-based
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pruning strategies were used to construct a binary
partition tree able to segment hyperspectral images.
Zhong and Wang [18] employed a Gibbs distribution
to directly represent the joint a posteriori probability of
labels conditioned on the whole hyperspectral image, so
as to build a discriminative conditional random field for
hyperspectral image classification.

2) In postprocessing-based techniques, a pixel-wise pre-
liminary belief assignment of class belonging (typically
conducted using spectral information alone) is improved
by means of a spatial postprocessing regularizer. Kang
et al. [19] utilized SVM to obtain preliminary class-
belonging probability, and then used guiding images
that reflect the homogeneity disruption to guide an
edge-preserving classification. Li et al. [20], [21] used
the multinomial logistic regression (MLR) to obtain
the pixel-wise a posteriori classification output; then,
a Markov random field (MRF) regularizer connected
to the a priori probability of the labels was serialized,
which was solved by the α-expansion or the loopy belief
propagation strategies, to yield the final spectral–spatial
a posteriori classification. Similar developments based
on postprocessing with the MRF were presented in [22]–
[25]; in the former two works, a probabilistic SVM
and a Gaussian mixture classifier are alternatively used
to model the spectral information, respectively, while
in the latter two works, a homogeneity index and a
total variation regularization are introduced to adaptively
adjust the weight of spatial contribution, respectively.
Specifically, Zhang et al. [26] applied the thread of the
MRF-based postprocessing on the superpixels, each of
which is a group of neighbored pixels.

3) In preprocessing-based techniques, the classification
process is typically divided into two steps:
1) spectral–spatial feature extraction, which aims
at extracting representative spectral–spatial features
contained in the original hyperspectral image and
2) feature-wise classification, performed using standard
classifiers such as SVM and MLR. Obviously, the
feature extraction step is the key to the performance
of these techniques [27]. Among many developments
in this direction [8], [27], Benediktsson et al. [28],
Plaza et al. [29], [30] and Fauvel [8], [31] et al.
employed mathematical morphology operators with
structural elements of various sizes to obtain extended
morphological profiles that are used as features for
classification purposes; lately, Mura et al. [32],
Ghamisi et al. [33], Xia et al. [34], and Falco et al. [35]
used more sophisticated morphological operations to
develop morphological attribute profiles. He et al. [11]
constructed a spatial translation-invariant spline wavelet
transform to extract spectral–spatial features and then
utilized primal–dual barrier-based linear programming
to carry out a sparse representation-based classification.
Tsai and Lai [36] utilized a modified 3-D gray-level
coocurrence matrix to obtain spectral–spatial texture
features. He et al. [37] designed spectral–spatial
features using empirical mode decomposition and the

morphological wavelet transform, and then fed these
features to a sparse multitask learning approach.

In addition to the aforementioned spectral–spatial
techniques at a preprocessing level, the use of Gabor
filters has been recently become widespread for hyperspectral
image classification purposes [39], [40]. These filters, which
have been successfully applied in many types of classification
tasks, including biometric recognition [41]–[43], texture
segmentation [44], [45], color image segmentation [46],
signature recognition [47], and motion tracking [48], can
yield optimal joint time–frequency resolution [38], [41],
which makes them suitable for feature extraction purposes. In
the context of hyperspectral imaging, Bau et al. [49] used the
real part of 3-D Gabor filters to obtain the dominant energy
features of regions in the hyperspectral image, suggesting
the effectiveness and superiority of 3-D Gabor filtering
in extracting spectral–spatial features. Shen and Jia [50]
exploited both the real and imaginary parts of 3-D Gabor
filters to extract suitable magnitude features. Jia et al. [51]
combined such features with a least squares (LS) regression-
based classifier to avoid selection of a massive number of
Gabor features. Despite the success of these techniques
in applying Gabor filtering to hyperspectral image
processing, there are still some remaining challenging
issues. First, directly convolving high-dimensional Gabor
filters with a hyperspectral image is nearly prohibitive
from a computational standpoint. Second, existing methods
adopt a standard 3-D spectral–spatial Gabor filtering
strategy without considering the special characteristics of
hyperspectral images, in which spatial smoothing and spectral
information preservation are the most critical aspects to
extract suitable features for classification purposes [8]. In this
regard, the standard 3-D spectral–spatial Gabor filtering
strategy may generate additional features that not only
increase computational complexity significantly but may also
increase the classification risk. Based on the aforementioned
observations, a straightforward question arises: is there a
way to design a more discriminative and efficient technique
based on Gabor filtering for spectral–spatial classification of
hyperspectral images?

In order to address this research question, we develop a
new discriminative low-rank Gabor filtering (DLRGF) method
for spectral–spatial feature extraction prior to classification
of hyperspectral data. A main innovation of the proposed
approach is that our implementation is accomplished by
decomposing the standard 3-D spectral–spatial Gabor filter
into eight subfilters, which correspond to different combina-
tions of low-pass and bandpass single-rank filters. To eliminate
the interference of low-discriminating filtering components,
only the subfilter connected to the low-pass spatial filtering
and the bandpass spectral filtering is employed to extract
spectral–spatial features. This is related to the fact that
smoothness along spatial dimension and differential along the
spectral dimension are highly beneficial to class separability,
which is a special property of hyperspectral images not to
be found in other kinds of images in which Gabor filtering
has been used in the past [11], [52]–[54]. As compared with
classic (3-D) Gabor filtering, our method offers two significant
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advantages: 1) the possibility to obtain highly discriminative
features, without the interference of low-discriminating filter-
ing components and 2) a significant increase in computational
efficiency since only the features that are suitable for dis-
crimination purposes are retained for the subsequent classi-
fication. In fact, our interpretation of Gabor filtering (which
is specifically tailored to the characteristics of hyperspectral
data) represents a highly novel contribution with regard to
previous developments, in which Gabor filtering was applied
in a blind way without fully considering the properties of
hyperspectral images. Another contribution of our proposed
approach is that, resulting from the derivation of the proposed
DLRGF, we also present a fast version of the traditional
3-D Gabor filtering approach that directly utilizes the low-
rank decomposition to significantly speed up the calculation.
A final contribution of our work is the derivation of an
overall classification risk bound that is capable of measuring
multiclass separability. This metric, constructed based on
the Bayes smoothing on the upper bound of the class pair
conditioned risk, is then used to demonstrate that the selected
low-pass spatial and bandpass spectral subfilter achieves
the highest class separability among all possible rank-1
spectral–spatial Gabor filters, justifying the validity of our fast
discriminative Gabor filtering method.

The remainder of this paper is organized as
follows. Section II describes the related work. The proposed
spectral–spatial classification method is presented in detail
in Section III. Section IV demonstrates the effectiveness of
our newly developed technique using different hyperspectral
images. Finally, Section V concludes with some remarks and
hints at plausible future research lines.

II. RELATED WORK

Let us denote by (x, y, b) the spatial–spectral domain of
a hyperspectral image, where components (x, y) denote the
spatial domain and component b denotes the spectral domain.
A standard spatial–spectral Gabor filter in this context can be
mathematically formulated using a 3-D harmonic modulated
with a 3-D Gaussian envelope as follows:

Gω,θ,ϕ(x, y, b) = 1

(2π)
3
2 σxσyσb

× exp

{
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

+ b2

σ 2
b

)}
× exp{ j (xωx + yωy + bωb)} (1)

where ωx = |ω| sin ϕ cos θ , ωy = |ω| sin ϕ sin θ , and
ωb = |ω| cos ϕ are the projections of the given angular
frequency ω onto the x , y, and b directions, respectively;
ϕ is the angle between the frequency ω and the b-direction;
θ is the angle between the projection of ω onto the (x, y)

plane and the x-direction; |ω| = (ω2
x + ω2

y + ω2
b)

1
2 is the

magnitude of ω; and j stands for the imaginary unit. Let
h(x, y, b) be a hyperspectral image; let h(m, n, l) represent
the value of a pixel of the hyperspectral image at the lth band
and at the spatial location (m, n). Then, the standard 3-D

spatial–spectral Gabor filter (hereinafter, 3-DGF for conve-
nience) can be defined by means of the following projection
operator g:

ghω,θ,ϕ(x, y, b)

= 〈h, Gω,θ,ϕ(m − x, n − y, l − b)〉m,n,l

=
∑

m

∑
n

∑
l

h(m, n, l)Gc
ω,θ,ϕ(m − x, n − y, l − b)

= h(x, y, b) ∗ Gc
ω,θ,ϕ(−x,−y,−b) (2)

where 〈·, ·〉 denotes the inner product of two 3-D signals,
∗ denotes the convolution operation, and the exponent
c denotes the conjugation operation.

Having the aforementioned notation in mind, Bau et al. [49]
used only the real part of the 3-DGF shown in (2) for
spectral–spatial representation. After the filtering process, the
energy feature is calculated as follows:

E(x, y) =
∑

b

∑
m

∑
n

{ghω′,θ ′(m, n, b)}2. (3)

It should be noted that, although this approach (referred
to hereinafter as real-part Gabor energy feature) is initially
designed for region-based characterization, it can be used to
classify hyperspectral image pixels individually.

On the other hand, Shen and Jia [50] utilized the 3-DGF as
defined in (2) to perform filtering on the original hyperspectral
image cube. Then, the magnitudes calculated from the filtering
result were used as features for classification purposes.

Finally, Jia et al. [51] also utilized the aforementioned
Gabor magnitude features for hyperspectral image classifi-
cation, where the high-dimensional features obtained under
different parameter settings were directly fed into an LS-based
collaborative representation classifier to avoid the feature
selection step used in many conventional classifiers.

III. DISCRIMINATIVE LOW-RANK GABOR FILTERING

In this section, we describe the proposed DLRGF approach.
Using Euler’s relation, the 3-DGF in (2) can be rewritten as

ghω,θ,ϕ(x, y, b) = h(x, y, b) ∗ Re{Gω,θ,ϕ(−x,−y,−b)}
− jh(x, y, b) ∗ Im{Gω,θ,ϕ(−x,−y,−b)}

(4)

where Re{·} and Im{·} represent the real and imaginary parts
of a 3-D signal, respectively. As shown in (4), the 3-DGF
involves two 3-D subfilters, related to the real and imaginary
components. To further understand the mechanism of the
3-DGF in (4), in the following, we will decompose the filter
into subfilters and obtain a fast low-rank spectral–spatial Gabor
filter (LRGF). Furthermore, as more filtering components are
obtained, we will be able to analyze 3-DGF structure in more
detail. By taking the special characteristics of hyperspectral
images into consideration, we will finally choose only the
subfilter yielding the highest feature discriminability to build
our final DLRGF.
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A. Low-Rank Spectral–Spatial Gabor Filtering

Through a detailed inspection of (2) and (4), we
can observe that the exponential harmonic exp{ j (xωx+
yωy + bωb)} [or the corresponding sine and cosine harmonics
sin{ j (xωx + yωy +bωb)} and cos{ j (xωx + yωy +bωb)}] used
by the 3-DGF are formed with the coupling of x , y, and b
factors, whereas the Gaussian envelope (1/((2π)(3/2)σxσyσb))
exp{−(1/2)((x2/σ 2

x ) + (y2/σ 2
y ) + (b2/σ 2

b ))} is easier to sep-
arate along the x , y, and b directions. For simplicity, we let
k = (1/((2π)(3/2)σxσyσb)) exp{−(1/2)((x2/σ 2

x ) + (y2/σ 2
y ) +

(b2/σ 2
b ))} represent the Gaussian envelope. Then, we have

Re{�ω,θ,ϕ(−x,−y,−b)} = k cos(−xωx − yωy − bωb)

Im{�ω,θ,ϕ(−x,−y,−b)} = k sin(−xωx − yωy − bωb).

(5)

The real and imaginary parts of the spectral–spatial Gabor
filter above can be decomposed as

Re{�ω,θ,ϕ(−x,−y,−b)}
= k cos(−xωx) cos(−yωy − bωb) − k sin(−xωx)

× sin(−yωy − bωb)

= k cos(xωx) cos(yωy) cos(bωb) − k cos(xωx)
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−k sin(xωx) cos(yωy) sin(bωb)
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and
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× sin(−yωy − bωb)

= −k sin(xωx) cos(yωy) cos(bωb) + k sin(xωx )
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and
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)
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Algorithm 1 Generation of Rank-1 Subfilters for Spectral–
Spatial Gabor Filtering

1) Compute the rank-1 Gaussian envelope:
en(i) = 1

(2π)
1
2 σi

exp(− i2

2σ 2
i
)|i=x,y,b.

2) Compute the rank-1 cosine harmonic:
har (i)

cos = cos(iωi )|i=x,y,b and the sinusoidal harmonic:
har (i)

sin = sin(iωi )|i=x,y,b.
3) Compute the rank-1 subfilters

g(i)
cos = en(i) · har (i)

cos|i=x,y,b and
g(i)

sin = en(i) · har (i)
sin|i=x,y,b.

Equations (6) and (7) suggest that a 3-DGF is actually
formed by the superposition of eight subfilters, rather by
merely two real and imaginary components. Furthermore,
each of these subfilters is constituted by the separable tensor
product of three rank-1 filters along the x , y, and b-directions,
respectively. Therefore, (6) and (7) reveal the structure of the
spectral–spatial Gabor filter in a much more elaborate manner
than (1) and (4), thus offering us the possibility of conducting
a deeper exploration of the mechanism of the filter. The
generation of the aforementioned rank-1 filters in (6) and (7)
is described in Algorithm 1.

For convenience, the four terms on the right-hand side of the
real-part representation in (6), i.e., the four subfilters resulting
from the real part of the 3-DGF, are hereinafter denoted
by Re1(x, y, b), Re2(x, y, b), Re3(x, y, b), and Re4(x, y, b),
respectively. Similarly, the four terms in the imaginary part
representation in (7), i.e., the other four subfilters from
the imaginary part of the 3-DGF, are hereinafter denoted
by Im1(x, y, b), Im2(x, y, b), Im3(x, y, b), and Im4(x, y, b),
respectively. According to (4), (6), and (7), a spatial–spectral
Gabor filter for a hyperspectral image is associated with
the two convolutions h(x, y, b) ∗ Re{Gω,θ,ϕ(−x,−y,−b)}
and h(x, y, b) ∗ Im{Gω,θ,ϕ(−x,−y,−b)}, and is thus
associated with the eight convolutions between h(x, y, b)
and Re1(x, y, b), Re2(x, y, b), Re3(x, y, b), Re4(x, y, b),
Im1(x, y, b), Im2(x, y, b), Im3(x, y, b), and Im4(x, y, b).
Taking Re1(x, y, b) as an example, its convolution with a
hyperspectral image h(x, y, b) can be denoted as follows:

h(x, y, b) ∗ Re1(x, y, b)

=
∑

m

∑
n

∑
l

h(m, n, l) · Re1ω,θ,ϕ(x − m, y − n, b − l)

=
∑

l

∑
n

∑
m

h(m, n, l) · g(x)
cos(x − m) · g(y)

cos(y − n)

·g(b)
cos(b − l)

= h(x, y, b) ∗ g(x)
cos(x) ∗ g(y)

cos(y) ∗ g(b)
cos(b). (8)

Thus, the spectral–spatial Gabor filtering operation on
h(x, y, b) can be reformulated as follows:

gh = h ∗ g(x)
cos ∗ g(y)

cos ∗ g(b)
cos − h ∗ g(x)

cos ∗ g(y)
sin ∗ g(b)

sin

−h ∗ g(x)
sin ∗ g(y)

sin ∗ g(b)
cos − h ∗ g(x)

sin ∗ g(y)
cos ∗ g(b)

sin

− j
{

h ∗ g(x)
sin ∗ g(y)

cos ∗ g(b)
cos − h ∗ g(x)

sin ∗ g(y)
sin ∗ g(b)

sin

+h ∗ g(x)
cos ∗ g(y)

sin ∗ g(b)
cos + h ∗ g(x)

cos ∗ g(y)
cos ∗ g(b)

sin

}
(9)
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Algorithm 2 LRGF
1) Input: a hyperspectral image h(x, y, b).
2) Compute rank-1 subfilters g(i)

cos|i=x,y,b and
g(i)

sin|i=x,y,b using Algorithm 1.
3) Compute the eight subfilters: g(x)

cos ∗ g(y)
cos ∗ g(b)

cos,
g(x)

cos ∗ g(y)
sin ∗ g(b)

sin , g(x)
sin ∗ g(y)

sin ∗ g(b)
cos, g(x)

sin ∗ g(y)
cos ∗ g(b)

sin ,
g(x)

sin ∗ g(y)
cos ∗ g(b)

cos, g(x)
sin ∗ g(y)

sin ∗ g(b)
sin , g(x)

cos ∗ g(y)
sin ∗ g(b)

cos,
and g(x)

cos ∗ g(y)
cos ∗ g(b)

sin .
4) Perform Gabor filtering using (9).

where h denotes h(x, y, b) and g(x)
cos ∗ g(y)

cos ∗ g(b)
cos denotes

g(x)
cos(x) ∗ g(y)

cos(y) ∗ g(b)
cos(b).

If we compare (4) with (9), we can conclude that the
direct calculation of 3-DGF involves two 3-D convolutions,
whereas the proposed low-rank filtering in (9) involves serial
1-D convolutions along the x , y, and b directions. If we assume
that the sizes of a spectral–spatial Gabor filter along the x , y,
and b directions are always L, in this case, the computational
complexity of the proposed approach in (9) is linear (with the
order of L), whereas the computational complexity of 3-DGF
in (4) is cubic. Therefore, our LRGF method (as shown in
Algorithm 2) has much lower computation complexity than the
3-DGF and can be in fact considered as a fast implementation
of 3-DGF.

B. Discriminative Low-Rank Gabor Filtering

Based on the previously introduced efficient LRGF method,
in this section, we develop our new DLRGF approach designed
to obtain highly discriminative features and for spectral–spatial
hyperspectral image classification with low computational
complexity. This section is organized as follows. First, we
study the characteristics of the subfilters that integrate the
LRGF. Then, we present the DLRGF formulation that is
based on an intelligent selection of the most discriminative
subfilter.

1) Characteristics of the Rank-1 Filters in LRGF: As
shown in (9), by utilizing a low-rank convolution mechanism,
the LRGF is able to significantly reduce the computational
complexity of 3-DGF from cubic to linear order. Following
the works in [49]–[51], we can directly use the resulting
features from LRGF for hyperspectral image classification,
with the advantage that the proposed LRGF has considerably
lower computational complexity than the 3-DGF. However, (9)
reveals that the LRGF is more than a fast algorithm. According
to such a mathematical representation, instead of simply the
real and imaginary parts, the LRGF involves a total of eight
components after the spectral–spatial filtering, each of which
is produced by a subfilter that is associated with three single
rank-1 filters. A natural question arising at this point is
the role of each subfilter in the subsequent spectral–spatial
classification.

As observed in (9), the rank-1 filters that are used by
the LRGF are 1-D Gaussian-modulated sine or cosine har-
monics along different directions. Without loss of generality,
let us consider the 1-D Gaussian-modulated cosine and sine

Fig. 1. Gaussian enveloped (a) cosine and (b) sinusoidal harmonics.

Fig. 2. Frequency magnitude of Gaussian enveloped (a) cosine and (b)
sinusoidal harmonics.

harmonics (as shown in Fig. 1)
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ĝω0
cos(ω)

= 1

(2π)
1
2 σ

∫ +∞

−∞
exp

(
− i2

2σ 2

)
cos(ω0i) exp(− jωi)di

= 1

2(2π)
1
2 σ

∫ +∞

−∞
exp

{
− i2

2σ 2 − j (ω − ω0)i

}
di

+ 1

2(2π)
1
2 σ

∫ +∞

−∞
exp

{
− i2

2σ 2 − j (ω + ω0)i

}
di

(10)

and
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TABLE I

OVERALL CLASSIFICATION RISK BOUNDS (10−4). LABELS 1–8 STAND FOR THE DIFFERENT SUBFILTERS: g(x)
cos ∗ g(y)

cos ∗ g(b)
cos (1),

g(x)
cos ∗ g(y)

sin ∗ g(b)
sin (2), g(x)

sin ∗ g(y)
sin ∗ g(b)

cos (3), g(x)
sin ∗ g(y)

cos ∗ g(b)
sin (4), g(x)

sin ∗ g(y)
cos ∗ g(b)

cos (5), g(x)
sin ∗ g(y)

sin ∗ g(b)
sin (6),

g(x)
cos ∗ g(y)

sin ∗ g(b)
cos (7), AND g(x)

cos ∗ g(y)
cos ∗ g(b)

sin (8). THE 3-DGF (9) IS ALSO REPRESENTED
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Substituting both (12) and (13) into (10) and (11), respec-
tively, we obtain the following frequency magnitudes:∣∣ĝω0

cos(ω)
∣∣ = 1

2

∣∣∣∣exp

{
−σ 2(ω − ω0)

2

2
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sin(ω)
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− exp
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If the frequency ω in (14) and (15) is zero, then |ĝω0
cos(ω)|

is nonzero and |ĝω0
sin(ω)| is zero, which implies that ĝω0

cos(ω)
is low-frequency pass and ĝω0

sin(ω) is low-frequency resistant.
Fig. 2 shows the appearance of the frequency-domain repre-
sentations |ĝω0

cos(ω)| and |ĝω0
sin(ω)|; clearly, g(i)

cos is a low-pass
filter, while g(i)

sin is a bandpass filter.
2) Derivation of the DLRGF: Since ĝω0

cos(ω) is a
low-pass filter and ĝω0

sin(ω) is a bandpass filter, eight subfilters
g(x)

cos∗g(y)
cos∗g(b)

cos, g(x)
cos∗g(y)

sin ∗g(b)
sin , g(x)

sin ∗g(y)
sin ∗g(b)

cos, g(x)
sin ∗g(y)

cos∗g(b)
sin ,

g(x)
sin ∗ g(y)

cos ∗ g(b)
cos, g(x)

sin ∗ g(y)
sin ∗ g(b)

sin , g(x)
cos ∗ g(y)

sin ∗ g(b)
cos, and

g(x)
cos ∗ g(y)

cos ∗ g(b)
sin , associated with the eight components of

the spectral–spatial Gabor filter as shown in (9), are built by
combining various rank-1 low-pass and bandpass filters along
different spectral and spatial directions. Previous research has
demonstrated that, in order to enhance the discriminability in
hyperspectral images, smoothness in the spatial domain [11]

and the differential between various bands in the spectral
domain [53], [54] are preferred. This is because, in hyperspec-
tral images, the discriminating information tends to appear on
low frequencies in the spatial dimension and away from low
frequencies in the spectral dimension. Inspired by this obser-
vation, our introspection is that (among the eight considered
subfilters) the filter g(x)

cos ∗ g(y)
cos ∗ g(b)

sin —which corresponds to a
low-pass filter in the spatial dimension and a bandpass filter in
the spectral dimension—is more discriminative than the other
subfilters. To quantitatively justify this introspection regarding
the potential superiority of the filtering h∗g(x)

cos ∗g(y)
cos ∗g(b)

sin , we
introduce an overall classification risk bound to measure the
separability of multiple classes, using the Bhattacharyya bound
defined in [55]. The classification risk can be represented as

R(err) =
∫

RB
P(err, hp)dhp

=
∫

RB

∑
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∑
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1
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1
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i N
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× exp{−B D(ci , c j )} (16)

where B is the number of spectral bands, and hp

denotes a pixel of the hyperspectral image; P(ci , c j ) is
a probability of occurrence of the classification between
classes i and j , and P(ci |(ci , c j )) stands for the
probability of class i under such a classification task;
P(ci |(ci , c j ))

(1/2) P(c j |(ci , c j ))
(1/2) exp{B D(ci , c j )} repre-

sents the Bhattacharyya bound given by classes i and j ;
B D(ci , c j ) = (1/8)(μμμi − μμμ j )

T ((	i + 	 j )/2)−1(μμμi − μμμ j ) +
(1/2) ln(|(	i + 	 j )2)|)/(|	i ||	 j |)(1/2) denotes the Bhat-
tacharyya distance between classes i and j [55], (μi ,	i ) and
(μ j ,	 j ) are the mean and covariance of classes i and j ,
respectively, and Ni is the number of pixels of the i th
class. Note that, due to the classification context, we have

P(ci , c j ) =
{

0, i = j
P(c j , ci ), otherwise

. The quantity in the last
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Fig. 3. Impact of the envelope variance on Gaussian enveloped harmonics when the harmonic frequency keeps unchanged. (a)–(d) Cosine harmonics [the
envelope variance increases from (a) to (d)]. (e)–(h) Sinusoidal harmonics [the envelope variance increases from (e) to (h)].

line of (16)

O RB = 2
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∑
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× exp{−B D(ci , c j )} (17)

is an upper bound of the overall classification risk R(err).
We can utilize this metric to evaluate the separability of
multiple classes.

Table I illustrates the overall classification risk bounds
calculated for different subfilters with five real hyperspectral
data sets collected by different instruments over the regions
of Zaoyuan (China), Kennedy Space Center, Indian Pines
and Salinas Valley (United States), and the University of
Pavia (Italy). Three of these images (Zaoyuan, Kennedy Space
Center, and Indian Pines) will also be used in the detailed
experiments reported in Section IV. In Table I, the subfilter
g(x)

cos ∗ g(y)
cos ∗ g(b)

sin clearly presents the lowest classification risk
bound on all considered hyperspectral images (as indicated by
the bolded numbers), which means that the risk of classifica-
tion error achieved by this filter is the lowest. Accordingly,
such a filter is expected to yield higher class separability than
all other subfilters. It should be especially be noted that the
subfilter h ∗ g(x)

cos ∗ g(y)
cos ∗ g(b)

sin achieves better class separability
than the 3-DGF. This is due to the fact that, by preserving
only the low-pass filtering in the spatial domain and the
bandpass filtering in the spectral domain, the other seven (low
discriminative) filtering components that will interfere with
classification are eliminated. Therefore, with the filtering

g′h = h ∗ g(x)
cos ∗ g(y)

cos ∗ g(b)
sin (18)

a fast DLRGF can be simply obtained as indicated
in Algorithm 3.

Equation (18) suggests that our DLRGF is a filtering
in a 3-D spatial–spectral space that is realized by con-
volving a hyperspectral image serially with three 1-D
local cosine/sinusoidal harmonics (Gaussian enveloped har-
monics), instead of a 3-D filter. Fig. 3 shows the local

Algorithm 3 DLRGF
1) Input: a hyperspectral image h(x, y, b).
2) Compute low-rank filters: g(x)

cos, g(y)
cos and g(b)

sin using
Algorithm 1.

3) Perform Gabor filtering with (18).

harmonics with the varying variance of the Gaussian enve-
lope, while the frequency magnitude is fixed. Fig. 3(a)–(d)
shows the cosine harmonics along the x-dimension used in
DLRGF (what are used along the y-dimension are the similar
cosine harmonics), whereas Fig. 3(e)–(h) shows the sinusoidal
harmonics applied along the spectral dimension (i.e., the
b-dimension). As observed in these figures, with the increase
in the envelope variance, the cover of a harmonic grows along
spatial/spectral dimension, and thus the spatial/spectral locality
of the harmonic is reduced. Fig. 4 shows the local harmonics
with the varying frequency magnitude, while the variance of
the Gaussian envelope is fixed. As observed, with the growing
of the frequency magnitude, a harmonic tends to get to greater
oscillation and hence tends to capture the signal with faster
change.

Our proposed DLRGF method has two key advantages:
1) low computational complexity and 2) high discriminability.
Given a spectral–spatial Gabor kernel of size L, the DLRGF
(as shown in Algorithm 3) involves only 1-D convolution
with computation complexity on the linear order of L, while
the 3-DGF [as shown in (2)] involves convolutions of two
3-D tensors with computation complexity on the cubic
order of L. In addition, both the DLRGF and LRGF
(i.e., the fast implementation of 3-DGF developed in Algo-
rithm 2) exhibit linear computational complexity. However,
the DLRGF uses only one of eight subfilters adopted in
LRGF; hence, it is expected to run much faster in prac-
tice. By preserving only the most discriminative compo-
nents and consequently ignoring the interference of the
low discriminative components, our DLRGF is expected
to extract more discriminative spectral–spatial features than
the 3-DGF (and the LRGF, which can be seen as a fast
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Fig. 4. Impact of the harmonic frequency on Gaussian enveloped harmonics when the envelope variance keeps unchanged. (a)–(d) Cosine harmonics [the
harmonic frequency increases from (a) to (d)]. (e)–(h) Sinusoidal harmonics [the harmonic frequency increases from (e) to (h)].

implementation of 3-DGF). In the following section, we
will analyze the implications on the obtained classification
accuracy.

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed DLRGF using three
real hyperspectral image data sets. For comparison, three
spectral–spatial Gabor filtering methods including our pro-
posed DLRGF, the classic 3-DGF, and the real-part standard
spectral–spatial Gabor filtering (ReGF) that uses only the real
part of 3-DGF are considered. For each of them, the frequency
length |ω| is set to be (π/16), (π/8), (π/4), and (π/2); the
angle between the frequency and the spectral dimension ϕ is
set to 0, (π/4), (π/2), and (3π/4); and the angle between
the projection of the frequency onto the (x, y) plane and
the x-direction (θ ) is also set to values 0, (π/4), (π/2),
and (3π/4). Therefore, there are in total 52 Gabor filters
considered for each filtering operation (note that if ϕ is set
to be 0, various θs yield the same filter), and the magnitude
of the filtering result is used as feature. Hence, our experiments
comprise 52 features per band and 52 × B features for
a hyperspectral image if it is composed of B bands. The
experiments conducted with each of the hyperspectral images
are structured as follows.

1) We compute the running times of various Gabor filtering
operations. Here, we consider our proposed DLRGF
(see Algorithm 3), the classic 3-DGF [see (4)], and
the ReGF that uses only the real part of the 3-DGF.
The computational complexity of DLRGF is linear,
while the complexities of 3-DGF and ReGF are cubic.
In addition, the developed fast implementation of 3-DGF
(called LRGF; see Algorithm 2) is also considered. This
algorithm has linear computational complexity as well.

2) Then, we evaluate the classification accuracy of
the considered approaches. In our experiments, we
first apply Gabor filtering to obtain spectral–spatial
features; then, the LS-based collaborative representation
classifier and the SVM classifier are used to perform
the subsequent classification. The LS collaborative
representation classifier is directly applied to the original

TABLE II

GROUND-TRUTH CLASSES IN THE OMIS ZAOYUAN

HYPERSPECTRAL IMAGE

Fig. 5. Computational time (in seconds) as a function of the size of the
Gabor filters for the OMIS Zaoyuan image. (a) DLRGF. (b) LRGF. (c) 3-
DGF. (d) ReGF.

features resulting from Gabor filtering, while the SVM
is applied to the principal components of the Gabor
features. The kernel function employed by the SVM is
a radial basis function (RBF) kernel. Three Gabor-based
methods: our proposed DLRGF, the classic 3-DGF, and
the ReGF are considered. Since we have two different
classifiers, our comparison among Gabor-related
classifications comprises six approaches in total, namely,
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TABLE III

OVERALL ACCURACY (%) AND KAPPA COEFFICIENT (IN THE PARENTHESES) FOR THE OMIS ZAOYUAN IMAGE AS A FUNCTION
OF THE TRAINING SAMPLE SIZE (% OF LABELED PIXELS). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

TABLE IV

INDIVIDUAL CLASSIFICATION ACCURACIES (%) FOR THE OMIS ZAOYUAN IMAGE, USING ONLY 0.5% OF THE

LABELED PIXELS PER CLASS FOR TRAINING AND THE REMAINING LABELED PIXELS FOR TESTING

Fig. 6. Classification results for the OMIS Zaoyuan image using only 0.5% of the labeled pixels available per class for training. (a) Training samples.
(b) Test samples. (c) DLRGF-LS. (d) 3-DGF-LS. (e) ReGF-LS. (f) DLRGF-SVM. (g) 3-DGF-SVM. (h) ReGF-SVM. (i) 3-DW-DB1. (j) CKSVM.
(k) SVM-MRF. (l) SVM.

DLRGF-LS, 3-DGF-LS, ReGF-LS, DLRGF-SVM,
3-DGF-SVM, and ReGF-SVM. In our experiments, we
use the fast implementations of 3-DGF and ReGF to
perform classification because those implementations
yield exactly the same results as the 3-DGF and ReGF
while being more computationally efficient. In this case,
we still use the names “3-DGF” and “ReGF” when
we report the classification results achieved by the fast
methods. Besides such six Gabor feature-based methods,
the state-of-the-art SVM pixel-wise classifier [59], [61]
and two representative spectral–spatial classifiers, MRF

based on SVM preprocessing (SVM-MRF) [22], and the
composite kernel-based SVM (CKSVM) [11], [58] are
also included in the comparison. The RBF kernel is also
used for the implementations of these three classifiers.
In addition, 3-D wavelet feature-based classification is
also implemented, where the 3-D redundant wavelet
coefficients [56], [57] are extracted with Daubechies
1 filter and then RBF kernel SVM is run on the
principal components of those wavelet coefficients (this
classification is called 3-DW-DB1 hereafter). Several
metrics are employed to quantitatively evaluate the
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TABLE V

OVERALL ACCURACY (%) AND KAPPA COEFFICIENT (IN THE PARENTHESES) FOR THE AVIRIS KENNEDY SPACE CENTER IMAGE AS A
FUNCTION OF THE TRAINING SAMPLE SIZE (% OF LABELED PIXELS). THE BEST RESULTS ARE REPORTED IN BOLD TYPEFACE

TABLE VI

INDIVIDUAL CLASSIFICATION ACCURACIES (%) FOR THE AVIRIS KENNEDY SPACE CENTER IMAGE, USING ONLY 2%
OF THE LABELED PIXELS PER CLASS FOR TRAINING AND THE REMAINING LABELED PIXELS FOR TESTING

Fig. 7. Computational time (in seconds) as a function of the size of the
Gabor filters for the AVIRIS Kennedy Space Center image. (a) DLRGF. (b)
3-DGF.

obtained classification results, including the overall
accuracy [11], [59], the kappa coefficient [11], [14],
and the individual class accuracy [11], [59]. In our
experiments, we use a limited number of randomly
selected labeled pixels as training samples, whereas the
remaining pixels are used for testing.

Concerning the free parameters involved in the considered
methods, we use the following settings.

1) For the DLRGF-LS, 3-DGF-LS, ReGF-LS,
DLRGF-SVM, 3-DGF-SVM, and ReGF-SVM, the
scale factors involved in the Gabor filtering are set by
fivefold cross validation over the span [0.5, 5].

2) For the DLRGF-SVM, 3-DGF-SVM, ReGF-SVM, and
3-DW-DB1, the numbers of principal components fed
into the SVM classifier are identical to allow a fair
comparison, and are all assigned under 3-DGF by
fivefold cross validation in the range [5, 100], with an
interval of 5.

3) The regularization and kernel parameters of the
SVM used in the DLRGF-SVM, 3-DGF-SVM, and
ReGF-SVM (and those of the CKSVM and the
3-DW-DB1) are all set by fivefold cross validation of
exponentially increasing sequences: {2−3, 2−1, . . . , 215}
and {2−8, 2−6, . . . , 23}, respectively. In addition, the
weight parameter in the CKSVM and the scale to
decomposed to is also set by fivefold cross validation
in the range [0, 1].

All our experiments have been conducted using MATLAB
R2013a in a desktop PC equipped with an Intel Core i7 CPU
(at 3.6 GHz) and 32 GB of RAM.

A. Experiments With the OMIS Zaoyuan Hyperspectral Image

The first hyperspectral image used in experiments was
collected by the operational modular imaging spectrom-
eter (OMIS) over the Zaoyuan region, China, in 2001.
The flight altitude was approximately 1200 m. The data set
comprises 137 × 202 pixels and 80 bands covering the
region: 0.4–1.7 μm, where the first 64 bands cover the
region: 0.4–1.1 μm and the last 16 bands cover the region:
1.06–1.7 μm. The eight land-cover classes to be classified in
the scene are illustrated in Table II.

Fig. 5 shows the computational time as a function of the
size of the Gabor filters for the experiments conducted with
the Zaoyuan image, which is the average over ten runs. The
considered filtering methods include our DLRGF, the 3-DGF
and its fast implementation (LRGF), and the ReGF. Fig. 5
clearly shows that DLRGF outperforms 3-DGF in terms of
computational cost. For a relatively large size of the Gabor
Filter (L = 21), DLRGF requires only slightly more than 10 s
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Fig. 8. Classification results for the AVIRIS Kennedy Space Center image using only 2% of the labeled pixels available per class for training. (a) Training
samples. (b) Test samples. (c) DLRGF-LS. (d) 3-DGF-LS. (e) ReGF-LS. (f) DLRGF-SVM. (g) 3-DGF-SVM. (h) ReGF-SVM. (i) 3-DW-DB1. (j) CKSVM.
(k) SVM-MRF. (l) SVM.

Fig. 9. Computational time (in seconds) as a function of the size of the
Gabor filters for the AVIRIS Indian Pines image. (a) DLRGF. (b) 3-DGF.

in the considered computing environment, whereas the 3-DGF
requires more than 3300 s (i.e., almost 1 h). Furthermore, it
can also be observed that the computational time of DLRGF
increases as a linear function of the size of the Gabor filter,
whereas the computational time of the 3-DGF is of a high
polynomial order. Fig. 5 also shows that the ReGF requires
approximately half the time of the 3-DGF to complete the
computation. This is expected, because the ReGF calculates
only the real part of the 3-DGF. In addition, the computation
time of LRGF is approximately eight times that of DLRGF.
This is because the LRGF has to cope with eight subfilters,
whereas DLRGF performs only one of the subfilters. These
observations are consistent with our analyses of computation
complexity in Section III and verify the superiority of our
DLRGF in terms of computational efficiency.

Finally, we report the classification experiments conducted
with this hyperspectral image. We randomly choose a very
small percentage of labeled pixels in each class as training
samples and used the rest of the pixels as test samples.
Table III shows the overall classification accuracies and kappa
statistic for different classifiers using different percentages
of training samples selected per class, from 0.1% to 1%.
As shown in Table III, for the same classifier, our DLRGF
always results in the highest classification accuracies. On the
other hand, Table IV shows the individual classification
accuracies obtained by the different classifiers by consider-
ing 0.5% of the labeled samples for training and the rest
of the labeled pixels for testing. From Table IV, we can
conclude that DLRGF obtains better individual classification
accuracies for all classes. For illustrative purposes, Fig. 6
shows the classification maps obtained by different classifiers
[with Fig. 6(a) showing the training samples and Fig. 6(b)
showing the test samples]. Visual interpretation of these maps
reveals that the proposed DLRGF provides highly competitive
results compared with the other tested methods.

B. Experiments With the AVIRIS Kennedy Space Center
Image

The data set used in this experiment was acquired by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over the Kennedy Space Center in Florida. The image orig-
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Fig. 10. Classification results for the AVIRIS Indian Pines image using only 2% of the labeled pixels available per class for training. (a) Training
samples. (b) Test samples. (c) DLRGF-LS. (d) 3-DGF-LS. (e) ReGF-LS. (f) DLRGF-SVM. (g) 3-DGF-SVM. (h) ReGF-SVM. (i) 3-DW-DB1. (j) CKSVM.
(k) SVM-MRF. (l) SVM.

TABLE VII

OVERALL ACCURACY (%) AND KAPPA COEFFICIENT (IN THE PARENTHESES) FOR THE AVIRIS INDIAN PINES IMAGE AS A FUNCTION
OF THE TRAINING SAMPLE SIZE (% OF LABELED PIXELS). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

inally contained 224 bands. After removing the noisy bands
due to water absorption, 176 bands remained. Thirteen labeled
classes, namely, Oak/broadleaf hammock, Cabbage palm/oak
hammock, Slash pine, Cabbage palm hammock, Scrub, Cattail
marsh, Mud flats, Graminoid marsh, Spartina marsh, Water,
Willow swamp, Salt marsh, and Hardwood swamp are
considered in an area comprising 428×450 pixels (additional
details about the image and the classes are provided in [60]).

Fig. 7 shows the computational time our DLRGF and the
conventional 3-DGF for the Kennedy Space Center data set.
Similar to the experimental results reported for the Zaoyuan

image, the running time of our DLRGF is considerably less
than that of the 3-DGF. For instance, for a Gabor filter of
size L = 21, the DLRGF requires only approximately 2 min,
whereas 3-DGF requires more than 450 000 s (i.e., 12.5 h).
Furthermore, the cost of the DLRGF increases as an approx-
imately linear function of the Gabor filter size, whereas the
cost of the 3-DGF follows a high-order polynomial function.
Due to space considerations and a similar trend exhibited by
the ReGF and LRGF compared with the 3-DGF and DLRGF
(as discussed in the experiment on OMIS Zaoyuan image), the
running times of ReGF and LRGF are not presented here. This
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TABLE VIII

INDIVIDUAL CLASSIFICATION ACCURACIES (%) FOR THE AVIRIS INDIAN PINES IMAGE, USING ONLY 2% OF THE
LABELED PIXELS PER CLASS FOR TRAINING AND THE REMAINING LABELED PIXELS FOR TESTING

experiment clearly suggests the superiority of our DLRGF in
terms of computational efficiency, as it was the case in the
experiment with the OMIS Zaoyuan image.

The classification results for the AVIRIS Kennedy Space
Center data are summarized in Tables V and VI, and the clas-
sification maps are shown in Fig. 8. In this case, we considered
sample sizes comprising 1%–5% of the available labeled pixels
per class for training, and reported the individual classification
accuracies for the case in which 2% of the available labeled
pixels per class were used for training. Similar to the results
reported for the OMIS Zaoyuan image, the proposed DLRGF
approach achieved the best results in all cases.

C. Experiments With the AVIRIS Indian Pines Image
The Indian Pines data set was acquired by the AVIRIS

sensor over northwestern Indiana. The data set include
220 spectral bands and 145 × 145 pixels. There are a total
of 16 land-cover classes in the scene; 40 water absorption
and noisy bands were removed, and the remaining 180 bands
(6–100th, 112–147th, and 167–215th) were used for classifi-
cation purposes. Since some classes have very few samples,
12 land-cover classes were considered in our experiments:
Corn-notill, Corn-min, Corn, Grass/Pasture, Grass/Trees, Hay-
windrowed, Soybeans-notill, Soybeans-min, Soybean-clean,
Wheat, Woods, and Bldg-Grass-Tree-Drives (details of these
classes can be found in [8] and [14]). The results obtained
with the AVIRIS Indian Pines are shown in Figs. 9 and 10
and in Tables VII and VIII. As with the previous experiments,
the proposed DLRGF outperforms the other tested methods in
terms of both computation time and classification accuracy.

V. CONCLUSION

In this paper, we have developed a fast DLRGF approach for
spectral–spatial classification of remotely sensed hyperspectral
images. The proposed approach represents an efficient strategy
for selecting spatial–spectral features and offers significant
novelty in the way Gabor filtering is adapted to the spe-
cial properties of hyperspectral images, which require spatial
smoothness and spectral differential information to enhance
class separability. The main properties of the DLRGF are:
1) its high computational efficiency and 2) its capacity to
provide spectral–spatial features with higher discriminability.
Specifically, in the proposed DLRGF, the standard 3-DGF is
first derived as the superposition of eight rank-1 subfilters, so

that computational complexity reduces from cubic to linear
order. Furthermore, we choose only the subfilter associated
with both the spatial low-pass and spectral bandpass character-
istics to perform Gabor filtering, thus increasing computational
efficiency and reducing the interference from subfilters that
are not highly discriminative in the context of hyperspectral
images. To quantitatively analyze the feature discriminability
under various filtering conditions, we designed an overall clas-
sification risk bound that confirmed that the features related to
the spatial low-pass and the spectral bandpass Gabor process-
ing result in higher discrimination ability for classification
purposes than by the other components. Another important
advantage of using only the most discriminative component
is that the DLRGF can avoid the interference from the low
discriminating components, while other strategies produce
lower classification results due in part to this interference.
Our experimental results, conducted with several hyperspectral
images, confirm that our newly developed DLRGF can yield
high computation efficiency and classification results that are
comparable or better than those obtained by other state-of-the-
art classifiers. It is worth mentioning that the low-pass spatial
filtering may degrade the signals at class boundaries if the spa-
tial filter is fixed for all pixels, which implies the homogeneous
spatial dependency across the whole hyperspectral image that
is in fact disrupted along the class boundaries. In the future,
we will pursue incorporating an additional boundary-sensitive
factor into our Gabor filtering.
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Japan. From 2004 to 2008, he was a Research Scientist at the Laboratory
for Neural Signal Processing, Institute for Inforcomm Research, Singapore.
He has authored more than 70 scientific papers in journals and conference
proceedings. He is currently a Yangtse River Scholar Chair Professor with
the Ministry of Education, China. His current research interests include blind
signal processing, sparse representation, machine learning, BCI, and brain
data analysis.


