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Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In
particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs
have proved to be very effective in areas such as image recognition and classification, especially for the
classification of large sets composed by two-dimensional images. However, their application to multi-
spectral and hyperspectral images faces some challenges, especially related to the processing of the
high-dimensional information contained in multidimensional data cubes. This results in a significant
increase in computation time. In this paper, we present a new CNN architecture for the classification
of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial informa-
tion. It also implements a border mirroring strategy to effectively process border areas in the image, and
has been efficiently implemented using graphics processing units (GPUs). Our experimental results indi-
cate that the proposed network performs accurately and efficiently, achieving a reduction of the compu-
tation time and increasing the accuracy in the classification of hyperspectral images when compared to
other traditional ANN techniques.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction 2017a; Tarabalka et al., 2009; Paoletti et al., 2017). However, super-
Remote sensing image acquisition and processing has become
very important in recent times in Earth observation problems,
exhibiting many practical applications such as monitoring and
management of the environment, agriculture or security and
defense/intelligence issues. Of particular importance is the compu-
tationally efficient processing of images formed by multiple spec-
tral bands, called multispectral and hyperspectral images. These
kinds of images collect information corresponding to large obser-
vation areas on the surface of the Earth, using dozens/hundreds
of contiguous spectral bands (Chang, 2003), thus creating a
three-dimensional data cube with size significantly larger than tra-
ditional remotely sensed images. As a result, multispectral and
hyperspectral images require particular computational improve-
ments, especially for their storage and advanced processing.

Several methods have been developed for fast processing and
classification of multispectral and hyperspectral images (Cheng
et al., 2017; Yuan et al., 2015), from those that only use spatial or
spectral information to those that combine both kinds of data. This
includes unsupervised techniques such as clustering (Haut et al.,
vised classifiers are often preferred, due to their capacity to provide
high classification accuracies, although these methods may be
affected by the limited availability of training samples as they gen-
erally need a large number of samples in order to obtain those good
results. Inparticular, supervisedmethods face challenges in the clas-
sification of hyperspectral images due to the unbalance between the
high dimensionality of the data and the limited number of training
samples available in practice (Hughes phenomenon)
(Khodadadzadeh et al., 2014). In this sense, support vectormachines
(SVMs) (Scholkopf and Smola, 2001) and multinomial logistic
regression (MLR) (Böhning, 1992) have been proved to be very use-
ful for the supervised classification of hyperspectral images due to
their ability to deal with large input spaces (Melgani and
Bruzzone, 2004; Fauvel et al., 2008; Plaza et al., 2009; Camps-Valls
and Bruzzone, 2005;Wu et al., 2015; Haut et al., 2017b). Also, some
sampling query strategies have been proposed to address the lim-
ited availability of training samples, such as semi-supervised and
active learning methods (Li et al., 2010, 2011; Rajan et al., 2008).

At this point, we can highlight several spatial-spectral classifica-
tion methods that combine the strengths of semi-supervised meth-
ods and active learning techniques, for example those based on
morphological component analysis (MCA) (Starck et al., 2005), a
method that decomposes images into texture and cartoon
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(piecewise smooth) parts. In Zhou and Prasad (2017), authors pre-
sented a new framework that combines active and semi-
supervised learning with MCA for hyperspectral image classifica-
tion. Also, in Xu et al. (2016b) authors presented a new classification
framework for the fusion of hyperspectral and light detection and
ranging (LiDAR) data, combiningMCA for textural feature extraction
andMLR for classification purposes. Themultiple MCA (MMCA) (Xu
et al., 2016a) is an extension of the MCA that uses both spatial and
spectral features. Its goal is to separate an image into two compo-
nents: a smoothness component and a texture component.

On the other hand, due to their success in the field of pattern
recognition (Bishop, 1995; Atkinson and Tatnall, 1997) and the
availability of multiple training techniques (including machine
learning, deep learning and active learning techniques, as well as
supervised, unsupervised and semi-supervised approaches) to deal
with linearly non-separable data (Benediktsson and Swain, 1990),
artificial neural networks (ANNs) have attracted the attention of
a large number of researchers in the area of hyperspectral image
classification and analysis (Benediktsson et al., 1993; Yang, 1999)
as compared to probabilistic methods. In particular, we highlight
the use of convolutional neural networks (CNNs) (LeCun et al.,
1998a) as a powerful deep learning model for image classification,
which can effectively combine the spatial and spectral information.

1.1. Deep learning and CNNs: a review

For years, building a machine learning system required a great
deal of effort in designing a feature extractor that would transform
raw data (i.e. pixel values from an image) into a feature vector from
which the learning subsystem could detect/classify patterns (LeCun
et al., 2015). Deep learning (or deep structured learning) emerged in
2006 with deep belief networks (DBNs)1 (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006) as a part of a machine learning system that
exploits many layers of non-linear information processing for super-
vised or unsupervised feature extraction and transformation, and also
for pattern analysis and classification (Bengio, 2009).

After DBNs, two new unsupervised deep models were devel-
oped: (1) a method for learning sparse, overcomplete features that
uses a linear encoder-decoder preceded by a sparsifying non-
linearity that turns a code vector into a quasi-binary sparse code
vector (Ranzato et al., 2006) and (2) a variant of autoencoder with
greedy layer-wise training (Bengio et al., 2007).

With the advancement of technology (both hardware and soft-
ware) and the development of new optimization algorithms2

(LeCun et al., 1998b) newmilestones were achieved in deep learning,
giving as result three types of deep methods:

� Unsupervised deep networks (generative learning): these meth-
ods work without labeled classes, looking for patterns between
pixels through capturing high-order correlation of data (e.g.
autoencoder-based methods3 (Licciardi and Del Frate, 2011;
1 A DBN is composed by a stack of restricted Boltzmann machines (Smolensky,
1986; Larochelle and Bengio, 2008) (RBMs). The DBN core is a greedy learning
algorithm that optimizes the network weights layer by layer. Its complexity grows
linearly with the size and depth of the network.

2 For example, new variants of gradient descent optimizer were developed,
including batch and mini-batch gradient descent, the stochastic gradient descent
(SGD) or the included momentum in SGD (Qian, 1999). New optimizers also appear as
Adagrad optimizer (Duchi et al., 2011) and its extension Adadelta (Zeiler, 2012) or the
Adam optimizer (Kingma and Ba, 2014).

3 An autoencoder (Cho, 2014; Karhunen et al., 2015) is a neural network (or
mapping method) where the desired output is equal to the input data vector. We can
distinguish between linear autoencoders, with only one hidden layer that works like a
principal component analysis (PCA) if its weights between the encoder and decoder
are tied, and non-linear or deep autoencoders, which have more modeling power by
employing multiple nonlinear intermediate layers symmetrically in the encoder and
decoder (Cho, 2014).
Chen et al., 2014), RBMs (Midhun et al., 2014), DBNs (Li et al.,
2014b), and deep Boltzmann machines or DBMs (Salakhutdinov
and Hinton, 2009; Wu et al., 2016)).

� Supervised deep networks (discriminative deep networks):
these models work with labeled information and their goal is
to categorize the input data in these labels. They represent
the most common form of machine learning, deep or not
(LeCun et al., 2015), and these kinds of models are usually more
efficient to train and test, more flexible to construct, and more
suitable for end-to-end learning of complex systems (Deng
and Yu, 2014). We can distinguish between linear supervised
deep method4 (e.g. deep neural networks or DNNs5 with linear
activation functions) and non-linear supervised methods (e.g.
deep stacking networks or DSNs (He et al., 2016), recurrent neu-
ral networks or RNNs6 and Convolutional neural networks or
CNNs (LeCun et al., 2015)).7

� Hybrid deep networks (semisupervised methods): these meth-
ods make use of both generative and discriminative model com-
ponents, i.e., they work with and without labeled data (e.g.
generative adversarial networks or GANs (Goodfellow et al.,
2014)). Semi-supervised learning is very useful in hyperspectral
image classification in order to deal with the limited training
samples problem (Ma et al., 2016).

Focusing on CNNs, these supervised non-linear models are a
special type of deep learning model that is inspired by neuro-
science (Ghamisi et al., 2017) and are designed to process data that
come in the form of multiple arrays. The literature on CNN applied
to remote sensing classification shows different points of view in
the way these models are used. Basically there are three ways to
apply CNNs:

1. Extracting only spectral information: spectral-based classifica-
tion approaches are conceptually simple and easy to be imple-
mented, but they neglect the spatial components (Li et al.,
2014a). Normally, these methods assume that each pixel is pure
and typically labeled as a single land use and land cover type
(Fisher, 1997). For spectral feature classification with CNNs,
the spectral feature of the original image data is directly
deployed as the input vector (Zhang et al., 2016a), so we obtain
a 1-D CNN architecture that receives N � 1 input vectors, where
N is the number of spectral bands (Ghamisi et al., 2017; Hu
et al., 2015b; Chen et al., 2016).

2. Extracting only spatial information: these models consider the
neighboring pixels of a certain pixel in the original remote sens-
ing image in order to extract the spatial feature representation
(Zhang et al., 2016a). As a result, 2-D CNN architectures are
adopted, where the input data is a patch of P � P neighboring
pixels (Vetrivel et al., 2018; Chen et al., 2016; Hu et al.,
2015a). In this sense, several methods have been implemented
in order to extract high-level spatial features, as multi-scale
image information (Liu et al., 2016; Zhao and Du, 2016a;
Zhang et al., 2016b; Yu et al., 2017). For hyperspectral image
4 Linear classifiers have an important limitation: these methods can only carve
their input space into very simple regions (half-spaces) separated by a hyperplane
(Chien, 1974).

5 A DNN is a multi-layer perceptron (MLP) with many hidden and fully connected
layers.

6 RNNs can also be used as generative learning models if the output is not a label
sequence associated with the input data sequence. Long short-term memory
networks (LSTMs) are a kind of RNN (Hochreiter and Schmidhuber, 1997).

7 CNNs can also work in unsupervised and semi-supervised mode (Dosovitskiy
et al., 2014; Romero et al., 2016; Liu et al., 2017). On the other hand, recent efforts
have resulted in deconvolutional neural networks (DCNN) (Zeiler et al., 2010). In Lu
et al. (2017) authors combined the spatial pyramid model (SPM) with a shallow
weighted DCNN to learn a set of feature maps and filters by minimizing the
reconstruction error between the input image and the convolution result.



Fig. 1. CNN architecture. Each block or layer of a CNN transforms the input volume
to an output volume of neuron activations. Neurons in layer l are connected to a
small region of layer l� 1.

Fig. 2. MLP architecture. All nodes in one layer are fully connected with the nodes
of the previous layer.
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analysis normally it is necessary a pre-processing of the spectral
information, with reduction of the number of bands for exam-
ple (using, e.g., PCAs or autoencoders).

3. Extracting spectral-spatial information: the use of spatial fea-
tures with spectral information in combined fashion can signif-
icantly improve the classification accuracy. When we talk about
extracting spectral-spatial information with CNNs, two types of
models can be highlighted:
� Those models that mix various techniques in addition to

CNNs to extract spectral-spatial information separately and
then combine them, for example using a 1-D CNN and 2-D
CNN (Zhang et al., 2017; Yang et al., 2016) or combining dif-
ferent spectral feature extractors with spatial CNNs (Zhao
and Du, 2016b). These methods do not take full advantage
of the joint spatial/spectral correlation information.

� 3-D CNN architectures (Chen et al., 2016; Li et al., 2017) that
compute each pixel in association with a P � P spatial neigh-
borhood and B spectral bands (P � P � B). These models
apply 3-D kernels in order to learn the local signal changes
in both the spatial and the spectral domain of the hyperspec-
tral data cubes, exploiting important discriminative infor-
mation for classification and taking full advantage of the
structural characteristics of the 3-D remote sensing data in
general and hyperspectral images in particular (Li et al.,
2017).

In this work, we propose an improved 3-D deep CNN model
composed by 5 layers which uses all the spatial-spectral informa-
tion of the hyperspectral image. We also include a specific strategy
for management of the borders of the image and further develop an
efficient implementation in graphics processing units (GPUs) to
significantly speed up the computational performance. Deep
Learning techniques, and in particular CNNs, involve a huge
amount of matrix and vector operations. Most of these operations
can be easily and massively parallelized using GPUs, due to their
inherent design with hundreds/thousands of cores that can com-
pute one or several matrix operations in parallel which, compared
to a CPU with a few cores, results in a important decrease in com-
putation time.

As a result, the main contributions of our work can be high-
lighted as follows: (1) the development of a new CNN architecture
that considers the spatial and spectral information contained in
hyperspectral images in simultaneous fashion, and (2) the develop-
ment of an efficient implementation of the newly proposed archi-
tecture on GPUs that allows for efficient exploitation of the
proposed methodology in real applications.

The remainder of the paper is organized as follows. Section 2
provides some general aspects about CNNs. Section 3 describes
the proposed CNN. Section 4 validates the proposed approach by
comparing it with classic ANNs such as the MLP and other CNN
implementations in the literature, in order to illustrate the advan-
tages of the proposed implementation in terms of both computa-
tional efficiency and classification accuracy. Section 5 concludes
the paper with some remarks and hints at plausible future research
lines.
8 The concept of weight matrix can be understood as a feature detector or filter
which can beused to search for an specific spatial characteristic of the input data. The
weight matrix will assign a greater weight to the pixels that collect this characteristic
penalizing the pixels that do not exhibit this spatial behaviour.
2. CNNs

CNNs are composed by a set of blocks that can be applied both
across space and across time (images, audio and video signals).
Each block transforms the input volume to an output volume of
neuron activations which will serve as input to the next block. In
contrast to conventional ANNs, the blocks of neurons in CNNs
operate like kernels which are connected and applied over one
patch of the input volume (see Fig. 1), that is, the neurons of a block
are not fully-connected to all neurons of the previous layer as in
the standard MLP (see Fig. 2). These blocks actually compose fea-
ture extraction stages, which specifically consist of three layers
(Zhang et al., 2016a) that are the key parts of almost all CNN
models:

1. Convolution layer: a 3-D layer where each neuron computes the
dot product between its weights and a small region of the input
volume, i.e. a rectangular section of the previous layer, to which
it is connected. Its goal is to identify certain features from the
previous layer and mapping their appearance to a feature map
(LeCun et al., 2015). We can see this layer as set of k filters of
size l� l� q (filter bank) where the neurons share the same
weights and bias and connect the input volume to the output
volume (Zhang et al., 2016a). Each filter detects a particular fea-
ture at every location on the input. The resulting output volume

of the layer l is a feature map of size dl � dl � kl that stores the
information where the feature occurs in the original input vol-

ume and is calculated as zli ¼ Bl þPkl�1

j¼1W
l
i;j � zl�1

j , where

i 2 ½1; kl�;Bl is the bias matrix of layer l and Wl
i;j is the weight

matrix or filter (also known as kernel or feature detector)8 that
connects the jth feature map in layer l� 1 (zl�1

j ) with the ith fea-
ture map in layer l.



Fig. 3. Proposed CNN architecture.
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2. Nonlinearity layer: this layer embeds a nonlinear function (as
the rectified linear unit or ReLU). Jarrett et al. (2009), Nair and
Hinton (2010), and Glorot et al. (2011) that is applied to each
feature map’s component in order to learn nonlinear represen-
tations: al ¼ f ðzlÞ.

3. Pooling layer: this layer is used to make the features invariant
from the location and to summarize the output of multiple neu-
rons in convolution layers through a pooling function. In our
case, this layer executes a max operation within a small spatial
region R over the resulting feature map after the nonlinearity
layer: pl ¼ maxi2Rali.

Sparse connectivity and shared weights make CNNs ideal for
processing and classifying images, reducing the number of param-
eters to be learned by the network and ensuring some degree of
shift, scale, and distortion in-variance.
Fig. 4. Graphical illustration of our border mirroring strategy (with d ¼ 9; d ¼ 19 and
associated ground-truth) as an example.
3. Proposed CNN

The structure of our new CNN is shown in Fig. 3. As we can see,
our CNN consists of an input layer, three convolution layers with
ReLU as nonlinear activation function, two maxpool layers, and
four fully-connected layers. The last one is the output layer which
obtains the desired label for the input data. In the following, we
first provide details about our preprocessing strategy for hyper-
spectral data, particularly to account for spatial information, prior
to feeding this information to the CNN. Then, we provide a detailed
explanation about the considered architecture.

3.1. Data preprocessing

Normally, CNNs receive a complete normalized image prior to
classification. However, in hyperspectral images the classes are
d ¼ 29) using the well-known AVIRIS Indian Pines hyperspectral image (and its
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typically mixed within the image, so we feed the pixel (vectors)
one by one to the network. This allows exploiting the rich spectral
information contained in the hyperspectral data, but we need an
additional mechanism in order to include also the spatial
information.

To achieve this and take advantage of both the spatial and the
spectral information simultaneously, we have implemented a 3-D
approach in which we feed the network with a neighborhood win-
dow centered around each pixel vector. In this way, the input layer
accepts volumes of size d� d� n, where d is the width and height
of the input volume and n is the total number of bands of the orig-
inal hyperspectral image. This requires a pre-processing stage to
divide the hyperspectral image into patches of size d� d� n. The
desired label to be reached by the network will be the one that
owns the central pixel of the patch ½d=2þ 1; d=2þ 1;n�.

However, this preprocessing strategy faces a problem: for the
pixels belonging to the borders of the image a d� d surrounding
neighborhood cannot be defined. As we increase d, we cannot
properly account for the border information around some pixels.
Some approaches simply disregard those border pixels for which
they do not have spatial neighbours. This supposes a significant
loss of samples that, together with the scarcity of the samples,
can make the network result in overfitting. In order to avoid this
problem, we have implemented a simple algorithm to replicate
borders that allows us to feed the net with all the border pixels
and to use them as any other pixel in the image. In this way, we
can classify the complete hyperspectral image by replicating the
pixels near the border, i.e. mirroring the d=2 pixels of border out-
wards, in order to create the corresponding patches or windows
of the original border pixels, as illustrated graphically in Fig. 4
using the well-known AVIRIS Indian Pines hyperspectral image
(described in detail in Section 4).
9 http://www.json.org/.
10 https://www.python.org/.
3.2. CNN architecture details

Once the edges are replicated and the hyperspectral image is
split into 3-D patches, these are grouped in batches of size b and
sent to the CNN. Then, the d� d� n patches are sent as input vol-

ume to the first convolution layer (c1), composed by kc1 filters of

lc1 � lc1 � qc1, where qc1 ¼ n, the stride is fixed to 1, and there is
no padding.

After applying the ReLU function, the kc1 feature maps gener-
ated by c1 are sent to the first MaxPool layer (mp1), with a

lmp1 � lmp1 kernel, stride of 2, and padding. The resulting output vol-

ume pmp1 ¼ dmp1 � dmp1 � kc1 is sent to the second convolution

layer (c2) with kc2 filters of size lc2 � lc2 � qc2, where qc2 ¼ kc1, with
the same stride as in the first convolution and no padding either.

Again, after applying the ReLU function, the kc2 feature maps
generated by c2 are sent to the second MaxPool layer (mp2), with

a lmp2 � lmp2 kernel, stride of 2 and padding. The resulting output

volume pmp2 ¼ dmp2 � dmp2 � kc2 is sent to the last convolution layer

(c3), that has kc3 filters of size lc3 � lc3 � qc3. This layer has the pur-
pose of further refining the feature maps by processing each ele-

ment one by one, so kc3 ¼ qc3 ¼ kc2 and lc3 ¼ 1. There is no third
maxpool layer, so the output volume is reshaped in order to send
it to fully-connected layers.

Four fully-connected layers were implemented (fc1; fc2; fc3 and

fc4) with lfc1; lfc2; lfc3 and lfc4 nodes, respectively. The first three
fully-connected layers compute their output as

yfc ¼ f ðwfcyfc�1 þ bfcÞ, where wfc are their weight matrices, bfc are
their bias vectors, yfc�1 is the output of the previous layer (in the
first case, yfc�1 ¼ pC3, i.e. the output of C3 layer) and the activation
function f ð�Þ is ReLU. Finally, the last resulting matrix yfc3 is sent to
fc4, which computes the outputs of the network with a softmax

function as yfc4 ¼ wfc4yfc3 þ bfc4, where yfc4 contains the desired
labels for the original d� d� n input data.

In Algorithm 1 we can see a scheme of the operation of the pro-
posed method. As we can notice, the method uses cross-entropy in
order to determine the loss of the CNN model. It is defined as
Hy0 ðyÞ ¼

P
iy

0
ilogðyiÞ, where y is our predicted probability distribu-

tion and y0 is the true distribution, so the cross-entropy is a mea-
sure of how inefficiently predictions are calculated for describing
the truth.

Algorithm 1. Proposed CNN method
1: procedure CNN_method(Y ! original hyperspectral
image)

2: max epochs ! Set number of epochs value
3: max iters ! Set number of iterations value
4: d ! Set patch size value
5: n ¼ Y :bands
6: Ynorm ¼ band mean normalizeðYÞ
7: Y 0 ¼ border mirroringðYnorm; dÞ !mirroring of d border
pixels

8: P ¼ patches creationðY 0; d;nÞ ! splitting Y 0 into patches
of d� d� n

9: Ta; Tb ¼ training test setsðPÞ ! training Ta and testing
Tb sets

10: G ¼ batches creationðTa; bÞ ! grouping patches in
batches of size b

11: for e < max epochs do
12: for it < max iters do
13: G0 ¼ get next batchðGÞ
14: labels G0 predicted ¼ forward passðG0Þ
15: error ¼ cross entropyðlabels G0; labels G0 predictedÞ
16: W ;B ¼ optimizerðerrorÞ
17: end for
18: end for
19: end procedure

As an interesting point we note that, for the initialization of all
weights and bias of the network, we have used the so-called Xavier
initializer (Glorot and Bengio, 2010), that allows the network to
achieve greater stability, and the Adagrad optimizer (Duchi et al.,
2011), as a simple method for learning rate adaptation. All the net-
work characteristics (weights and bias initialization, optimizer,
learning rate, steps, kernels size, use of padding and size of strides)
are configurable through a JavaScript Object Notation (JSON)9 file,
as well as parameters d and b, which makes the implementation of
the network flexible and easy to modify. Such implementation has
been performed in Python.10 In this way, the CNN takes advantage
of the information of the central pixel neighbors as well as all the
available spectral information, being able to adapt its structure
easily and quickly.

As we anticipated in Section 3.1, this kind of networks may suf-
fer from an overfitting problem because of the complexity of the
model derived from the large number of parameters that must
be learned, and a lack of training samples (that is quite common
in remote sensing applications). This problem may result in poor
predictive performance in the testing phase, despite a high
accuracy can be obtained in the training phase. To avoid such

http://www.json.org/
https://www.python.org/


Color Land cover type Samples
Background 10776

Alfalfa 46
Corn-notill 1428
Corn-min 830

Corn 237
Grass/Pasture 483
Grass/Trees 730

Grass/Pasture-mowed 28
Hay-windrowed 478

Oats 20
Soybeans-notill 972
Soybeans-min 2455
Soybeans-clean 693

Wheat 205
Woods 1265

Bldg-Grass-Tree-Drives 386
Stone-steel towers 93

Total samples 21025

Fig. 5. Original ground-truth image of the AVIRIS Indian Pines scene and number of samples per class.

Color Land cover type Samples
Background 164624

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self-Blocking Bricks 3682

Shadows 947

Total samples 207400

Fig. 6. Original ground-truth image of the ROSIS University of Pavia scene and number of samples per class.
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overfitting problems, we have allowed an optional and config-
urable dropout mechanism in the first and second convolution lay-
ers. The dropout method sets the output of some randomly
selected hidden neurons to zero, so that the dropped neurons do
not contribute in the forward pass and they are not used in the
back-propagation stage (Hinton et al., 2012).

To conclude this section, it is important to note that the pro-
posed CNN has been implemented using the TensorFlow open
source library for machine intelligence11 including its GPU func-
11 https://www.tensorflow.org.
tionalities, that allow for fast performance even when dealing with
very large hyperspectral image volumes. In the following section,
we evaluate the proposed CNN from the viewpoint of both computa-
tional performance and classification accuracy.

4. Experiments and results

4.1. Experimental configuration

In order to evaluate the performance of our newly presented
CNN architecture, we use a hardware environment composed by

https://www.tensorflow.org
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a 6th Generation Intel
�
CoreTM i7-6700 K processor with 8 M of

Cache and up to 4.20 GHz (4 cores/8 way multitask processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz, a GPU NVI-
DIA GeForce GTX 1080 with 8 GB GDDR5X of video memory and
10Gbps of memory frequency, a Toshiba DT01ACA HDD with
7200RPM and 2 TB of capacity, and an ASUS Z170 pro-gaming
motherboard.
Table 3
Configuration of the CNN architecture for the Indian Pines and University of Pavia datasets.
design choices of the proposed CNN architecture. Large kernels allow our CNN to learn
training/testing phase is also greater.

CNN proposed

Hyperspectral datasets convolution layers

Kernel size ReLU Pooling
kc � lc � lc � qc lmp � lmp

Indian Pines 600� 5� 5� 200 Yes 2� 2
200� 3� 3� 600 Yes 2� 2
200� 1� 1� 200 Yes No

Pavia University 380� 7� 7� 103 Yes 2� 2
350� 5� 5� 380 Yes 2� 2
350� 1� 1� 350 Yes No

Common parameters

Bach size b Steps (iterations) Epochs Learning rat

100 1500 20 0.01

Table 2
University of Pavia: number of samples in the training set used by the proposed method

Pavia Univ

class pixels 200 samples per class 10

Asphalt 6631 200 10
Meadows 18649 200 10
Gravel 2099 200 10
Trees 3064 200 10
Painted metal sheets 1345 200 10
Bare soil 5029 200 10
Bitumen 1330 200 10
Self-blocking bricks 3682 200 10
Shadows 947 200 10

Total 42776 1800 90

Table 1
Indian Pines: number of samples in the training set used by the proposed method and by

Indian P

clase pixels 200 samples per class 10

Alfalfa 46 33 33
Corn-notill 1428 200 10
Corn-min 830 200 10
Corn 237 181 10
Grass/pasture 483 200 10
Grass/trees 730 200 10
Grass/pasture-mowed 28 20 20
Hay-windrowed 478 200 10
Oats 20 14 14
Soybeans-notill 972 200 10
Soybeans-min 2455 200 10
Soybeans-clean 593 200 10
Wheat 205 143 10
Woods 1265 200 10
Bldg-grass-tree-drives 386 200 10
Stone-steel towers 93 75 75

Total 10249 2466 13
4.2. Hyperspectral image data

In our experiments, we have used two well-known hyperspec-
tral image data sets. The first one is the Indian Pines image, gath-
ered in 1992 by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor (Green et al., 1998) over a set of agri-
cultural fields with regular geometry and with a multiple crops and
The kernel size (like the number and type of layers, strides and padding) is one of the
more complex features, although with larger kernels the computational time of the

topologies

Fully Connected Layers

Dropout N�neurons Function Dropout

lfc

Yes (10%) 1024 ReLU Yes(10%)
Yes (10%) 1024 ReLU No

No 512 ReLU No
16 Softmax No

Yes(20%) 2048 ReLU No
Yes(20%) 2048 ReLU No

No 1024 ReLU No
9 Softmax No

e Optimizer

AdagradOptimizer

and by the method in Chen et al. (2016).

ersity

0 samples per class 50 samples per class Chen et al. (2016)

0 50 548
0 50 540
0 50 392
0 50 542
0 50 256
0 50 532
0 50 375
0 50 514
0 50 231

0 450 3930

the method in Chen et al. (2016).

ines

0 samples per class 50 samples per class Chen et al. (2016)

33 30
0 50 150
0 50 150
0 50 100
0 50 150
0 50 150

20 20
0 50 150

14 15
0 50 150
0 50 150
0 50 150
0 50 150
0 50 150
0 50 50

50 50

42 717 1765
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irregular patches of forest in Northwestern Indiana. The AVIRIS
Indian Pines scene has 145 � 145 pixels with 224 spectral bands
in the range from 400 to 2500 nm, with 10 nm of spectral resolu-
Fig. 7. Illustration of the effect of using different patch sizes for the Indian Pines scene. T
use d ¼ 9; d ¼ 19 and d ¼ 29, as we can see on the axes from left to right (color map of b
each neighborhood, respectively. (For interpretation of the references to color in this fig

Fig. 8. Illustration of the effect of using different patch sizes for the University of Pavia
when we use d ¼ 15; d ¼ 21 and d ¼ 27, as we can see on the axes from left to right (colo
that form each neighborhood, respectively. (For interpretation of the references to color
tion, 20 mmoderate spatial resolution, and 16 bits radiometric res-
olution. After an initial analysis, 4 zero bands and another 20 bands
with lower signal-to-noise ratio (SNR) have been removed because
he upper row shows the size of the neighborhood around the central pixel when we
and 140). In the lower row we can see the spectral signature of the pixels that form
ure legend, the reader is referred to the web version of this article.)

scene. The upper row shows the size of the neighborhood around the central pixel
r map of band 10). In the lower row we can see the spectral signature of the pixels
in this figure legend, the reader is referred to the web version of this article.)
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of atmospheric absorption phenomena in those bands, retaining
only 200 spectral channels. Moreover, about half of the pixels in
the hyperspectral image (10249 of 21025, i.e. 48.74%) contain
ground-truth information, which comes in the form of a single
Fig. 9. Indian Pines: Evolution of the validation loss in terms of steps (iterations) with d
five executions of each patch (zoom in error interval ½0;1�). This experiment has been e

Fig. 10. Indian Pines: Evolution of the validation loss in terms of time (seconds) with d ¼
five executions of each patch (zoom in error interval ½0;1�). This experiment has been e

Table 4
Execution times (in seconds) and accuracies measured with patches of size d ¼ 9; d ¼ 19 an
of Pavia dataset. The CNN configuration is the one indicated in Table 3, with 1500 iteratio

Dataset Patch size Time per step

Avg. Std. dev.

Indian Pines d ¼ 9 0.02 0.01
d ¼ 19 0.08 0.02
d ¼ 29 0.16 0.03

University of Pavia d ¼ 15 0.02 0.01
d ¼ 21 0.05 0.02
d ¼ 27 0.09 0.02
label assignment for each pixel with a total of 16 ground-truth
classes (see Fig. 5).

The second data set used in experiments was collected by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor
¼ 9; d ¼ 19 and d ¼ 29. The shadow shows the standard deviation of the loss for the
xecuted using 1500 iterations.

9;d ¼ 19 and d ¼ 29. The shadow shows the standard deviation of the loss for the
xecuted using 1500 iterations.

d d ¼ 29 for the Indian Pines dataset and d ¼ 15; d ¼ 21 and d ¼ 27 for the University
ns, 100 samples per class and 5 executions.

Total time Accuracy

Avg. Std. dev. Avg. Std. dev.

29.22 1.05 78.46 4.45
116.30 3.22 91.34 1.59
248.29 7.91 95.53 0.48

34.78 1.13 94.02 0.62
74.66 2.22 95.08 1.41
131.66 2.88 94.13 0.66



Fig. 11. Pavia University: Evolution of the validation loss in terms of steps (iterations) with d ¼ 15;d ¼ 21 and d ¼ 27. The shadow shows the standard deviation of the loss
for the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.

Fig. 12. Pavia University: Evolution of the validation loss in terms of time (seconds) with d ¼ 15; d ¼ 21 and d ¼ 27. The shadow shows the standard deviation of the loss for
the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 1500 iterations.
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(Kunkel et al., 1988) during a flight campaign over the city of Pavia,
in northern Italy. The dataset covers an urban environment, with
various solid structures (asphalt, gravel, metal sheets, bitumen,
bricks), natural objects (trees, meadows, soil), and shadows (9
classes in total). Other objects whose compositions differ from
the labeled ones are considered as clutter. The scene was collected
over an university area. It contains 103 spectral bands with
610� 340 pixels in the spectral range from 0.43 to 0.86 lm, and
spatial resolution of 1.3 m/pixel. About 20.62% of the pixels in
the hyperspectral image (42776 of 207400) contain ground-truth
information (see Fig. 6).
12 For each class we make sure that about 75% of each class is taken, until we have a
number of samples close to 75% of the complete dataset, so we make sure that all
classes are represented in the subset.
4.2.1. Data preprocessing: division of training and testing sets
When our method divides the hyperspectral images into train-

ing and testing sets, it follows a method of preprocessing with class
balancing that must be conveniently explained at this point. In
addition to their huge dimensionality and the existing correlation
between the spectral features collected (Melgani and Bruzzone,
2004), hyperspectral images present another complication: the
class imbalance problem (He and Garcia, 2009). This problem
appears in a dataset when some of the classes are heavily under-
represented (in terms of their labeled samples) as compared to
other classes (García et al., 2011), leading to poor classification per-
formance in many real-world applications, especially for the
minority classes. In order to deal with this problem, and taking into
account that we could not identify a common pattern about sam-
ple selection strategies in the literature, we have tried to keep a
stratified sampling strategy in our experiments. As a result, we
tried to balance the number of samples selected in accordance with
the number of available samples per class.

The first step is to divide randomly the original dataset in two
subsets: the first one (training set) with 75%12 of the samples and
the second one (testing set) with the remaining 25%. If we keep that
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75% of samples for the training set, we will once again experience
the class imbalance problem. For instance, in the Indian Pines image
the Alfalfa class has only 46 samples as opposed to Corn-notill,
Table 5
Classification accuracies obtained by our CNN (with patch sizes of d ¼ 9; d ¼ 19 and d ¼ 29
experiment 5 times.

Neural networks CNN d ¼ 9

Samples per class 50 100 200 50

Alfalfa 98.70 (1.06) 99.13 (1.06) 99.13 (1.06) 99.57 (0.87
Corn-notill 70.76 (3.42) 76.93 (2.50) 80.48 (9.37) 76.74 (3.89
Corn-min 78.92 (5.37) 90.55 (1.97) 96.65 (1.20) 82.77 (2.61

Corn 96.54 (1.89) 99.75 (0.21) 99.66 (0.17) 99.41 (0.83
Grass/Pasture 89.86 (4.56) 97.81 (0.81) 99.46 (0.52) 95.20 (1.54
Grass/Trees 97.40 (0.94) 98.11 (0.88) 99.53 (0.32) 92.96 (2.64

Grass/pasture-mowed 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00
Hay-windrowed 99.29 (0.34) 99.62 (0.08) 99.67 (0.21) 99.12 (1.06

Oats 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00
Soybeans-notill 80.39 (3.52) 87.86 (1.95) 92.43 (2.03) 88.35 (4.26
Soybeans-min 65.82 (5.83) 79.45 (1.74) 76.42 (4.61) 69.52 (3.63
Soybean-clean 80.84 (4.29) 90.96 (3.58) 97.74 (0.86) 84.65 (3.19

Wheat 99.61 (0.78) 99.80 (0.39) 99.71 (0.24) 99.90 (0.20
Woods 91.21 (1.17) 94.80 (1.43) 97.71 (0.74) 88.35 (3.57

Bldg-Grass-Tree-Drives 91.14 (2.07) 98.50 (0.81) 99.27 (0.60) 96.94 (3.11
Stone-steel towers 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.57 (0.86

Overall Accuracy 80.85 (1.58) 88.46 (0.32) 90.11 (0.67) 83.73 (1.30
Average Accuracy 90.03 (0.98) 94.58 (0.22) 96.12 (0.28) 92.07 (0.66

Kappa 78.44 (1.74) 86.92 (0.36) 88.81 (0.76) 81.68 (1.44

Run time 47.97 (0.01) 48.50 (0.01) 48.21 (0.01) 193.40 (0.01

Fig. 13. Classification results for Indian Pines image with d ¼ 9 and 50 (left), 100 (center
without the background, and the lower row displays the classification result with the b
which has 1428. 75% of each is 34;5 � 36 for Alfalfa and 1071 for
Corn-notill, a completely unbalanced result. The solution adopted
in this case is to simply reduce the number samples until a balanced
) for the Indian Pines hyperspectral dataset. We used 2500 iterations and repeated the

CNN d ¼ 19 CNN d ¼ 29

100 200 50 100 200

) 100.00 (0.00) 99.57 (0.87) 99.13 (1.74) 99.57 (0.87) 99.13 (1.06)
) 85.84 (1.92) 94.47 (2.46) 82.10 (3.94) 91.32 (0.46) 98.17 (0.67)
) 93.23 (2.09) 98.22 (0.87) 86.41 (4.29) 94.84 (0.47) 98.92 (0.68)
) 99.66 (0.32) 100.00 (0.00) 97.81 (2.92) 100.00 (0.00) 100.00 (0.00)
) 98.18 (0.73) 99.75 (0.20) 96.15 (3.75) 98.34 (1.23) 99.71 (0.21)
) 97.92 (1.31) 98.90 (0.43) 96.47 (2.43) 98.66 (0.94) 99.40 (0.52)
) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
) 99.08 (0.45) 99.62 (0.47) 99.62 (0.50) 99.96 (0.08) 100.00 (0.00)
) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
) 94.81 (1.94) 98.00 (0.78) 88.66 (1.62) 95.21 (1.26) 98.62 (1.39)
) 85.85 (1.35) 94.32 (2.02) 79.40 (1.33) 90.52 (1.16) 96.15 (0.57)
) 96.90 (1.61) 99.09 (0.45) 88.67 (1.80) 97.17 (1.64) 99.33 (0.18)
) 99.90 (0.20) 100.00 (0.00) 99.32 (0.39) 100.00 (0.00) 99.90 (0.20)
) 95.54 (1.43) 98.85 (0.94) 96.74 (1.22) 98.12 (0.54) 98.96 (0.46)
) 98.81 (1.42) 99.90 (0.13) 99.07 (0.26) 99.69 (0.25) 100.00 (0.00)
) 100.00 (0.00) 100.00 (0.00) 99.78 (0.43) 98.92 (0.96) 100.00 (0.00)

) 92.54 (0.16) 97.23 (0.30) 88.78 (0.78) 95.05 (0.28) 98.37 (0.17)
) 96.61 (0.24) 98.79 (0.10) 94.33 (0.35) 97.64 (0.13) 99.27 (0.11)
) 91.54 (0.18) 96.85 (0.34) 87.31 (0.88) 94.38 (0.31) 98.15 (0.19)

) 192.85 (0.01) 197.65 (0.01) 421.07 (0.02) 404.15 (0.02) 405.46 (0.02)

) and 200 (right) samples per class. The upper row displays the classification result
ackground.



Fig. 14. Classification results for Indian Pines image with d ¼ 19 and 50 (left), 100 (center) and 200 (right) samples per class. The upper row displays the classification result
without the background, and the lower row displays the classification result with the background.
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result is achieved. After we get 75% sampling of each class, we set a
maximum number of samples per class (as a threshold), for example
50, 100 or 200 samples per class. For those classes with many sam-
ples, we simply cut the samples until reaching the threshold. How-
ever, for those classes that have very few samples and do not
reach the threshold, only those available pixels are taken. In Table 1
we can observe the real number of samples that we are using in each
experiment when we refer to ‘‘50 samples per class”, ‘‘100 samples
per class” or ‘‘200 samples per class”. Except for those classes that
do not reach the proposed threshold (and that use 75% complete),
the rest of classes work with 15–25% of their samples. In Table 2
we can see that the same solution is adopted for the University of
Pavia data. In both cases, the proposed method uses less samples
than (Chen et al., 2016) with the exception of Indian Pines with
200 samples per class.
4.3. Hyperparameter tuning

The first step to carry out the experiments has been to adjust
the configuration parameters of the convolutional network to get
the best possible classification accuracy in the considered hyper-
spectral datasets, through cross-validation.

For the Indian Pines dataset, the CNN configuration parameters
have been adjusted according to Table 3. As we can see in the con-
volution layers, the noise of some of the Indian Pines image bands
is mitigated by a first expansion of depth, and the overfitting prob-
lem is solved by adding dropout in the first and second convolution
layers and in the first fully connected layer.13 The third convolution
13 After the first experiment, we realized that these values were insufficient and the
network was fine-tuned again. A 10% dropout was added to the third convolution
layer and a 30% dropout was added to the first fully-connected layer to avoid
overfitting.
layer refines the c2’s feature maps with the objective of obtaining a
better classification.

For the University of Pavia dataset, the CNN configuration
parameters have been adjusted according to Table 3. Also, we
improved the quality of the spectral information by extending
the depth of the feature maps in the first convolution. In this case,
the overfitting problem is worse than in the Indian Pines scene
(mainly due to the greater number of parameters to be learned),
so we increased the value of the dropout in the first and second
convolution layers. Again, the third convolution layer refines the
c2’s feature maps, with the objective of obtaining a better
classification.
4.4. Performance evaluation

To test the proposed CNN for hyperspectral image classification
with the configurations described in Section 4.3, several experi-
ments have been conducted, first with the Indian Pines hyperspec-
tral dataset and, second, with the University of Pavia hyperspectral
dataset. At this point, we emphasize that data pre-processing plays
a very important role in this kind of deep learning algorithms. In
practice, many classification methods work better after a data nor-
malization procedure. In this case hyperspectral datasets have
been scaled between in the range ½�0:5;0:5� and a band-mean nor-
malized procedure has been performed. This means that each of
the spectral channels in the image have been normalized by sub-
tracting the mean.

Testing parameter d: We tested different sizes of parameter d,
using a fixed number of 100 samples per class. For the Indian Pines
data, we have considered three patch sizes: d ¼ 9; d ¼ 19 and
d ¼ 29. In Fig. 7 we illustrate the effect of using different patch
sizes over a random pixel in the Indian Pines dataset. As we add
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pixels to the neighborhood, the spatial information around the
considered pixel is more clear, especially when it comes to edge
pixels. However, a patch too large can detract from the target pixel.
As for the spectral signature, adding more neighbors to the target
pixel also makes the signature as a whole more defined.

For the Pavia University data, we have tested other patch sizes:
d ¼ 15; d ¼ 21 and d ¼ 27. The difference is motivated by our pre-
assessment of the size of relevant features in the image. We also
provide in Fig. 8 an illustrative example of how the size of patches
impacts the overall performance in the University of Pavia data set.
In this case, the scene presents many object borders in the leftmost
part. By adding more spatial information we can better identify the
Table 6
Obtained classification accuracies (with patch sizes of d ¼ 15; d ¼ 21 and d ¼ 27) for the
experiment 5 times.

Neural networks CNN d ¼ 15

Samples per class 50 100 200 50

Asphalt 79.86 (4.46) 90.58 (0.74) 92.81 (0.72) 86.41 (0.47)
Meadows 88.97 (1.65) 94.20 (1.94) 97.20 (0.95) 89.44 (4.85)
Gravel 83.52 (1.92) 92.28 (2.12) 96.97 (0.90) 85.31 (4.51)
Trees 96.31 (1.02) 97.45 (1.34) 98.62 (0.43) 94.36 (0.49)

Painted metal sheets 99.83 (0.09) 99.93 (0.11) 100.00 (0.00) 99.38 (0.13)
Bare Soil 90.72 (1.47) 95.18 (0.93) 98.57 (0.74) 93.54 (2.45)
Bitumen 91.88 (1.61) 92.38 (1.22) 97.27 (0.96) 91.00 (0.57)

Self-Blocking Bricks 82.91 (5.26) 92.07 (1.49) 96.17 (1.70) 89.77 (2.62)
Shadows 99.65 (0.22) 99.54 (0.51) 99.86 (0.13) 99.65 (0.10)

Overall Accuracy 88.17 (0.31) 93.95 (0.74) 96.83 (0.19) 90.22 (1.78)
Average Accuracy 90.40 (0.38) 94.85 (0.41) 97.50 (0.14) 92.10 (0.63)

Kappa 84.63 (0.36) 92.07 (0.94) 95.83 (0.24) 87.28 (2.21)

Run time 43.02 (0.01) 42.78 (0.01) 42.83 (0.01) 74.30 (0.01)

Fig. 15. Classification results for Indian Pines image with d ¼ 29 and 50 (left), 100 (cente
without the background, and the lower row displays the classification result with the b
pixels belonging to such edges. However, given the reduced num-
ber of classes, if we add too many spectral signatures we can make
the patches slightly homogeneous.

For each d, we divided the original hyperspectral image into
pieces (mirroring the borders of the image, if necessary) and
grouping the patches into training samples and test samples. To
split the patches, we followed the steps described in Section 4.2.1.
Each execution of this experiment has been repeated 5 times.

Table 4 reports the obtained results. We can observe that, for
the Indian Pines image, d ¼ 29 achieves the best result, reaching
an overall accuracy of 95.53% with a smaller error in fewer
iterations (with only 400 iterations, d ¼ 29 has already reached a
University of Pavia hyperspectral dataset. We used 1500 iterations and repeated the

CNN d ¼ 21 CNN d ¼ 27

100 200 50 100 200

91.30 (1.81) 95.31 (0.97) 82.66 (1.18) 92.07 (1.05) 96.31 (0.19)
93.39 (1.52) 98.16 (0.12) 90.39 (3.03) 93.56 (1.76) 97.54 (0.39)
92.01 (3.55) 97.92 (0.59) 88.74 (0.90) 93.66 (1.16) 96.84 (0.29)
96.87 (0.74) 98.74 (0.18) 90.88 (1.35) 94.51 (2.12) 97.58 (0.41)
99.88 (0.09) 100.00 (0.00) 99.31 (0.21) 99.53 (0.37) 99.65 (0.15)
98.50 (1.20) 99.57 (0.31) 88.73 (2.00) 97.67 (0.88) 99.33 (0.25)
96.19 (1.50) 99.75 (0.09) 92.73 (1.25) 95.16 (1.29) 98.90 (1.14)
94.41 (0.93) 98.20 (0.21) 91.74 (1.49) 94.88 (1.43) 98.89 (0.47)
99.75 (0.13) 99.82 (0.18) 97.40 (1.87) 98.91 (0.88) 99.58 (0.09)

94.37 (1.10) 98.06 (0.13) 89.58 (1.95) 94.35 (1.05) 97.80 (0.22)
95.81 (0.82) 98.61 (0.09) 91.40 (1.26) 95.55 (0.68) 98.29 (0.25)
92.63 (1.42) 97.44 (0.18) 86.37 (2.50) 92.61 (1.35) 97.09 (0.29)

74.17 (0.01) 74.09 (0.01) 132.77 (0.02) 132.48 (0.02) 132.68 (0.02)

r) and 200 (right) samples per class. The upper row displays the classification result
ackground.
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minimum error, while for d ¼ 19 it needs about 1000 iterations to
reach the same error and d ¼ 9 is not able to reduce its error in
1500 iterations, see Fig. 9). However, the time required for each
step when d ¼ 29 is adopted is greater than with d ¼ 19 or
d ¼ 9: each step of d ¼ 29 is 0.08 s slower than the steps of
d ¼ 19 and 0.14 s slower than the steps of d ¼ 9 (see Fig. 10). In
terms of the accuracy/time ratio, the best option is d ¼ 19,
although the best accuracy is achieved by using d ¼ 29 (but its exe-
cution time is larger).

On the other hand, the results obtained for the University of
Pavia dataset are also shown in Table 4. In this case, the patch with
size d ¼ 21 achieves the best accuracy results: 95.08% in 74.66 s,
reaching 1.06 percentage more than d ¼ 15 and 0.95 percentage
Fig. 16. Classification results for the University of Pavia data set with d ¼ 15 and 50
classification result without the background, and the lower row displays the classificati
more than d ¼ 27. As for the number of iterations, in Fig. 11 we
can see that d ¼ 27 needs less iterations to reach an acceptable
error (between 700–800 iterations) while d ¼ 21 needs around
1000–1100 iterations, which is very similar to d ¼ 15 that also
needs around 1000–1100 iterations to reach a low error. On the
other hand, the time per iteration for each patch size is different,
being the fastest d ¼ 15 (2.15 times faster than d ¼ 21 and 3.79
times faster than d ¼ 27) and the slowest d ¼ 27 (around 1.76
times slower than d ¼ 21), see Fig. 12. With this information at
hand, we can conclude that the best patch size is d ¼ 21, as it
reaches the best result in a fairly reasonable time.

Testing the number of samples per class: At this point, we
tested the accuracy achieved for different patch sizes
(left), 100 (center) and 200 (right) samples per class. The upper row displays the
on result with the background.
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(d ¼ 9; d ¼ 19 and d ¼ 29 for Indian Pines and d ¼ 15; d ¼ 21 and
d ¼ 27 for Pavia) with different amounts of training data, in partic-
ular with 50, 100 and 200 samples per class.

The results obtained for the Indian Pines dataset are shown in
Table 5 (with standard deviation). In this case, for each experiment
the parameters of the CNN have been fine tuned, in order to
achieve the best possible accuracy. As we can observe in Figs. 9
and 10, the configuration of the CNN in Table 3 for Indian Pines
presents a marked overfitting problem (that the standard deviation
also seems to indicate). As a result, the dropout percentages have
been modified for the Indian Pines experiment, specifically we
add a 10% dropout in the third convolution layer and raise the
Fig. 17. Classification results for the University of Pavia data set with d ¼ 21 and 50
classification result without the background, and the lower row displays the classificati
dropout from 10% to 30% on the first fully-connected layer. Also,
for this experiment we have increased the number of iterations
from 1500 to 2500. Thanks to the overfitting reduction, the net-
work is able to converge much faster, drastically reducing the ini-
tial execution times (i.e., being 1.32 times faster with d ¼ 9, 1.57
times faster with d ¼ 19 and 1.66 times faster with d ¼ 29 with
100 samples per class). In addition, stability has been improved
by reducing the standard deviation of each run to 0.01. In Table 5
we can observe that the results with d ¼ 9; d ¼ 19 and d ¼ 29
increase (in terms of accuracy) as more training samples per class
are included, reaching the maximum values with 200 samples per
class. Again, d ¼ 29 reaches the best accuracy results with 200
(left), 100 (center) and 200 (right) samples per class. The upper row displays the
on result with the background.
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samples per class, although the results obtained with a patch size
of d ¼ 19 are quite similar to those found using d ¼ 29, just one or
two percentage points below.

In Figs. 13–15 we report the classification maps obtained in
each experiment, without the mirroring of the borders. First, in
Fig. 13 we can see the classified image without background (the
first three images) and with background (the last three), obtained
with a patch size of d ¼ 9 and 50, 100 and 200 samples per class.
When the background is removed, we can see how the pixels of
each class are mixed, in particular near the edges. Also, with back-
ground the results are poorly defined, although these are improved
by adding more training samples in each class.

Secondly, in Fig. 14 we can see the classified images (with and
without background) obtained with a patch size of d ¼ 19 and 50,
Fig. 18. Classification results for the University of Pavia data set with d ¼ 27 and 50
classification result without the background, and the lower row displays the classificati
100 and 200 samples per class. With better results than with d ¼ 9,
the borders between the classes are better defined in this case, also
in the classification with background. The best result is achieved
with 200 samples per class.

Finally, in Fig. 15 we can observe the obtained classified images
with a patch size of d ¼ 29. First we report the classification images
without background and below them, we show the corresponding
ones with background. With only ground-truth pixels, the first
three images show better defined classes than the previously dis-
played ones with d ¼ 9 and d ¼ 19, being the classification map
obtained with 200 samples per class the most similar to the origi-
nal ground-truth image. Even in the classification with back-
ground, classes appear better defined since the borders between
them are more regular.
(left), 100 (center) and 200 (right) samples per class. The upper row displays the
on result with the background.
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On the other hand, the results for the University of Pavia dataset
are shown in Table 6. For each patch size, we can observe that the
accuracy improves as the number of samples per class increases,
reaching the best accuracy results with 200 samples per class. If
we look for the most suitable patch size, we can say that d ¼ 21
with 200 samples per class can be considered the best, with similar
and balanced accuracy data. This is because, after adding more
neighbors to the pixel, the data become more homogeneous.

In Figs. 16–18 we report the classification maps obtained for the
University of Pavia dataset obtained in each experiment. The first
one, Fig. 16 shows the Pavia classification results with a patch size
of d ¼ 15. Here, the accuracy becomes better when the number of
samples per class is increased, although there are many mixed pix-
els in the three cases, especially when the background is added to
the classification. We can observe a poor result on top of the mead-
ows class, and the ones adjacent to the light green bare soil at the
lowest part of the image.
Table 8
Configuration of the CNNs used in experiments for comparative purposes. These are the 1

1-D CNN Topologies (Chen et al., 2016)

Hyperspectral datasets Conv. Layers

Indian Pines 1� 5
1� 5
1� 4
1� 5
1� 4

University of Pavia 1� 8
1� 7
1� 8

2-D CNN Topologies (C

Hyperspectral datasets Conv. Layers

Indian Pines 32� 4� 4
64� 5� 5
128� 4� 4

University of Pavia 32� 4� 4
64� 5� 5
128� 4� 4

3-D CNN Topologies (

Hyperspectral datasets Conv. Layers

Indian Pines 128� 4� 4� 32
192� 5� 5� 32
256� 4� 4� 32

University of Pavia 32� 4� 4� 32
64� 5� 5� 32
128� 4� 4� 32

Table 7
Configuration of the MLP used in experiments for comparative purposes.

MLP Topologies

Hyperspectral datasets Layers

Type N� neurons Activation Function

Indian Pines Input 200 (n� bands) -
Hidden 144 (optimal n�) ReLU
Output 16 (n� classes) Softmax

University of Pavia Input 103 (n� bands) -
Hidden 75 (optimal n�) ReLU
Output 9 (n� classes) Softmax

Common parameters

Batch size Iterations Learning rate Optimizer

100 5000 0.045 AdamOptimizer
Fig. 16 shows the Pavia classification results with a patch size of
d ¼ 21, which results in better results than d ¼ 15. Pixels appear
better defined, also with background. As expected, the best classi-
fication map is obtained with the maximum number of samples
per class, i.e. 200, where we can see how the worst ranked pixels
in the experiment with d ¼ 15 are now better classified, e.g. the
pixels at the top of the meadows class and the bare soil pixels.

Finally, in Fig. 18 the classification results with patch size
d ¼ 27 are shown. As in the previous cases, the result improves
as more pixels are added to the training set (with 200 samples
per class resulting in the best accuracy results). Although the pixels
at the top of the image are better classified, the CNN finds it more
difficult to classify the pixels of the meadow class in the center of
the image, and the final result is slightly worse than the one
obtained with patch size of d ¼ 21.
4.5. Comparison with other algorithms

In this section we show comparisons of our proposed method
with other existing methods, including a standard MLP and the
1-D, 2-D and 3-D CNNs in Chen et al. (2016). This represents an
exhaustive and complete validation of our method with state-of-
the-art CNNs in the hyperspectral imaging literature. Tables 7
and 8 respectively show the configurations (for both scenes) of
the MLP and CNNs used in experiments for comparison purposes.

Comparison with MLP: For the MLP, the chosen topology is a
single layer feedforward network (SLFN) with three layers: an input
layer which receives a pixel in all its bands, a hidden layer whose
number of nodes is calculated by ðn bandsþ n classesÞ � 23, with a
ReLU as activation function, and an output layer with the number
of nodes equals as the number of classes and a softmax function. So,
the final MLP topology for the Indian Pines hyperspectral data set is
200� 144� 16 and for the University of Pavia data set is
103� 75� 9, both with Adam optimizer (Kingma and Ba, 2014)
and 0.0045 of learning rate. The proposed topologies have been
-D, 2-D and 3-D CNNs configurations described in Chen et al. (2016).

ReLU Pooling

Yes 1� 2
Yes 1� 2
Yes 1� 2
Yes 1� 2
Yes 1� 2

Yes 1� 2
Yes 1� 2
Yes 1� 2

hen et al., 2016)

ReLU Pooling Dropout

Yes 2� 2 No
Yes 2� 2 50%
Yes No 50%

Yes 2� 2 No
Yes 2� 2 50%
Yes No 50%

Chen et al., 2016)

ReLU Pooling Dropout

Yes 2� 2 No
Yes 2� 2 50%
Yes No 50%

Yes 2� 2 No
Yes 2� 2 50%
Yes No 50%



Table 9
Execution times and accuracies obtained by the MLP (with configuration: 200� 144� 16) for the Indian Pines scene and by the MLP (with configuration: 103� 75� 9) for the
University of Pavia scene, using 50, 100 and 200 samples per class. This experiment has been executed using 5000 iterations.

Datasets Samples Time per step Total time Accuracy

average Std. deviation average Std. deviation average Std. deviation

Indian Pines 50 0.0036 0.0002 0.1791 0.0148 74.60 1.60
100 0.0035 0.0001 0.1757 0.0149 79.29 1.35
200 0.0036 0.0002 0.1800 0.0148 82.56 1.23

University of Pavia 50 0.0033 0.0001 0.1672 0.0147 82.79 1.92
100 0.0031 0.0001 0.1550 0.0149 87.16 0.93
200 0.0031 0.0001 0.1530 0.0149 87.76 1.75

M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 137
tested with three different numbers of samples per class: 50, 100
and 200, repeating each one five times. Results are shown in
Table 9, where we show the average time and accuracy of each
Fig. 19. Evolution of the validation error in terms of steps (iterations) with 50, 100 and 2
standard deviation of the loss for the five executions of each patch (zoom in error inter

Table 10
Classification accuracies (and standard deviation) obtained by MLP with 50, 100 and
200 samples per class for the Indian Pines hyperspectral dataset. This experiment has
been executed using 5000 iterations.

Neural network MLP

Samples per class 50 100 200

Alfalfa 98.26 (2.54) 98.70 (1.06) 97.39 (0.87)
Corn-notill 63.40 (4.60) 71.11 (3.74) 78.36 (4.46)
Corn-min 66.00 (3.58) 82.53 (2.47) 86.17 (3.31)

Corn 86.16 (2.77) 91.31 (2.08) 92.41 (2.28)
Grass/Pasture 90.52 (2.67) 91.88 (2.30) 96.31 (1.27)
Grass/Trees 93.45 (1.35) 95.64 (1.45) 97.73 (0.94)

Grass/pasture-mowed 97.14 (2.67) 97.86 (2.86) 97.86 (2.86)
Hay-windrowed 96.32 (1.47) 97.45 (0.80) 98.62 (0.54)

Oats 99.00 (2.00) 98.00 (4.00) 100.00 (0.00)
Soybeans-notill 75.12 (4.54) 83.87 (2.11) 87.00 (2.33)
Soybeans-min 62.81 (2.86) 62.42 (5.28) 68.99 (3.70)
Soybean-clean 79.39 (1.54) 84.69 (1.13) 87.86 (1.84)

Wheat 98.54 (0.31) 99.22 (0.59) 99.41 (0.37)
Woods 83.65 (4.78) 91.07 (1.55) 94.15 (2.29)

Bldg-Grass-Tree-Drives 74.46 (1.94) 82.75 (2.30) 85.03 (4.89)
Stone-steel towers 98.49 (1.10) 99.35 (0.53) 99.35 (0.53)

Overall Accuracy 75.24 (1.51) 80.34 (1.10) 84.60 (0.71)
Average Accuracy 85.17 (1.21) 89.24 (0.41) 91.66 (0.29)

Kappa 72.18 (1.51) 77.93 (1.10) 82.65 (0.71)

Runtime (sec.) 0.1791 0.1757 0.1800
execution with 5000 iterations and repeated five times. As we
can see, as we add training data the accuracy increases, however
the execution time remains fairly stable.

In Table 10 we can observe in detail the results obtained for
each class of the Indian Pines dataset. After 5000 iterations, we
can see that the best overall accuracy result (84.60%) is obtained
with the maximum number of samples per class, i.e. 200, without
an overwhelming time difference. However, even with 5000 itera-
tions, the MLP is still not able to reach 90% overall accuracy
(although it reaches a 91.66% of average accuracy). If we pay atten-
tion to Fig. 19, we can see how the MLP needs fewer iterations to
reach a low error as the number of samples per class increases in
training, with a very little difference in execution times: each iter-
ation of MLP with 200 samples per class is only 1.01 times slower
than with 50 samples and 1.02 times slower than with 100 sam-
ples per class, as we can see in Fig. 20. Note how the optimizer
in the first second quickly evolves from a very high initial error
to a more reasonable value, given the cost function under which
it is iterating.

Now we can compare the MLP classifier with our proposed CNN
for the Indian Pines scene. We have considered two experiments:
in the first one, we compared the MLP with 100 samples per class
with the proposed CNN with also 100 samples per class and patch
sizes of d ¼ 9; d ¼ 19 and d ¼ 29. Each classifier has been executed
five times with 1500 iterations. In Fig. 21 we can observe the evo-
lution of the error in terms of the number of iterations of the MLP
and the CNN. We can conclude that our CNN needs significantly
less iterations to reach a low error when it uses patches of size
d ¼ 29 and d ¼ 19 (specifically, the CNN reaches an error below
00 samples per class for the MLP with the Indian Pines scene. The shadow shows the
val ½0;1�). This experiment has been executed using 5000 iterations.



Fig. 20. Evolution of the validation error in terms of time (seconds) with 50, 100 and 200 samples per class for the MLP with the Indian Pines scene. The shadow shows the
standard deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�). This experiment has been executed using 5000 iterations.

Fig. 21. Evolution of the validation error for the MLP and CNN (with d ¼ 9;d ¼ 19 and d ¼ 29) in terms of steps for the Indian Pines image. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in ð0;1Þ. This experiment has been executed using 1500 iterations.
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0.1 with only 300 iterations when d ¼ 29 and around 700–800 iter-
ations when d ¼ 19) while the MLP barely drops from 0.2 in 1500
iterations. However, in Fig. 22 (in which we show the error evolu-
tion in terms of time in seconds) we can observe that one iteration
of the CNN (with any patch size) is always slower than one itera-
tion of the MLP.

The second comparison between the MLP and our CNN is
reported in Table 12. In this case we used 200 samples per class
for the MLP and CNN, and patches of size d ¼ 9; d ¼ 19 and
d ¼ 29. Table 12 shows that the MLP is the fastest classification
method (all its executions take around 0.17–0.18 s), reaching its
better average and overall accuracy values (91.66% and 84.60%,
respectively) with 200 samples per class. However, these results
are several points lower than the accuracies reached by the pro-
posed CNN with patches of size d ¼ 19 and d ¼ 29. Specifically,
the MLP reaches an overall accuracy around 14 points lower than
the CNN, and an average accuracy around 8 points lower than
the one achieved by the CNN for d ¼ 29. With d ¼ 19, the MLP
reaches an overall accuracy around 11 lower than that achieved
by the CNN and an average accuracy around 7 points lower than
that achieved by the CNN. Only if we compare the MLP with the
CNN and d ¼ 9 the MLP reaches better overall and average accura-
cies: around 3 points better than the overall accuracy achieved by
the CNN and around 1.5 points better than the average accuracy
achieved by the CNN.

The resulting classification maps obtained by the MLP are
shown in Fig. 23, where the classification results without back-
ground (top row) and with background (lower row) are reported.
In both cases, unlike the CNN, the MLP results are not well defined,
with many pixels of different classes appearing mixed in the final
classification. An increase in the number of samples per
class slightly improves the classification results, without reaching
the quality of the classification maps provided by the CNN in
Figs. 13–15.



Fig. 22. Evolution of the validation error for the MLP and CNN (with d ¼ 9; d ¼ 19 and d ¼ 29) in terms of time (seconds) for the Indian Pines image. The shadow shows the
standard deviation of the loss for each network repeated five times. Zoom in ð0;1Þ. This experiment has been executed using 1500 iterations.

Fig. 23. Indian Pines classification results achieved by the MLP with 50 (left), 100 (center) and 200 (right) samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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Also, Table 9 summarizes the experiments conducted using the
MLP classifier with the University of Pavia dataset for 50, 100 and
200 samples per class (all repeated five times, with 5000 iterations
per execution). We can observe that the best accuracy result
(87.76%) is obtained with the maximum number of samples per
class, which is 200, as it was already the case with the Indian Pines
image. The execution times for 50, 100 and 200 samples per class
are very similar too. However, with 5000 iterations the MLP is also
unable to reach 90% accuracy. In Fig. 24 we can see how the error
descends as the MLP iterates, needing less iterations as the number
of samples in the training increases, with a very little difference in
execution times as we can see in Fig. 25. Also, in Table 11 we can



Fig. 24. Error evolution for the MLP in terms of steps (iterations) with 50, 100 and 200 samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�).

Fig. 25. Error evolution for the MLP in terms of time (seconds) with 50, 100 and 200 samples per class for the University of Pavia data set. The shadow shows the standard
deviation of the loss for the five executions of each patch (zoom in error interval ½0;1�).

Table 11
Classification accuracies obtained by MLP with 50, 100 and 200 samples per class for
the University of Pavia dataset.

Neural network MLP

Samples per class 50 100 200
Asphalt 81.29 (1.15) 83.34 (1.18) 84.92 (0.87)
Meadows 82.83 (4.46) 85.44 (2.06) 89.56 (3.75)
Gravel 84.71 (1.79) 85.98 (4.89) 94.68 (1.41)
Trees 91.64 (2.03) 94.77 (0.50) 96.48 (1.54)

Painted metal sheets 99.18 (0.16) 99.38 (0.36) 99.43 (0.30)
Bare Soil 84.87 (3.31) 88.94 (2.89) 90.75 (2.85)
Bitumen 89.35 (3.10) 92.63 (0.18) 93.76 (0.90)

Self-Blocking Bricks 79.57 (2.35) 79.50 (6.26) 63.94 (3.50)
Shadows 99.79 (0.09) 99.54 (0.36) 99.96 (0.05)

Overall Accuracy 84.37 (2.30) 86.68 (0.67) 88.20 (1.50)
Average Accuracy 88.14 (1.05) 89.95 (0.38) 90.39 (0.30)

Kappa 79.87 (2.30) 82.79 (0.67) 84.67 (1.50)

Runtime (sec.) 0.1672 0.1550 0.1530
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observe the accuracy results for each class obtained after executing
five times the MLP with the Pavia dataset.

Now, we can compare the results obtained by the MLP over the
University of Pavia data set with the results obtained by the con-
sidered CNN architectures. In order to do so, we have performed
two experiments: in the first one we execute the MLP with 100
samples per class and we choose a patch size of d ¼ 15; d ¼ 21
and d ¼ 27 for the CNN, and further execute it with 100 samples
per class too. Each experiment has been run using 1500 iterations.
In Fig. 26 we can see that the MLP needs more iterations than the
CNN to reduce its associated error, without reaching in any case
the error achieved by the CNN, although its iterations are faster
than those of the CNN, as we can observe in Fig. 27, where it is
shown that the execution tine of the MLP takes less than one
second.

The second experiment reports a comparison between the MLP
and the proposed CNN with 200 samples per class for both



Fig. 27. Error evolution for the MLP and CNN (with d ¼ 15;d ¼ 21 and d ¼ 27) in terms of time (seconds) for the University of Pavia data set. The shadow shows the standard
deviation of the loss for each network repeated five times. Zoom in ð0;1Þ.

Fig. 26. Error evolution for the MLP and CNN (with d ¼ 15;d ¼ 21 and d ¼ 27) in terms of steps for the University of Pavia data set. The shadow shows the standard deviation
of the loss for each network repeated five times. Zoom in ð0;1Þ.
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classifiers, and patch sizes of d ¼ 15; d ¼ 21 and d ¼ 27 for the
CNN. Table 13 shows that the MLP is the fastest classification
method, even faster than the MLP with Indian Pines (all its execu-
tions take around 0.15–0.16 s), reaching its best average ad overall
values (91% and 89% respectively) with 200 samples per class. But,
again, the CNN reaches better accuracy values, with an average
accuracy of 98% and overall accuracy of 97%, i.e. around 8–9%
points better than MLP due to the inability of the latter architec-
ture to improve its outcome.

In Fig. 28 we can observe the MLP classification maps for the
University of Pavia. The top images show the classification with
ground-truth pixels, whose result improves as more samples are
added in the training. However the classification maps are very
mixed as compared to those obtained by the CNN in Figs. 16–18.
On the other hand, the bottom images show the classification with
the whole background. In this case, the areas of the image are rel-
atively well distinguished (even better when more samples per
class are added), although the number of mixed pixels is greater
than in the CNN experiments with d ¼ 27; d ¼ 21 and d ¼ 15.

Comparison with other convolutional networks: Now we
compare our proposed CNN with other deep architectures, in par-
ticular with the 1-D, 2-D and 3-D CNNs described in Chen et al.
(2016). In this work the authors studied the application of super-
vised CNNs in hyperspectral imaging feature extraction. Three
deep feature extraction architectures based on the CNN were pro-
posed to extract the spectral, spatial, and spectral-spatial features
of hyperspectral imaging, respectively. To address the overfitting
problem caused by the limited number of training samples, the
authors implemented some regularization strategies, including L2
regularization and dropout in the training process. Also, they pro-
posed a virtual sample enhanced method to create training sam-
ples. The main differences between our method and the one
described in Chen et al. (2016) can be summarized in the following
points:



Fig. 28. Classification results achieved by the MLP for the University of Pavia data set with 50, 100 and 200 samples per class with 1500 iterations. The upper row displays the
classification result without the background, and the lower row displays the classification result with the background.
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� Regarding the configuration of the 1-D CNN, we provide a
detailed description in Table 8. For the Indian Pines dataset,
the learning rate of the 1-D CNN is fixed to 0.005 with 700 train-
ing epochs, while for University of Pavia dataset, the learning
rate is fixed to 0.001 with 600 epochs. The datasets are divided
into training and testing sets. For the Indian Pines dataset, 1765
labeled pixels are chosen to create the training set, while for the
University of Pavia dataset, the authors use 3930. This spectral-
CNN receives a normalized pixel vector (1� 200 if it is an Indian
Pines pixel and 1� 103 if it is an University of Pavia pixel) in the
range ½�1;1�. The data suffers a L2 regularization along the CNN
and, at the end of the CNN procedure, the input pixel vector is
converted into a feature vector that is fed to Logistic Regression
(LR) for classification. The authors selected a mini-batch update
strategy, and the cost function is calculated on a mini-batch of
inputs as co ¼ � 1

m

Pm
i¼1½xi logðziÞ þ ð1� xiÞ logð1� ziÞ�, using

mini-batch stochastic gradient descent as optimizer of the 1-D
CNN.

� Regarding the configuration of the 2-D CNN, we provide a
detailed description in Table 8. This spatial-CNN receives,
through a preprocessing with PCA, patches of size 27� 27 nor-
malized in the range ½�0:5;0:5� and grouped in batches of 100.
The output of the CNN is a feature vector of 1� 128 that is sent
to LR for classification. As in the previous 1-D CNN, the input
image is represented by some feature vectors, which capture
the spatial information contained in the neighborhood region
of the input pixel. Then, the learned features are fed to the LR
for classification.



Table 12
Classification accuracies obtained by different neural networks tested using the Indian Pines dataset: (1) first column: results obtained by the MLP (trained with 200 samples per
class); (2) second column: comparison between the results obtained by the 1-D CNN, 2-D CNN and 3-D CNN in Chen et al. (2016) and the results obtained by our CNN (trained
with the same number of samples per class as the CNNs in Chen et al. (2016)), using different values of parameter d; (3) third column: results obtained by our CNN (trained with
200 samples per class, using different values of parameter d).

Accuracy table

Neural networks MLP CNNs in Chen et al., 2016 versus the proposed CNN Proposed CNN

SLFN Samples 1-D 2-D 3-D d ¼ 9 d ¼ 19 d ¼ 29 Samples d ¼ 9 d ¼ 19 d ¼ 29 Samples

Alfalfa 97.39 33 89.58 99.65 100.00 100.00 100.00 100.00 30 99.13 99.57 99.13 33
Corn-notill 78.36 200 85.68 90.64 96.34 90.57 94.06 97.17 150 80.48 94.47 98.17 200
Corn-min 86.17 200 87.36 99.11 99.49 97.69 96.43 98.17 150 96.65 98.22 98.92 200

Corn 92.41 181 93.33 100.0 100.00 99.92 100.00 100.00 100 99.66 100.00 100.00 181
Grass/Pasture 96.31 200 96.88 98.48 99.91 98.10 98.72 98.76 150 99.46 99.75 99.71 200
Grass/Trees 97.73 200 98.99 97.95 99.75 99.34 99.67 100.00 150 99.53 98.90 99.40 200

Grass/pasture-mowed 97.86 20 91.67 100.00 100.00 100.00 100.00 100.00 20 100.00 100.00 100.00 20
Hay-windrowed 98.62 200 99.49 100.00 100.00 99.58 99.92 100.00 150 99.67 99.62 100.00 200

Oats 100.00 14 100.00 100.00 100.00 100.00 100.00 100.00 15 100.00 100.00 100.00 14
Soybeans-notill 87.00 200 90.35 95.33 98.72 94.28 97.63 99.14 150 92.43 98.00 98.62 200
Soybeans-min 68.99 200 77.90 78.21 95.52 87.75 92.93 94.59 150 76.42 94.32 96.15 200
Soybean-clean 87.86 200 95.82 99.39 99.47 94.81 97.17 99.06 150 97.74 99.09 99.33 200

Wheat 99.41 143 98.59 100.00 100.00 100.00 100.00 100.00 150 99.71 100.00 99.90 143
Woods 94.15 200 98.55 97.71 99.55 98.09 97.88 99.76 150 97.71 98.85 98.96 200

Bldg-Grass-Tree-Drives 85.03 200 87.41 99.31 99.54 89.79 95.80 98.39 50 99.27 99.90 100.00 200
Stone-steel towers 99.35 75 98.06 99.22 99.34 100.00 99.57 98.92 50 100.00 100.00 100.00 75

Overall Accuracy (OA) 84.60 87.81 89.99 97.56 93.94 96.29 97.87 90.11 97.23 98.37
Average Accuracy (AA) 91.66 93.12 97.19 99.23 96.87 98.11 99.00 96.12 98.79 99.27

Kappa 82.65 85.30 87.95 97.02 93.12 95.78 97.57 88.81 96.85 98.15

Runtime (sec.) 0.1800 457.8 357.0 1675.2 74.47 189.51 158.42 48.21 197.65 405.46
Total samples 2466 1765 2466

M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 143
� Finally, the configuration of the 3-D CNN is shown in Table 8.
This spatial-spectral CNN receives patches of size
27� 27� nbands normalized in range ½�0:5;0:5� and grouped in
batches of 100. In this case, nbands is fixed to 32. The learning rate
is fixed to 0.003 and the training epochs is set to 400. After con-
volutional and pooling layers, the input data is transformed and
fed to LR for classification.

In Table 12 we can see a detailed comparison between the dif-
ferent tested neural networks using Indian Pines dataset. The first
Fig. 29. Comparison of the overall accuracy achieved by CNN classifiers with the Indian
the 1-D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines show the o
values of d and trained with the same number of samples than the CNNs in Chen et
implemented with d ¼ 29 but trained with 50, 100 and 200 samples per class. Above each
reached (in square brackets). For the red line, we only report the overall accuracy reach
hand, the y-axis shows the overall accuracies obtained in the experiments. (For interpreta
version of this article.)
column reports the results obtained by the MLP (trained with 200
samples per class). The second column provides a comparison
between the CNNs in Chen et al. (2016) and our CNN (using the
same number of samples per class as the methods in Chen
et al. (2016)), with patch sizes of d ¼ 9; d ¼ 19 and d ¼ 29. Finally,
in the third column we also report the results obtained by our
proposed CNN (trained with 200 samples per class) for
comparison.

If we focus on analyzing the results provided by the different
implementations of Chen et al. (2016) in the second column, we
Pines scene. The horizontal black lines show the overall accuracy results reached by
verall accuracy results obtained by our proposed CNN, implemented with different
al. (2016). The red line (marked as CNN-b in the figure) corresponds to our CNN,
black and blue line, we report the number of used samples and the overall accuracy

ed (the number of used samples for this line is defined by the x-axis). On the other
tion of the references to color in this figure legend, the reader is referred to the web
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can see that the one with spatial information (2-D CNN) achieves
better results than the one with spectral information (1-D CNN).
Also, we can see that the inclusion of the two sources of informa-
tion (3-D CNN) leads to an overall improvement of the accuracy. In
the same column we can observe that, when using our CNN (with
the same number of samples per class as the methods in Chen et al.
(2016)), the increase in the value of parameter d leads to an
improvement in the obtained classification result. Also, our
method is faster than all the methods reported in Chen et al.
(2016) and comparable in terms of overall accuracy to the best
methods reported in that work. Specifically, our proposed CNN
implemented with d ¼ 29 is 2.89 times faster than the 1-D CNN,
with an overall accuracy that is 10.06 percentage points better;
2.25 times faster than the 2-D CNN, with an overall accuracy
7.88 percentage points better; and 10.57 times faster than the 3-
D CNN, with very similar overall accuracy. Finally, a comparison
Fig. 30. Comparison of the overall accuracy achieved by CNN classifiers with the Univ
reached by the 1-D, 2-D and 3-D CNNs in Chen et al. (2016), and the horizontal blue lines
different values of d and trained with the same number of samples than the CNNs in Chen
implemented with d ¼ 29 but trained with 50, 100 and 200 samples per class. Above each
reached (in square brackets). For the red line, we only report the overall accuracy reach
hand, the y-axis shows the overall accuracies obtained in the experiments. (For interpreta
version of this article.)

Table 13
Classification accuracies obtained by different neural networks tested using the Universi
samples per class); (2) second column: comparison between the results obtained by the 1-D
(trained with the same number of samples per class as the CNNs in Chen et al. (2016)), u
(trained with 200 samples per class, using different values of parameter d).

Accuracy

Neural networks MLP CNNs in Chen et al., 2016

SLFN Samples 1-D 2-D 3-D d ¼
Asphalt 84.92 200 92.06 97.11 99.36 97.
Meadows 89.56 200 92.80 87.66 99.36 98.
Gravel 94.68 200 83.67 99.69 99.69 98.
Trees 96.48 200 93.85 98.49 99.63 99.

Painted metal sheets 99.43 200 98.91 100.00 99.95 99.
Bare Soil 90.75 200 94.17 98.00 99.96 99.
Bitumen 93.76 200 92.68 99.89 100.00 98.

Self-Blocking Bricks 63.94 200 89.09 99.70 99.65 98.
Shadows 99.96 200 97.84 97.11 99.38 99.

Overall Accuracy (OA) 88.20 92.28 94.04 99.54 98.
Average Accuracy (AA) 90.39 92.55 97.52 99.66 99.

Kappa 84.67 90.37 92.43 99.41 98.

Runtime (sec.) 0.15 994.80 607.19 2769.00 43.
Total samples 1800
between the results in the first and third columns of Table 12 indi-
cate that our proposed CNN can achieve better results in terms of
overall accuracy than the MLP, but the MLP is faster.

Also in Fig. 29 we provide a graphical comparison of the overall
accuracy results obtained by the proposed CNN the CNNs imple-
mented by Chen et al. (2016). The horizontal blue lines in Fig. 29
show the overall accuracy results obtained by our proposed CNN
with different values of d and trained using the same number of
samples than the CNNs in Chen et al. (2016). The red line corre-
sponds to our CNN, implemented with d ¼ 29 but trained with
50, 100 and 200 samples per class. As we can see, the proposed
CNN can reach better overall accuracies than the compared 1-D
and 2-D CNNs. For the 3-D CNN, the results can be comparable in
terms of overall accuracy. However, since our architecture is opti-
mized and executed on a GPU, we can get better results from the
viewpoint of processing time.
ersity of Pavia scene. The horizontal black lines show the overall accuracy results
show the overall accuracy results obtained by our proposed CNN, implemented with
et al. (2016). The red line (marked as CNN-b in the figure) corresponds to our CNN,
black and blue line, we report the number of used samples and the overall accuracy

ed (the number of used samples for this line is defined by the x-axis). On the other
tion of the references to color in this figure legend, the reader is referred to the web

ty of Pavia dataset: (1) first column: results obtained by the MLP (trained with 200
CNN, 2-D CNN and 3-D CNN in Chen et al. (2016) and the results obtained by our CNN
sing different values of parameter d; (3) third column: results obtained by our CNN

table

versus the proposed CNN Proposed CNN

15 d ¼ 21 d ¼ 23 Samples d ¼ 15 d ¼ 21 d ¼ 27 Samples

53 98.80 98.59 548 92.81 95.31 96.31 200
98 99.46 99.60 540 97.20 98.16 97.54 200
96 99.59 99.45 392 96.97 97.92 96.84 200
75 99.68 99.57 542 98.62 98.74 97.58 200
93 99.78 99.61 256 100.00 100.00 99.65 200
42 99.93 99.84 532 98.57 99.57 99.33 200
71 99.88 100.00 375 97.27 99.75 98.90 200
58 99.53 99.67 514 96.17 98.20 98.89 200
87 99.79 99.83 231 99.86 99.82 99.58 200

87 99.47 99.48 96.83 98.06 97.80
08 99.60 99.57 97.50 98.61 98.29
51 99.30 99.32 95.83 97.44 97.09

16 94.57 107.56 42.83 74.09 132.68
3930 1800
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In Table 13 we report a comparison between the different
tested neural networks using Pavia University data set. The first
column reports the results obtained by the MLP (trained with
200 samples per class). The second column provides a comparison
between the CNNs in Chen et al. (2016) and our CNN (using the
same number of samples per class as the methods in Chen et al.
(2016)), with patch sizes of d ¼ 15; d ¼ 21 and d ¼ 23 (in this case,
due to the number of samples per class used by Chen et al. (2016)
there is not enough memory to run the CNN with d ¼ 27). Finally,
in the third column we also report the results obtained by our pro-
posed CNN (trained with 200 samples per class and with patch
sizes of d ¼ 15; d ¼ 21 and d ¼ 23) for comparison.

Again, we can see in the second column that our method is fas-
ter than all the methods reported in Chen et al. (2016) and compa-
rable in terms of overall accuracy to the best methods reported in
that work. Specifically, our proposed CNN implemented with
d ¼ 23 is 9.25 times faster than the 1-D CNN with an overall accu-
racy that is 7.20 percentage points better; 5.65 times faster than
the 2-D CNN with an overall accuracy that is 5.44 percentage
points better; and 25.74 times faster than the 3-D CNN, with very
similar overall accuracy. A comparison between the results in the
first and third columns of Table 13 again reveals that our proposed
CNN can achieve better results in terms of overall accuracy than
the MLP, but the MLP is faster.

In Fig. 30 we can graphically compare the overall accuracies
obtained by our proposed CNN with those obtained by the 1-D,
2-D and 3-D CNNs reported in Chen et al. (2016). Again, the hori-
zontal blue lines in Fig. 30 show the overall accuracy results
obtained by our proposed CNN, implemented with different values
of d and trained using the same number of samples than the meth-
ods in Chen et al. (2016). The red line corresponds to our CNN
implemented with d ¼ 27 but trained with 50, 100 and 200 sam-
ples per class. As we can see, the proposed CNN can reach overall
accuracies that are better than those achieved by the 1-D and 2-
D CNNs, and comparable to those achieved by the 3-D CNN in
Chen et al. (2016). However, the runtime of our implementation
is considerably smaller, thanks to our GPU implementation of the
network.
5. Conclusions and future work

In this paper, we have developed a new deep 3-D CNN archi-
tecture for spatial-spectral classification of hyperspectral data.
The joint consideration of spectral information together with spa-
tial information provides better classification results than those
reached by traditional neural networks that only include spectral
information. With a proper topology selection and a good election
of parameters, we can obtain high classification accuracies in
acceptable processing times, enforced by the fact that our CNN
has been implemented efficiently using GPUs. Our detailed com-
parison with other 1-D, 2-D and 3-D CNNs in Chen et al. (2016)
(that also include spatial and spectral information simultane-
ously) reveals a good compromise between the classification
results obtained by our newly proposed CNN architecture and
the time needed to obtain these results in the considered com-
puting environments, which is important for practical exploita-
tion of the proposed methodology in real applications. Our
experiments specifically suggest that, with a proper and simple
adaptation, the use of GPUs allows us to realize the full potential
of deep learning techniques for remotely sensed hyperspectral
image classification by naturally and efficiently combining the
spatial and the spectral information contained in these images.
This has also been verified with a classic MLP model used for
comparative purposes in this work. As future work, we will con-
duct additional experiments with other hyperspectral scenes and
also test other high performance computing architectures for effi-
cient implementation.
Acknowledgement

This work has been supported by Ministerio de Educación (Res-
olución de 26 de diciembre de 2014 y de 19 de noviembre de 2015,
de la Secretaría de Estado de Educación, Formación Profesional y
Universidades, por la que se convocan ayudas para la formación
de profesorado universitario, de los subprogramas de Formación
y de Movilidad incluidos en el Programa Estatal de Promoción
del Talento y su Empleabilidad, en el marco del Plan Estatal de
Investigación Científica y Técnica y de Innovación 2013–2016).
This work has also been supported by Junta de Extremadura
(decreto 297/2014, ayudas para la realización de actividades de
investigación y desarrollo tecnológico, de divulgación y de trans-
ferencia de conocimiento por los Grupos de Investigación de Extre-
madura, Ref. GR15005). Last but not least, the authors would like to
take this opportunity to gratefully thank the Editors and the
Anonymous Reviewers for their careful assessment of our manu-
script and for their outstanding comments and suggestions, which
greatly helped us to improve the technical quality and presentation
of our work.
References

Atkinson, P.M., Tatnall, A.R.L., 1997. Introduction neural networks in remote
sensing. Int. J. Remote Sens. 18 (4), 699–709. https://doi.org/10.1080/
014311697218700.

Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network
Approaches for Classification of Data from Multiple Sources (Ph.D. thesis).
Purdue Univ., School of Elect. Eng. West Lafayette, IN.

Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1993. Conjugate gradient neural
networks in classification of very high dimensional remote sensing data. Int.
J. Remote Sens. 14 (15), 2883–2903.

Bengio, Y., 2009. Learning deep architectures for AI. Mach. Learn. 2 (1), 1–127.
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., 2007. Greedy layer-wise training

of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (Eds.), Advances in
Neural Information Processing Systems 19 (NIPS’06). MIT Press, pp. 153–160.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Clarendon Press
<https://books.google.es/books?id=-aAwQO_-rXwC>.

Böhning, D., 1992. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math.
44 (1), 197–200.

Camps-Valls, G., Bruzzone, L., 2005. Kernel-based methods for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 43 (6), 1351–1362.

Chang, C.-I., 2003. Hyperspectral Imaging: Techniques for Spectral Detection and
Classification. Springer, US.

Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., 2016. Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks.
IEEE Trans. Geosci. Remote Sens. 54 (10), 6232–6251 <http://ieeexplore.ieee.
org/document/7514991/>.

Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., 2014. Deep learning-based classification
of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (6),
2094–2107.

Cheng, G., Han, J., Lu, X., 2017. Remote sensing image scene classification:
benchmark and state of the art. Proc. IEEE (99), 1–19.

Chien, Y., 1974. Pattern classification and scene analysis. IEEE Trans. Autom. Control
19 (4), 462–463.

Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto
University.

Deng, L., Yu, D., 2014. Deep learning: methods and applications. Found. Trends�

Signal Process. 7 (3–4), 197–387.
Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T., 2014. Discriminative

unsupervised feature learning with convolutional neural networks. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q.
(Eds.), Advances in Neural Information Processing Systems, vol. 27. Curran
Associates, Inc., pp. 766–774.

Duchi, J., Edu, J.B., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for
online learning and stochastic optimization⁄. J. Mach. Learn. Res. 12, 2121–
2159.

Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., 2008. Spectral and
spatial classification of hyperspectral data using SVMs and morphological
profiles. IEEE Trans. Geosci. Remote Sens. 46 (11), 3804–3814.

Fisher, P., 1997. The pixel: a snare and a delusion. Int. J. Remote Sens. 18 (3), 679–
685.

García, V., Sánchez, J.S., Mollineda, R.A., 2011. Classification of high dimensional and
imbalanced hyperspectral imagery data. In: Proceedings Pattern Recognition

https://doi.org/10.1080/014311697218700
https://doi.org/10.1080/014311697218700
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0015
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0015
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0015
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0020
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0025
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0025
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0025
https://books.google.es/books?id=-aAwQO_-rXwC
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0035
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0035
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0040
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0040
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0045
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0045
http://ieeexplore.ieee.org/document/7514991/
http://ieeexplore.ieee.org/document/7514991/
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0055
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0055
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0055
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0060
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0060
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0065
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0065
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0075
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0075
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0080
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0080
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0080
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0080
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0080
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0085
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0085
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0085
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0085
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0090
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0090
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0090
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0095
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0095
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0100
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0100


146 M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147
and Image Analysis: 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran
Canaria, Spain, June 8–10, 2011. Springer, Berlin, Heidelberg, pp. 644–651.

Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A., 2017. Advanced supervised spectral
classifiers for hyperspectral images: a review. IEEE Geosci. Remote Sens. Mag. 5
(1), 8–32.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial
Intelligence and Statistics. pp. 249–256.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In:
Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics (AISTATS-11).
Journal of Machine Learning Research – Workshop and Conference Proceedings,
pp. 315–323.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (Eds.), Advances in
Neural Information Processing Systems, vol. 27. Curran Associates, Inc., pp.
2672–2680.

Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.
J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O., 1998.
Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). Remote Sens. Environ. 65 (3), 227–248.

Haut, J.M., Paoletti, M., Plaza, J., Plaza, A., 2017a. Cloud implementation of the k-
means algorithm for hyperspectral image analysis. J. Supercomput. 73 (1), 514–
529. https://doi.org/10.1007/s11227-016-1896-3.

Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud
implementation of logistic regression for hyperspectral image classification.
In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on
Computational and Mathematical Methods in Science and Engineering, CMMSE
2017. pp. 1063–2321.

He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21 (9), 1263–1284.

He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification
based on deep stacking network. In: 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). pp. 3286–3289.

Hinton, G., Salakhutdinov, R., 2006. Reducing the dimensionality of data with neural
networks. Science 313, 504–507.

Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief
nets. Neural Comput. 18 (7), 1527–1554.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012.
Improving neural networks by preventing co-adaptation of feature detectors.
CoRR. Available from: 1207.0580.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9
(8), 1735–1780.

Hu, F., Xia, G.-S., Hu, J., Zhang, L., Foody, G.M., Wang, L., Thenkabail, P.S., 2015a.
Transferring deep convolutional neural networks for the scene classification of
high-resolution remote sensing imagery in surveying, mapping and remote
sensing. Remote Sens. 7 (11), 14680–14707 <http://www.mdpi.com/journal/
remotesensing>.

Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015b. Deep convolutional neural
networks for hyperspectral image classification. J. Sensors.

Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., Lecun, Y., 2009. What is the best multi-
stage architecture for object recognition? In: ICCV. IEEE, pp. 2146–2153.

Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review.
Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X., 2014.

Spectral-spatial classification of hyperspectral data using local and global
probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens.
52 (10), 6298–6314.

Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR.
Available from: 1412.6980.

Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS
(Reflective Optics System Imaging Spectrometer) – A candidate instrument for
polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic
technologies for remote sensing from space. pp. 134–141.

Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted
boltzmann machines. In: Proceedings of the 25th International Conference on
Machine learning – ICML ’08, pp. 536.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied

to document recognition. Proc. IEEE.
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.R., 1998b. Efficient backprop. In: Neural

Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS
Workshop. Springer-Verlag, pp. 9–50.

Li, J., Bioucas-Dias, J.M., Plaza, A., 2010. Semisupervised hyperspectral image
segmentation using multinomial logistic regression with active learning. IEEE
Trans. Geosci. Remote Sens. 48 (11), 4085–4098.

Li, J., Bioucas-Dias, J.M., Plaza, A., 2011. Hyperspectral image segmentation using a
new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens.
49 (10), 3947–3960.

Li, M., Zang, S., Zhang, B., Li, S., Wu, C., 2014a. A review of remote sensing image
classification techniques: the role of spatio-contextual information. Eur. J.
Remote Sens. 47, 389–411.

Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep
belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference
on. pp. 5132–5136.
Li, Y., Zhang, H., Shen, Q., 2017. Spectral-spatial classification of hyperspectral
imagery with 3D convolutional neural network. Remote Sens. 9 (1), 67.

Licciardi, G.A., Del Frate, F., 2011. Pixel unmixing in hyperspectral data by means of
neural networks. IEEE Trans. Geosci. Remote Sens. 49 (11), 4163–4172.

Liu, B., Yu, X., Zhang, P., Tan, X., Yu, A., Xue, Z., 2017. A semi-supervised
convolutional neural network for hyperspectral image classification. Remote
Sens. Lett. 8 (9), 839–848. https://doi.org/10.1080/2150704X.2017.1331053.

Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid
Matching for Remote Sensing Scene Classification. CoRR. Available from: 1611.
03589.

Lu, X., Zheng, X., Yuan, Y., 2017. Remote sensing scene classification by
unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. (99),
1–10

Ma, X., Wang, H., Wang, J., 2016. Semisupervised classification for hyperspectral
image based on multi-decision labeling and deep feature learning. ISPRS J.
Photogramm. Remote Sens. 120, 99–107.

Melgani, F., Bruzzone, L., 2004. Classification of hyperspectral remote sensing
images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42 (8).

Midhun, E.M., Nair, S.R., Prabhakar, N., Kumar, S., 2014. Deep model for
classification of hyperspectral image using restricted Boltzmann machine. In:
Proceedings of the 2014 International Conference on Interdisciplinary Advances
in Applied Computing. ACM, New York, NY, USA, pp. 35:1–35:7.

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann
machines. In: Fürnkranz, Johannes, Joachims, Thorsten (Eds.), Proceedings of
the 27th International Conference on Machine Learning (ICML-10). Omnipress,
pp. 807–814.

Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for
hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th
International Conference on Computational and Mathematical Methods in
Science and Engineering. Rota, pp. 1625–1636.

Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G.,
Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C.,
Trianni, G., 2009. Recent advances in techniques for hyperspectral image
processing. Remote Sens. Environ. 113 (1), S110–S122.

Qian, N., 1999. On the momentum term in gradient descent learning algorithms.
Neural Netw. 12 (1), 145–151.

Rajan, S., Ghosh, J., Crawford, M.M., 2008. An active learning approach to
hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 46 (4),
1231–1242.

Ranzato, M.A., Poultney, C., Chopra, S., Lecun, Y., 2006. Efficient learning of sparse
representations with an energy-based model. In: Schölkopf, B., Platt, J.,
Hoffman, T. (Eds.), Advances in Neural Information Processing Systems, vol.
19. MIT Press, pp. 1137–1144.

Romero, A., Gatta, C., Camps-Valls, G., 2016. Unsupervised deep feature extraction
for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (3),
1349–1362.

Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th
International Conference on Artificial Intelligence and Statistics, pp. 3.

Scholkopf, B., Smola, A.J., 2001. Learning with Kernels:Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Smolensky, P., 1986. Information processing in dynamical systems: foundations of
harmony theory. In: Rumelhart, David E., McLelland, J.L. (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition,
Foundations, vol. 1. MIT Press, pp. 194–281 (Chapter 6).

Starck, J.-L., Elad, M., Donoho, D.L., 2005. Image decomposition via the combination
of sparse representations and a variational approach. IEEE Trans. Image Process.
14 (10), 1570–1582.

Tarabalka, Y., Benediktsson, J.A., Chanussot, J., 2009. Spectral-spatial classification of
hyperspectral imagery based on partitional clustering techniques. IEEE Trans.
Geosci. Remote Sens. 47 (8), 2973–2987.

Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G., 2018. Disaster damage
detection through synergistic use of deep learning and 3D point cloud features
derived from very high resolution oblique aerial images, and multiple-kernel-
learning. ISPRS J. Photogramm. Remote Sens. 140, 45–59.

Wu, Q., Diao, W., Dou, F., Sun, X., Zheng, X., Fu, K., Zhao, F., 2016. Shape-based object
extraction in high-resolution remote-sensing images using deep Boltzmann
machine. Int. J. Remote Sens. 37 (24), 6012–6022.

Wu, Z., Wang, Q., Plaza, A., Li, J., Wei, Z., 2015. Real-time implementation of the
sparse multinomial logistic regression for hyperspectral image classification on
GPUs. IEEE Geosci. Remote Sens. Lett. 12 (7), 1456–1460.

Xu, X., Li, J., Huang, X., Dalla Mura, M., Plaza, A., 2016a. Multiple morphological
component analysis based decomposition for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 54 (5), 3083–3102.

Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using
morphological component analysis. In: 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pp. 3575–3578.

Yang, H., 1999. A back-propagation neural network for mineralogical mapping from
AVIRIS data. Int. J. Remote Sens. 20 (1), 97–110. https://doi.org/10.1080/
014311699213622.

Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using
two-channel deep convolutional neural network. In: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082.

Yu, S., Jia, S., Xu, C., 1, 2017. Convolutional neural networks for hyperspectral image
classification. Neurocomputing 219, 88–98.

Yuan, Y., Mou, L., Lu, X., 2015. Scene recognition by manifold regularized deep
learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26 (10), 2222–2233.

http://refhub.elsevier.com/S0924-2716(17)30366-0/h0100
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0100
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0105
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0105
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0105
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0120
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0120
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0120
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0120
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0120
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0125
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0125
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0125
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0125
https://doi.org/10.1007/s11227-016-1896-3
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0140
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0140
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0150
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0150
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0155
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0155
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0165
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0165
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/journal/remotesensing
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0175
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0175
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0180
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0180
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0190
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0190
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0190
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0190
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0210
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0220
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0220
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0220
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0225
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0225
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0225
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0230
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0230
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0230
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0235
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0235
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0235
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0245
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0245
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0250
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0250
https://doi.org/10.1080/2150704X.2017.1331053
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0265
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0265
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0265
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0270
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0270
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0270
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0275
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0275
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0280
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0280
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0280
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0280
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0285
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0285
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0285
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0285
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0295
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0295
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0295
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0295
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0300
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0300
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0305
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0305
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0305
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0310
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0310
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0310
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0310
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0315
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0315
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0315
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0325
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0325
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0330
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0330
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0330
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0330
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0335
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0335
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0335
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0340
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0340
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0340
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0345
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0345
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0345
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0345
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0350
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0350
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0350
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0355
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0355
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0355
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0360
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0360
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0360
https://doi.org/10.1080/014311699213622
https://doi.org/10.1080/014311699213622
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0380
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0380
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0385
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0385


M.E. Paoletti et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 120–147 147
Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available
from: <1212.5701>.

Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional
networks. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2528–2535.

Zhang, H., Li, Y., Zhang, Y., Shen, Q., 2017. Spectral-spatial classification of
hyperspectral imagery using a dual-channel convolutional neural network.
Remote Sens. Lett. 8 (5), 438–447.

Zhang, L., Zhang, L., Du, B., 2016a. Deep learning for remote sensing data advances in
machine learning for remote sensing and geosciences. IEEE Geosci. Remote
Sens. Mag. 4 (2), 22–40 <http://ieeexplore.ieee.org/document/7486259/>.
Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., 2016b. Change detection based on deep
feature representation and mapping transformation for multi-spatial-resolution
remote sensing images. ISPRS J. Photogramm. Remote Sens. 116, 24–41.

Zhao, W., Du, S., 2016a. Learning multiscale and deep representations for classifying
remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 128, 223–239.

Zhao, W., Du, S., 2016b. Spectral-spatial feature extraction for hyperspectral image
classification: a dimension reduction and deep learning approach. IEEE Trans.
Geosci. Remote Sens. 54 (8), 4544–4554.

Zhou, X., Prasad, S., 2017. Active and semisupervised learning with morphological
component analysis for hyperspectral image classification. IEEE Geosci. Remote
Sens. Lett. 14 (8), 1348–1352.

http://refhub.elsevier.com/S0924-2716(17)30366-0/h0400
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0400
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0400
http://ieeexplore.ieee.org/document/7486259/
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0410
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0410
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0410
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0415
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0415
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0420
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0420
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0420
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0425
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0425
http://refhub.elsevier.com/S0924-2716(17)30366-0/h0425

	A new deep convolutional neural network for fast hyperspectral image classification
	1 Introduction
	1.1 Deep learning and CNNs: a review

	2 CNNs
	3 Proposed CNN
	3.1 Data preprocessing
	3.2 CNN architecture details

	4 Experiments and results
	4.1 Experimental configuration
	4.2 Hyperspectral image data
	4.2.1 Data preprocessing: division of training and testing sets

	4.3 Hyperparameter tuning
	4.4 Performance evaluation
	4.5 Comparison with other algorithms

	5 Conclusions and future work
	Acknowledgement
	References


