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Stacked Nonnegative Sparse Autoencoders for
Robust Hyperspectral Unmixing

Yuanchao Su
Jun Li

Abstract— As an unsupervised learning tool, autoencoder has
been widely applied in many fields. In this letter, we propose
a new robust unmixing algorithm that is based on stacked
nonnegative sparse autoencoders (NNSAEs) for hyperspectral
data with outliers and low signal-to-noise ratio. The proposed
stacked autoencoders network contains two main steps. In the
first step, a series of NNSAE is used to detect the outliers in
the data. In the second step, a final autoencoder is performed
for unmixing to achieve the endmember signatures and abun-
dance fractions. By taking advantage from nonnegative sparse
autoencoding, the proposed approach can well tackle problems
with outliers and low noise-signal ratio. The effectiveness of
the proposed method is evaluated on both synthetic and real
hyperspectral data. In comparison with other unmixing methods,
the proposed approach demonstrates competitive performance.

Index Terms—Deep learning, hyperspectral remote sensing,
nonnegative sparse autoencoder (NNSAE), unmixing.

I. INTRODUCTION

YPERSPECTRAL images have been widely used in
modern geophysical applications, such as classification,
target detection, urban monitoring, and so on. However,
due to the relatively low-spatial resolution of hyperspec-
tral images, many pixels would be mixed by several pure
spectral materials (endmembers), which brings difficulty for
the characterization of hyperspectral data and might lead to
dramatic inaccuracy in the understanding and quantifying the
considered scenes [1].
In order to deal with mixed pixels, many algorithms have
been proposed for hyperspectral unmixing in the literature [1].
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Based on the fact that whether training samples are involved
in the process or not, most methods can be classified into
two categories, i.e., hand-crafted and learning based. Hand-
crafted methods, such as N-FINDR [2], vertex component
analysis (VCA) [3], minimum volume constrained nonnegative
matrix factorization (MVC-NMF) [4], focus on exploiting the
data structure via some geometrical or statistical assumptions,
and exhibiting good performance in unmixing. The hand-
crafted methods were the main trend in the past two decades,
and shown to be very effective in many scenarios. However,
the existence of outliers restricts the full play of these
methods [5].

Recently, the fast development of artificial neural net-
works (ANNSs) has fostered the learning-based approaches
for unmixing [6]. The ANN-based approaches were first
developed for the learning of abundance fractions, imply-
ing the knowledge of the endmember signatures [7]. Those
approaches showed better performance in comparison with
the hand-crafted methods, due to the strong interpretable
ability of its deep features [7]. More recently, the nonnegative
sparse autoencoder (NNSAE), as a special case of ANN, was
employed to obtain the endmembers signatures and abundance
fractions simultaneously for unmixing [8], with advanced
denoising and intrinsic self-adaptation capabilities. However,
as its strength is in the aspect of antinoise, in case of outliers,
it results in strong limitations. Because outliers might lead to
initialization failure, the presence of outliers can bring strong
interference to its unmixing results.

The main contribution of this letter is that, we pro-
pose a stacked NNSAEs architecture, namely, stacked
NNSAEs (SNSAs), for hyperspectral unmixing, aiming at
tackling the outliers and low noise-signal ratio in the data. As a
combination of stacked standard autoencoders, the proposed
SNSA adopts two additional criteria, with a sparse one enhanc-
ing the training efficiency and a nonnegativity constraining the
estimated abundance. As illustrated in Fig. 1, the proposed
SNSA first has a group of autoencoders, which aims at
detecting the outliers. Then, the last autoencoder implements
the matrix decomposition with sparse autoencoding targeting
on spectral unmixing.

The remainder of this letter is organized as follows.
Section II describes the proposed SNSA approach.
In Section III, simulated data sets are used for evaluation,
which allow us to conduct a quantitative comparison with
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Fig. 1.  Flowchart of the proposed SNSA approach. The first group of
autoencoders aims at outlier detection. The last autoencoder is employed for
unmixing.
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other methods. In Section IV, experiments with two real
hyperspectral data are conducted for further validation.
Section V concludes this letter with some remarks.

II. PROPOSED APPROACH

In this section, we present the proposed SNSA for hyper-
spectral data unmixing. Following the linear spectral mixing
model, this letter assumes that the reflected spectra are linearly
mixed by several endmembers. Hence, for a given observation
y; € R! with [ being the number of bands, we have

m
yi = Ah; +¢; = Zh,-jaj + €;
j=1

m
stihp =0, ) hy=1 (1
j=1

where A = [aj,...,a,] € R is the endmember matrix
with m being the number of endmembers, h; = [Ah;1,...,
hij,... ,him]T € R™ denotes the abundance fractions with
hij corresponding to the jth endmember, and ¢; is the error
vector. The two constraints h; > 0 and Z;’Ll hij =1 are the
abundance nonnegativity constraint and abundance sum-to-one
constraint, respectively [9].

In the following, we will present the proposed SNSA.
Specifically, in Section II-A, we briefly review the NNSAE
algorithm and introduce how to detect outliers. Section II-B
describes the NNSAE for unmixing.

A. Group of Autoencoders for Outlier Detection

As the optimization problem involved in the network is
nonconvex, an even worse scenario is the presence of outliers,
which can bring strong interference to the solution.

We first run VCA to obtain k endmembers as candidates
with k > m, which are then grouped into m training sets
{S; };1=1 based on spectral angle distances (SADs) with S; =
[ai,...,a;,] and j, be the number of samples in S;. It is
worth noting that besides VCA, any other pure pixel-based
methods can be used for initialization of the training, as the
outliers are likely to be selected since they are shown to be
vertices. Furthermore, for the number of candidates, we set
k = 2m and repeated VCA for 30 times in this letter.
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Let a; be the reconstructed signature of the jth candidate,
we can obtain
o output inputg
3, = WO (WS ) @)

where f(-) is an activation function, W' € R/ is a matrix

of weights from the input layer to the hidden layer, and
WP ¢ RIX! is a matrix of connection weights between the
hidden layer and the output layer. In the group of autoencoders,
the number of hidden neurons is set as the number of bands /
in the hyperspectral data. In practice, we generally share the
weights between the input and hidden neurons with those from
hidden to output neurons, which means W; = wouRHt

) J
(lenp ut)T. Therefore, the problem (2) turns to
a; = W;f(W]s;). 3)
The learning of the autoencoder aims at minimizing the
reconstruction error (RE) as follows:

jll
. ~ 2
mlng lla; —ajll5.
i=1

For the activation function f(-) in (3), herein we adopt the
logistic function as follows:

1
f(g)) = [+oxp(—c, -8 —d)) “)

where g; = W]TS j and ¢; and d; are parameters aiming at
controlling the information transmission between neurons.
For the construction of the autoencoders, let 55- and 5}“ be
the reconstructions from the 7th and (¢ + 1)th autoencoders,
respectively. When ”5;_+1 — 5}”% converges, the search of
autoencoder ends for the network. Finally, we detect the
outliers based on the reconstructed spectral signatures. Let
yi = [yj1,...,7jnl’ be the SADs between a’ and the
samples in S;, v and o be the mean and standard deviation
of y;, respectively. Then, we use v + 30 as the threshold
for the outlier detection. When an outlier y, is detected,
we set it to the mass center of the estimated endmembers,

i.e., y() = (l/m) ET:] a]

B. Autoencoder for Unmixing

In the second autoencoder, we minimize the RE (1/n) "7,
lyi — Ahi||%, which is the same as the NNSAE learning,
in which 7 is the number of pixel in the considered hyperspec-
tral data set, A and h; are the weight matrix and the neural
activity, respectively [10]. Following in the minimum volume
assumption that all samples in the data are enclosed by the
simplex constructed by the endmembers [4], we employ the
MVC into the model as follows:

RS :
min o z; lly; — Ah; II% + uMinVol(A)
=
st:h; >0, 1Ih =1 (5)

where parameter u is a penalty coefficient, MinVol(A) is the
volume function which is adopted from [4].

Problem (5) is nonconvex and difficult to solve. In the
second autoencoder, we adopt NNSAE to learn the weight
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Algorithm 1 SNSA for Hyperspectral Unmixing

Require: Y € R™*” (data set)

Ensure: Endmembers A € R'*"_ Abundances H € R™>",
Step 1. A group of autoencoders for outlier detection
1. Run VCA to obtain the training sets {S; };’;1
2. Initialize A via VCA [3]

3. Initialize randomly W
repeat
4. Update {ﬁj};-”zl in (3)
5. Update {W; };1=1 via gradient derivation
until convergence
6. Outlier detection
Step 2. An autoencoder for unmixing
7. Initialize A from VCA
8. h; via FCLS [9]
9. Set 1 =0.001,  =0.01, 9 =20
repeat
10. Update AA in (6)
11. Update Ah; in (8)
until convergence

matrix A and the neural activities, respectively, via an iterative
scheme. Specifically, with respect to the weight matrix A,
we have A < A + AA with

AA = 5(y; — Ahp)h;T + d(A) + u d(MinVol(A))  (6)

where 7 is the learning rate [10], d(A) and d(MinVol(A))
are the gradients for the weight matrix and volume func-
tion, respectively. The latter one can be computed as that
in [4]. For the former one, in order to enforce nonnegativity
weights, we employ the asymmetric piecewise linear decay
function [10]

—aij (aij <0)

0 (aij = 0) @

d(A) < {
where a;; is an element in matrix A, which connects the hidden
neuron j and the output neuron i [10]. In this autoencoder,
the number of hidden neurons is set as the number of end-
members.

On the other hand, with respect to the neural activity
h;, we herein employ the gradient descent for the solution
h; < h; + Ah; as follows:

Ah; = ¢ AT (Ah; —§)) ®)

where the parameter ¢ can be estimated by the Armijo
rule [11], A and y; are the augmented matrices, A =[A; 191;,]
and y; = [y;; 191;] with ¢ being a coefficient balance.
Following the analysis in [4], we set ¢ = 20 as a hyper-
parameter. Finally, the pseudocode of the proposed SNSA
algorithm is shown in Algorithm 1. Step 1 is the first group
of the network, while lines 1-3 perform the initialization and
lines 4-5 aim at removing outliers in the data. Then, step 2 is
the last autoencoder of the network which conducts spectral
unmixing via NMF. Lines 7-9 set the initial conditions.
Lines 10 and 11 update the endmember matrix and abundance
fractions, respectively. As for the convergence performance,
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TABLE I

SAD (IN RADIANS), RMSE, AND RE RESULTS ALONG WITH THEIR
STANDARD DEVIATIONS OBTAINED FROM 10 MONTE CARLO
RUNS BY USING DIFFERENT PARAMETERS FROM
THE PROPOSED SNSA FOR A SCENARIO WITH
4 ENDMEMBERS, 10 OUTLIERS,

AND SNR = 30 dB

SAD RMSE RE
7 =01 | 00193£2.15% 0.3904£0.25%  0.0146£0.12%
u=0.01 n=0.01 | 00147£145%  02375£020%  0.0121=0.08%
n=0.001 | 0.0150£1.81%  0.2403+0.22%  0.0129:0.09%
7 =01 | 00138E157% 0320d£041%  0.0126:£0.08%
p=0001 | n=001 | 00120£1.19%  0.19310.10%  0.010920.01%
n=0.001 | 001274132%  0.2035+0.14%  0.0113£0.02%
=0.1 | 00140£1.62% 0.2739£032%  0.0I51=£0.10%
pn=0.0001 | n=0.01 | 00112+1.24%  02064:0.15%  0.0149+0.03%
n=0.001 | 00121£139%  0.2096+0.25%  0.0157+0.07%

in practice, if | AA|%, where || - || denotes the Frobenius

norm, is smaller than a threshold, both autoencoders terminate.
It should be noted that the parameters involved in the algorithm
are set empirically. We are aware that there are ways to
optimize these settings. Nevertheless, we empirically found out
that the algorithm is not sensitive to the settings. Furthermore,
as can be observed from the experimental results presented in
Section III, these settings lead to very good performance.

III. EXPERIMENTAL RESULTS WITH SIMULATED DATA

The effectiveness of the proposed SNSA is evaluated by
using simulated hyperspectral data. The simulated data are
generated according to a linear mixing model with 3364 pixels
with maximum abundance purity of 0.8. Two different sce-
narios, with 3 and 4 endmembers, are considered, where the
pure spectral signatures, with 224 spectral bands covering the
spectral range from 0.4 to 2.5 um, are randomly selected from
the United States Geological Survey (USGS) library. Finally,
as the main target of the proposed approach is outliers and low
SNR, 10 outliers and white Gaussian noise with two different
levels of SNR, i.e., 15 and 30 dB, are added in the synthetic
data.

Three indicators, i.e., the SAD, RE, and the root-mean-
square error (RMSE) are used to measure the accuracy of the
unmixing results which are given as follows:

. a;,a;
SADJaj,a;] = arccos <[j7jj)
la;ll - I1ajl]

~ 1< =
RE({yiizy, (i0isy) = >/ llyi = %il3
i=1

- 1< =
RMSE(h;, hi) = - y/lIh; — bl
i=1

where a; and a; are the extracted endmember signature and
the library spectrum, y; andA y; are the reconstruction and
observation of pixel i, and h; and h; are the corresponding
estimated and actual abundance fractions, respectively.

In the first experiment, we perform an analysis on the
network parameters, for the considered hyperspectral data with
4 endmembers, 10 outliers, and SNR = 30 dB. Table I gives
the obtained results with different parameter settings. It can
first be observed that the proposed SNSA is insensitive to
the settings. Within a relevant wide range, # € [0.001,0.1],
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Fig. 2. Comparison between the reference USGS library spectra and

the estimated endmembers by the proposed method for the problem with
4 endmembers, 10 outliers, and SNR = 30 dB. (a) Endmember 1.
(b) Endmember 2. (¢) Endmember 3. (d) Endmember 4.
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Fig. 3.  Scatter plot of the obtained results for the synthetic data with
4 endmembers, 10 outliers, and SNR = 30 dB.

u € [0.0001,0.01], the proposed SNSA can obtain good
results. In the following experiments, we set x = 0.001 and
n = 0.01 for the proposed algorithm.

Our proposed method is compared with three widely
used unmixing algorithms, i.e., N-FINDR [1], VCA [3], and
MVC-NMF [4]. First of all, Figs. 2 and 3 show a comparison
between the obtained endmembers and the reference USGS
library signatures for the problem of 4 endmembers and
SNR = 30 dB. It can be seen from these figures that the
proposed method provides better match between the library
spectra and the endmembers provided than the other methods.
In fact, SNSA is able to retrieve more accurate and smooth
estimates of the endmember signatures by taking advantage
of the outlier detection and the neural network training.
Furthermore, for quantitative analysis, Table II presents the
obtained SADs, RMSEs, and REs for different SNRs. From
the results reported in Table II, it can be observed that the
proposed SNSA obtained the best results.
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TABLE II

AVERAGE SADS (IN RADIANS), RES, AND RMSES ALONG WITH THEIR
STANDARD DEVIATIONS OBTAINED FROM 10 MONTE CARLO RUNS BY
DIFFERENT METHODS FOR THE CONSIDERED SIMULATED DATA.
THE BOLD NUMBERS REPRESENT THE BEST RESULTS

Method SAD RMSE RE
m = 3, SNR = 30 dB
N-FINDR | 0.6017+£1435%  0.3946+3.12%  0.0193+0.84%
VCA 0.59244-11.02%  0.472142.36%  0.0186--0.99%
MVC-NMF | 0.1958+9.36%  0.2513£1.15%  0.012740.52%
SNSA 0.0113+-1.13%  0.1984--0.11%  0.01082-0.01%
m =4, SNR = 15 dB
N-FINDR | 0.9375+131.85%  0.8264L8.16%  0.057/914.95%
VCA 0.80194+23.61%  0.75164+5.34%  0.0653+5.62%
MVC-NMF | 03124+15.52%  0.7433+£227%  0.052442.10%
SNSA 0.0437£5.32%  0.5394+1.19%  0.0413+0.75%
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Fig. 4. Experimental results via SNSA on Cuprite data. Comparison of the
estimated endmembers (red) with their corresponding library signatures (blue).
(a) Buddingtonite. (b) Chalcedony. (c) Montmorillonite. (d) Nontronite.

TABLE III

SADS (IN RADIANS) AND RES ALONG WITH THEIR STANDARD
DEVIATIONS OBTAINED FROM 10 MONTE CARLO RUNS
OBTAINED BY DIFFERENT METHODS FOR THE
CUPRITE DATA, WHERE THE BEST
RESULTS ARE IN BOLD

Mineral N-FINDR VCA MVC-NMF SNSA
Alunite 0.09924+0  0.1027+4.72% 0.1218+2.13% 0.1193+2.94%
Buddingtonite 0.16394+0  0.1495+3.65% 0.1085+£5.34%  0.1069+3.52%
Chalcedony 0.1687+0  0.1594+1.47%  0.1038+1.26% 0.1097£4.08%
Jarosite 0.1893+0  0.1567+£4.40%  0.1195+3.57% 0.1201£3.62%
Kaolinite # 1 0.0804+0  0.0797+3.94% 0.0842+4.28% 0.0829+5.57%
Kaolinite # 2 0.0883+0  0.0895+1.52% 0.0873+£3.19%  0.0859+4.03%
Kaolinite # 3 0.05854+0  0.059242.08% 0.0603+3.35% 0.0599+3.27%
Montmorillonite | 0.0651+0  0.0589+2.25% 0.0615+4.47% 0.0591+6.01%
Muscovite 0.14374+0  0.1302+1.86% 0.1291£2.05%  0.1242+1.79%
Nontronite 0.0803+0  0.0795+5.13% 0.0824+3.69%  0.0783+2.84%
Pyrope # 1 0.05324+0  0.0519+4.32% 0.0537£5.01% 0.0521£4.76%
Pyrope # 2 0.0701+£0  0.0694+2.17% 0.0686£3.78%  0.0680+3.38%

Mean SAD 0.1051 0.0989 0.0901 0.0889
RE 0.0090+0  0.0052+0.07%  0.0039+0.08 % 0.0040£0.07%

IV. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this experiments, two real hyperspectral data, the Cuprite
image [12], and Jasper Ridge image [13], are considered.

The first real hyperspectral data with 191 x 250 pixels,
collected by the Airborne Visible Infra-Red Imaging Spec-
trometer (AVIRIS) data over the Cuprite mining site, Nevada,
in 1997 [12], are used for further validation of our proposed
approach. This scene has 224 spectral bands over a wavelength
from 0.4 to 2.5 um, with a nominal spectral resolution of
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TABLE IV

SADS (IN RADIANS) AND RES ALONG WITH THEIR STANDARD
DEVIATIONS OBTAINED FROM 10 MONTE CARLO RUNS
OBTAINED BY DIFFERENT METHODS FOR THE JASPER
RIDGE DATA, WHERE THE BEST
RESULTS ARE IN BOLD

Mineral N-FINDR VCA MVC-NMF SNSA
Road 0.0906+0% 0.10044+2.71% 0.091443.05% 0.0909+1.82%
Soil 0.22534+0% 0.2150+1.59% 0.220842.24% 0.2181£1.61%
Tree 0.1559+0% 0.18014+4.71% 0.171342.53% 0.167942.18%
Water 0.1337+0 0.132442.46% 0.128243.00% 0.1263+1.97%
Mean SAD 0.1514 0.1570 0.1529 0.1508
RE 0.0101+0 0.010740.10 0.0098+0.09 0.0095+0.08
0.15 3
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Fig. 5. Experimental results via SNSA on Jasper Ridge data. Comparison
of the estimated endmembers (red) with their corresponding reference signa-
tures (blue). (a) Road. (b) Soil. (c) Tree. (d) Water.

Fig. 6. (Top) Ground-truth abundance maps on Jasper Ridge data. (Bottom)
Estimated abundance maps by the proposed SNSA. (a) Road. (b) Soil.
(c) Tree. (d) Water.

10 nm. Prior to the analysis, bands 1-2, 105-115, 150-170,
and 223-224 were removed due to water absorption and
low SNR in those bands, leaving a total of 188 spectral
bands.

In this experiment, we set the number of endmembers as
m = 12. The signatures obtained by the proposed SNSA are
presented in Fig. 4, from which it can be observed that the esti-
mated endmember signatures generally provide a good match
with regard to the corresponding ones in the library. For further
validation, quantitative results are displayed in Table III, which
illustrate that the obtained SADs are better or competitive to
those of the other algorithms. Specifically, it is possible to
appreciate that the proposed approach outperforms the other
methods in terms of mean SAD, i.e., SNSA is able to retrieve
more stable abundance estimates by means of its accurate
endmember detection.
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The second real data, with 100 x 100 pixels, is captured by
AVIRIS over Jasper Ridge in California [13]. The scene has
224 bands over a wavelength from 0.38 to 2.5 um. After the
removal of water absorption and low-SNR bands, including
1-3, 108-112, 154-166, and 220-224 bands, 162 spectral
bands are used for experiment. The number of endmembers
considered in this experiment is set as m = 4. The quantitative
results are listed in Table IV, from which we can observe
that that proposed SNSA obtained competitive or compara-
ble results in comparison with other methods. For illustra-
tive purposes, the abundance map and signatures are shown
in Figs. 5 and 6, respectively, which can further demonstrate
the effectiveness of the proposed approach.

V. CONCLUSION

In this letter, we have introduced a new approach, namely,
SNSA network for hyperspectral unmixing. By taking advan-
tage from outlier detection and neural network training, SNSA
is able to retrieve accurate extraction of endmember signatures
and precise abundance estimates. The experimental results,
obtained by using simulated and real hyperspectral data,
indicate that the proposed SNSA exhibits very good potential
for unmixing.
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