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Abstract
Recent advances in remote sensing techniques allow for the collection of hyperspectral images with enhanced spatial and 
spectral resolution. In many applications, these images need to be processed and interpreted in real-time, since analysis 
results need to be obtained almost instantaneously. However, the large amount of data that these images comprise introduces 
significant processing challenges. This also complicates the analysis performed by traditional machine learning algorithms. 
To address this issue, dimensionality reduction techniques aim at reducing the complexity of data while retaining the relevant 
information for the analysis, removing noise and redundant information. In this paper, we present a new real-time method for 
dimensionality reduction and classification of hyperspectral images. The newly proposed method exploits artificial neural 
networks, which are used to develop a fast compressor based on the extreme learning machine. The obtained experimental 
results indicate that the proposed method has the ability to compress and classify high-dimensional images fast enough for 
practical use in real-time applications.

Keywords  Hyperspectral imaging · Real-time processing · Extreme learning machine · Dimensionality reduction · 
Classification

1  Introduction

Current Earth observation (EO) missions utilize sensors that 
allow for the acquisition of high-dimensional image data 
with enhanced spectral and high spatial resolution. Specifi-
cally, imaging spectrometers collect information for large 

areas on the surface of the Earth with a high spectral resolu-
tion and narrow bands, while multispectral images gener-
ally contain higher spatial resolution and a lower number 
of spectral bands [1]. Hyperspectral images record data 
throughout the visible and solar-reflected infrared spectrum 
at different wavelength channels [2–4]. As a result, three-
dimensional data cubes are generated with size significantly 
larger than traditional panchromatic (PAN) or RGB images, 
allowing to solve problems which usually cannot be solved 
by these images. However, the large amount of information 
contained in these images introduces important challenges, 
both from the viewpoint of storage and processing require-
ments. In addition, these data are characterized by the pres-
ence of redundant information (in particular, some spectral 
bands may be highly correlated and present some redundan-
cies), in addition to spatial variability and noise. These data 
dimensionality issues, coupled with the increasing complex-
ity of remote sensing hardware and software, introduced the 
need to develop new data analysis and compression methods 
that allow for faster information extraction, thus increasing 
product reliability.

Reduced data representations aim at exploring the mini-
mum number of parameters needed to retain the original 
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properties of the data [5]. The analysis of hyperspectral 
images is generally affected by the Hughes’ phenomenon 
[6]. For instance, the accuracy of hyperspectral classification 
techniques decreases as the dimensionality of the input data 
increases, depending on the training samples and the structure 
of the classifier used. In fact, the imbalance between the high 
spectral dimensionality of hyperspectral data and the limited 
number of available training samples can produces the pro-
cessing method to fall into overfitting, reducing its ability to 
generalize (curse of dimensionality [7]). As a result, dimen-
sionality reduction (DR) techniques have been widely used 
prior to classification of hyperspectral images. Traditionally, 
DR is performed using well-known linear techniques such 
as principal component analysis (PCA) [8–10], which cal-
culates the projection according to which the data are bet-
ter represented in terms of least squares. Other widely used 
PCA based techniques include kernel PCA (KPCA) [11] and 
distributed-parallel PCA (PCA-DP) [12]. Similarly, the Non-
Negative Matrix Factorization (NMF) has been used as fea-
ture extraction algorithm, removing redundant information 
and reducing processing dimensions while taking into account 
nonnegativity of the data [13, 14] Other popular DR tech-
niques such as independent component analysis (ICA) [15, 
16] have shown success in fields such as blind source separa-
tion, feature extraction and unsupervised recognition, but can 
also be used for data reduction and compression (ICA-DR) 
[17]. The maximum noise fraction (MNF) transformation [18] 
(also called noise-adjusted principal components transform or 
NAPC [19, 20]) has been useful to segregate noise in hyper-
spectral data [21], normalizing the linear combinations of 
original bands by maximizing the signal-to-noise ratio (SNR). 
To overcome the disadvantages that MNF presents, the inter-
ference and noise-adjusted principal components analysis 
(INAPCA) [19] was proposed with good results. Based on 
signal subspace identification (SSI), other DR approaches take 
into account the preservation of rare pixels that are scarcely 
represented in the hyperspectral scene and contain linearly 
independent spectral features, such as the redundancy reduc-
tion approach, also called maximum orthogonal-complements 
algorithm (MOCA) [22] or the robust signal subspace esti-
mation (RSSE) [23], which derives the signal subspace and 
estimates the data dimensionality, both studied in [24]. Fol-
lowing previous works, [25] proposed a new signal subspace 
identification method for DR, which takes into account both 
the abundant and the rare signal components, developing a 
new subspace estimation criterion.

In recent years, the use of artificial neural networks 
(ANNs) for the processing of remote sensing data in gen-
eral [26] and hyperspectral images in particular [27, 28] 
has gained much popularity, with promising results in the 
field of pattern recognition [29]. An interesting applica-
tion of ANNs is data compression/decompression, which 
can be performed using autoassociative neural networks 

(AANNs), also called autoencoders [30–35]. These ANN 
architectures have been quite popular for data denoising 
and DR. Autoencoders are simple unsupervised learning 
networks whose aim is to project the original inputs into a 
new space, i.e., to generate compressed or extended outputs 
with the least possible amount of distortion. With appropri-
ate dimensionality and sparsity constraints, autoencoders 
can learn data projections that are more effective than those 
provided by other techniques such as PCA, allowing for the 
design of non-linear PCAs (NLPCAs) [36, 37]. Addition-
ally, autoencoders can be designed from shallow to deep 
neural networks (DNNs), being the multi-layer perceptron 
(MLP) [31, 38] with three layers (input–hidden–output) the 
most widely used implementation. ANN-based DR meth-
ods offer an attractive possibility, due to the fact that they 
do not need prior knowledge on the statistical distribution 
of the classes and can take advantage of multiple training 
techniques to deal with linearly non-separable data [39, 40]. 
However, these methods have been traditionally affected by 
its algorithmic and computational complexity [41]. This fact 
becomes critical in real-time remote sensing applications 
[42, 43], where processing algorithms must support immedi-
ate decision-making in critical circumstances [44] or in sce-
narios in which communicating the data from the airborne/
satellite sensor to the processing ground station is necessary.

To deal with the high computational cost of autoencoder-
based DR methods, this paper presents a new fast method for 
real-time dimensionality reduction (compression) and classi-
fication of hyperspectral images. This is an important con-
tribution, since the proposed approach can deal with several 
problems of remotely sensed data exploitation. First and fore-
most, the proposed approach can perform real-time onboard 
data compression, thus eliminating the need to transmit the 
data to the processing ground station before performing the 
analysis. Most importantly, the newly developed approach can 
exploit ANN-based methods to perform real-time classifica-
tion of hyperspectral data. For this purpose, we resort to the 
extreme learning machine (ELM) architecture [45]. ELMs can 
be considered as a promising learning algorithm, whose imple-
mentation is based on the minimization of the training error 
and the norm of the output weights. In this way, ELMs are 
computational efficient because only the network architecture 
is fine-tuned, with no additional trainable parameters, reaching 
a high generalization performance [46]. They have been used 
for hyperspectral processing before, performing a wide range 
of applications, such as classification, clustering, ranking and 
compression. For classification purposes, we can find several 
interesting works in the literature, for example in [47] the sin-
gle layer ELM has been developed for both, multispectral and 
hyperspectral remote sensing image classification, providing a 
final accuracy comparable to backpropagation neural network. 
Different ELM models have been also used for hyperspectral 
classification in combination with kernel methods [48–53], 
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differential evolution [54], ensemble learning [46], among 
other elaborated approaches [55–57]. Also, ELMs can be used 
for unsupervised clustering [58] and ranking [59] tasks. On the 
other part, several works have been carried out on hyperspec-
tral’s DR with ELM by selecting a subset of original bands 
(band selection) [60]. We must remark the lack of works on 
hyperspectral DR and classification with ELM in literature. In 
fact, research seems to focus on the hyperspectral classification 
with ELM after a pre-processing data reduction with methods 
such as PCA or Firefly algorithm [61–63]. In this sense, this 
work proposes a global model to hyperspectral reduction and 
classification based on ELM. In summary, the main contribu-
tion of our work is the development of a new real-time method 
for DR and classification of hyperspectral images that exploits 
ANNs to develop a fast compressor based on the ELM archi-
tecture [64–66].

The remainder of the paper is organized as follows. First, 
we present some basic concepts about the PCA as a standard 
approach for DR. Also, the ICA and the NMF are presented 
as DR methods for hyperspectral compression, together 
with the main concept behind autoencoders and the ELM 
algorithm. Then, we describe our newly developed fast DR 
and classification method. Next, we provide an extensive 
experimental evaluation, evaluating the ability of the pro-
posed method to compress and classify hyperspectral images 
fast enough for practical exploitation in real-time. The paper 
concludes with some remarks and hints at plausible future 
lines.

2 � Related work

2.1 � Principal component analisys (PCA)

Let us assume a set of N observations, where each sample 
is given by �i = [xi,1, xi,2, ..., xi,d]

T ∈ ℝ
d , with i = 1, ...,N  , 

contained in a matrix X ∈ ℝ
d×N , where the i-th column rep-

resents the sample �i and the d-th row represents the d-th 
feature of sample �i so that 

 The goal of PCA as a statistical technique for unsupervised 
DR is to find the subspace that captures most variance in 
data, extracting the underlying structure of the matrix X, 
i.e., the principal components understood as directions with 
largest variance, where the data is most spread out [8, 9], 
to reduce X down to its basic components. In fact, PCA is 
an orthogonal transformation that converts the observations 
represented by matrix X ∈ ℝ

d×N into a matrix X�
i
∈ ℝ

l×N , 

X =

⎛⎜⎜⎝

�1
⋮

�N

⎞⎟⎟⎠

T

=

⎛⎜⎜⎝

x1,1 ⋯ x1,d
⋮ ⋱ ⋮

xN,1 ⋯ xN,d

⎞⎟⎟⎠

T

whose vectors ��
i
= [x�

i,1
, x�

i,2
, ..., x�

i,l
]T ∈ ℝ

l have smaller 
dimension, l < d . Each vector �′

i
 contains the set of linearly 

uncorrelated variables or principal components of �i . The 
underlying transformation is defined by the linear Eq. 1:

where W ∈ ℝ
l×d is the projection matrix created by the l 

selected eigenvectors, � , of the input data covariance matrix. 
To do that, PCA standardizes the input data X along the N 
columns creating matrix Y whose columns �i are calculated 
as:

From matrix Y, PCA calculates the covariance matrix cov(Y) 
and extracts the eigenvectors � and eigenvalues � (expressed 
as a diagonal matrix) as �−1cov(Y)� = � . Eigenvectors and 
eigenvalues are pointing in the direction of maximal variance 
with the corresponding magnitude of the variance, respec-
tively. Then, eigenvalues can be sorted in descending order, 
selecting the first l eigenvectors (being l the new dimension 
of the features) to create the transformation matrix W, whose 
rows are orthogonal to the preceding ones. Finally, PCA 
projects the input data X from space ℝd×N to the output data 
X′ in space ℝl×N using equation 1.

On the other hand, to recover the original input data 
dimensions, PCA can make the reverse process, i.e., 
X�� ≈ WTX� , to invert the formula and get an approxima-
tion to original data. The goal is to minimize the difference 
between the original data X and the reconstructed data X′′ , 
so that its objective function will be min ∥ X�� − X ∥2 that 
can be also represented as:

2.2 � Independent component analysis (ICA)

ICA algorithm has been used traditionally as an unsuper-
vised statistical technique for blind source separation, sepa-
rating a multivariate/superimposed signal into additive sub-
components, called independent component (ICs), i.e., its 
goal is to find the subspace where sources are independent. 
To do that, it assumes that those ICs are non-Gaussian sig-
nals and they are statistically independent from each other 
[67–69]. The problem can be defined as follows: suppos-
ing that �(t) is an unobserved-original n-dimensional sig-
nal obtained at time t, �(t) ∈ ℝ

n = [s1(t), s2(t), ..., sn(t)]
T  , 

where each component is statistically independent, and it 
is mixed into the m-dimensional observed vector signal 
�(t) ∈ ℝ

m = [x1(t), x2(t), ..., xm(t)]
T via an unknown matrix 

Am×n as:

(1)X� = WX

(2)�i = �i −
1

N

N∑
j=1

xi,j i = 1, ..., d

(3)min
W

∥ WT (WX) − X ∥2
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The goal of ICA is to find the unmixing matrix Wn×m to 
approximately recover the original source ��(t) ≈ �(t) , sepa-
rating �(t) into a set of sources which are statistically inde-
pendent, such as:

 In recent years ICA has been exploited also in remote sens-
ing image processing. In particular, ICA has proved to be 
very useful in hyperspectral image analysis [70, 71], extract-
ing relevant spectral information for classification [72, 73], 
dimensionality reduction [17] and unmixing problems [74].

Focusing on DR, hyperspectral data can be interpreted as 
a mixture of signals where ICA algorithm can be applied as 
a feature extraction method to provide ICs which can extract 
information related to one or more classes [70]. In this case, 
FastICA [75] has been employed as hard non-convex optimiza-
tion method. Let us assume the input data matrix X ∈ ℝ

d×N , 
where N is the number of samples of mixed signals, i.e., each 
�i ∈ ℝ

d = [xi,1, xi,2, ..., xi,d]
T with i = {1, 2, ...,N} , and d the 

number of independent source signals. After centering and 
whitening of the data via PCA (pre-whitening step so that 
components are uncorrelated), ICA extracts the l independ-
ent components, also considered as projection pursuit direc-
tions, from the input matrix X using l units (e.g., neurons) 
with weight vectors �1,�2,⋯ ,�l . Algorithm 1 shows the 
followed process, where g(u) = tanh(u) is the first derivative 
of f(u) = log cosh(u) and g�(u) = 1 − tanh2(u) is the second 
derivative of f(u) . In our case, the parallel FastICA has been 
implemented, with a tolerance value set to 1e−04 and 200 as 
maximum number of iterations.

2.3 � Non‑negative matrix factorization (NMF)

The NMF is a popular linear dimensionality reduction and 
noise whitening method [76] whose goal is to find a subspace 
that minimizes reconstruction error assuming that the data 

(4)�(t) = A ⋅ �(t)

(5)��(t) = W ⋅ �(t)

and the components are non-negative. Assuming X ∈ ℝ
d×N 

is the input data matrix, where d is the number of vari-
ables and N is the number of observations, i.e., each sample 
�i ∈ ℝ

d = [xi,1.xi,2, ..., xi,d]
T with i = {1, 2, ...,N} , the goal 

of NMF is to decompose X into two matrices W ∈ ℝ
d×l and 

H ∈ ℝ
l×N of non-negative elements, with W and H smaller 

than X because of rank value l, optimizing the distance d 
between X and WH, i.e.

That means, each columns of X, represented by �i , can be 
computed as linear combination of column vectors of W 
(considered as basis vectors of the vector space defined by 
X) and the positive coefficients of H, hj,i by minimizing d, 
which can be defined as the squared Frobenius norm (in this 
case NMF works similar to PCA, but with non-negativity 
constraints) or as the Kullback–Leibler (KL) divergence.

In our case, the squared Frobenius norm (Eq. 7) has been 
used as objective function with the Coordinate Descent solve 
as optimizer, whereas NMF’s pair of factors (W, H) has been 
initialized by Nonnegative Double Singular Value Decom-
position (NNDSVD) [77], which is better fit for sparse fac-
torization. On the other part the tolerance has set to 1e−04, 
while the maximum of iterations has been set to 200.

2.4 � Autoencoder

Similar to PCA, the autoencoder is an unsupervised learning 
algorithm that also minimizes the same objective function as 
PCA (see Eq. 3). However, the autoencoder is more flexible 
than the PCA. This is because: (1) the autoencoder manages 
non-linearities in the encoding phase using non-linear acti-
vation functions (e.g., sigmoid, hyperbolic tangent or ReLU, 
among others), whereas the PCA can only represent linear 
transformations; and (2) the autoencoder offers the possibil-
ity of using stack layers to create deeper architectures.

Let X be a set of N samples X = {�1, �2, ..., �N} , where 
each �i ∈ ℝ

d so �i = [xi,1, xi,2, ..., xi,d]
T  . The goal of the 

autoencoder is to represent (or to project) the original 
inputs in ℝd into a new space ℝl . So, the basic operation 
of an autoencoder is quite intuitive: given the input vector, 

(6)

X ≃ WH =

⎛
⎜⎜⎝

x1,1 ⋯ x1,N
⋮ ⋱ ⋮

xd,1 ⋯ xd,N

⎞
⎟⎟⎠
≃

⎛
⎜⎜⎝

w1,1 ⋯ w1,l

⋮ ⋱ ⋮

wd,1 ⋯ wd,l

⎞
⎟⎟⎠

⎛
⎜⎜⎝

h1,1 ⋯ h1,N
⋮ ⋱ ⋮

hl,1 ⋯ hl,N

⎞
⎟⎟⎠

with �i =

l�
j=1

hj,i ⋅ �j

(7)d =
1

2
∥ X −WH ∥2

F
=

N∑
i=1

d∑
j=1

(
xj,i − (w ⋅ h)j,i

)2
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�i ∈ ℝ
d , the autoencoder network uses a set of recognition 

weights (encoder components) to convert �i into a code 
vector or code dictionary �i ∈ ℝ

l , so �i = [ci,1, ci,2, ..., ci,l]
T 

(mapping ℝd space to ℝl space). To recover the original 
input �i ∈ ℝ

d , it uses a set of generative weights (decoder 
component) to convert the code vector into an approximate 
reconstruction of the input vector, ��

i
∈ ℝ

d (de-mapping ℝl 
space to ℝd space) [30].

As we can see in Fig. 1, a simple autoencoder is com-
posed by two networks, the compressor or encoder network, 
and the decompressor or decoder network, together with a 
middle-hidden layer that determines the desired compres-
sion ratio of the autoencoder. The code vector �i ∈ ℝ

l cor-
responding to the input �i ∈ ℝ

d and the autoencoder recon-
struction output ��

i
∈ ℝ

d are calculated as follows:

where f (⋅) is the activation function, W is the weight matrix 
of the encoder, WT is the tied weight matrix of the decoder 
(although decoder can use an untied weight matrix, sepa-
rating the encoder from the decoder), and � and �′ are the 
typical bias term. The autoencoder learning process occurs 
through the back-propagation of the reconstruction error:

An autoencoder can be simply implemented with a MLP 
network [31, 38], from shallow architectures to deep learn-
ing models.

2.5 � Extreme learning machine (ELM)

The ELM is a relatively recent learning algorithm [45, 78, 
79] where the neural network learning parameters (input 
weights W and biases B) are randomly assigned and do not 
need to be tuned, while the final output weights ( � ) can be 
analytically determined by a simple generalized inverse 

(8)
�i = f (W ⋅ �i + �),

��
i
= f (WT

⋅ �i + ��),

(9)min ∥ �i − ��
i
∥2

operation [80], without the need for validation or human-
intervened parameters [78]. These characteristics make the 
ELM a powerful and easy tool, able to provide efficient-
unified solutions in data regression and classification [81], 
mainly due to its extremely fast learning speed and great 
generalization capability in a wide range of applications 
[82], including clustering [83, 84], regression [66, 78] and 
classification [81] in semi-supervised, supervised and unsu-
pervised fashion [85].

Although the ELM has obtained good results in hierarchi-
cal learning with deep architectures [64, 65, 82, 86–88], the 
original ELM was based on single-hidden layer feed-forward 
neural networks (SLFNs) [66, 78, 79, 89–92], whose hidden 
layer does not need to be tuned. The classical ELM model 
(see Fig. 2) consists of three steps:

1.	 First, it calculates and assigns random weights W and 
biases B between the input layer and the hidden layer. 
W and B are generated based on a continuous sampling 
distribution probability. It has been proved that SLFNs 
with a hidden layer and L random hidden neurons can 
exactly learn L distinct observations [93, 94], so it is not 
strictly necessary to adjust the input weights and first 
hidden layer biases if later the network can adjust these 
L representations to the desired output [45].

2.	 Then, it calculates the hidden layer’s output matrix, 
H, that maps the data to the L-dimensional hidden 
layer random feature space (ELM feature function: 
H ∶ ℝ

d
→ ℝ

L).

3.	 Finally, after the random nonlinear feature mapping, the 
rest of the ELM can be considered as a linear system [85, 
95] that calculates the connection weights between the 
hidden layer and the output layer, � that best approximate 
the output of the hidden layer to the desired output of the 
network while exhibiting the minor norm at the same time 
[81].

Given N training samples and their desired outputs 
{(�i, �i)}

N
i=1

 , where each �i = [xi,1, xi,2, ..., xi,d]
T ∈ ℝ

d and each 

Fig. 1   Encoder-decoder functions of a simple autoencoder

Fig. 2   Extreme learning machine scheme
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�i ∈ ℝ
m so �i = [ti,1, ti,2, ..., ti,m]

T , the output function of the 
ELM for the generalized SLFN, �i = f (�i) , can be defined as:

where � j = [�j,1, �j,2, ..., �j,m]
T ∈ ℝ

m is the weight vector that 
connects the j-th hidden neuron with the output nodes and 
hj(�i) = h(�j ⋅ �i + bj) is the output of the j-th neuron in the 
hidden layer, with �j ∈ ℝ

d so �j = [wj,1,wj,2, ...,wj,d]
T is the 

random weight vector that connects the j-th node with input 
nodes and bj contains the random bias or threshold of the 
hidden neuron j. Eq. 10 can be compacted as:

where HN×L is the output matrix of the hidden layer, cal-
culated as the inner product between the input matrix data 
XN×d =

(
�T
1
, �T

2
, ..., �T

N

)T and the matrix of the hidden layer 
weights Wd×L =

(
�1,�2, ...,�L

)
 , to which the bias is added 

and the h(⋅) is passed as a nonlinear piecewise continuous 
function, such as the sigmoid, Gaussian, multiquadrics, Fou-
rier or Hardlimit functions:

So H(W,B,X) = H(�1, ...,�L, b1, ..., bL, �1, ..., �N) contains:

On the other hand �L×m is the matrix of output weights that 
contains all the � j terms that connect the hidden neurons 
with the output neurons:

Finally, TN×m is the target or network’s output matrix:

As an SLFN, the training of the ELM is aimed to find the 
specific W, B and � parameters that minimize the error given 

(10)f (�i) =

L∑
j=1

� j ⋅ hj(�i) i = 1, 2, ..., n,

(11)f (X) = H� = T ,

H(W,B,X) → X ⋅W + � =

⎛⎜⎜⎝

x1,1 ⋯ x1,d
⋮ ⋱ ⋮

xN,1 ⋯ xN,d

⎞⎟⎟⎠
⋅

⎛⎜⎜⎝

w1,1 ⋯ w1,d

⋮ ⋱ ⋮

wL,1 ⋯ wL,d

⎞⎟⎟⎠

T

+

⎛⎜⎜⎝

b1
⋮

bL

⎞⎟⎟⎠

T

H =

⎛
⎜⎜⎝

h(�1�1 + b1) ... h(�L�1 + bL)

⋮ ⋱ ⋮

h(�1�N + b1) ... h(�L�N + bL)

⎞⎟⎟⎠

� =

⎛
⎜⎜⎝

�T
1

⋮

�T
L

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

�1,1 ⋯ �1,m
⋮ ⋱ ⋮

�L,1 ⋯ �L,m

⎞⎟⎟⎠

T =

⎛
⎜⎜⎝

�T
1

⋮

�T
N

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

t1,1 ⋯ t1,m
⋮ ⋱ ⋮

tN,1 ⋯ tN,m

⎞⎟⎟⎠

by Eq. 9. In the ELM case, Eq. 9 can be represented by the 
following objective function:

Taking into account Eqs. 11 and 12, with random W and B, 
the calculation of the optimal output weights matrix � can be 
approached as a least-squares problem in which the shortest 
length and minimum norm solution is given by Eq. 13:

where H† is the Moore–Penrose generalized inverse of the 
matrix H, a particular type of 1-inverse matrix. Minimizing 
the norm of the output weights � leads to reach a better gen-
eralization performance, resulting in a more robust solution 
[66, 96].

Although the ELM can approximate the output of the 
network to any given random set of W and B, it presents a 
problem with such random selection. Specifically, it makes 
a rather inefficient use of hidden nodes due the existence of 
a set of non-optimal and unnecessary input weights and hid-
den biases [97]. In order to mitigate this problem, an orthog-
onal ELM has been presented [86] to make the weights and 
biases orthogonal, so that WT ⋅W = W ⋅WT = I  being I 
the identity matrix, so WT = W−1 and BT ⋅ B = B ⋅ BT = 1 . 
This approximation can reach a higher performance. In fact, 
orthogonal W and B are geometrically representing isometric 
transformations over Hilbert spaces, projecting X ∈ ℝ

N×d 
into a different or equal dimension space ℝN×L (depending 
on the number of hidden nodes L). This property becomes 
crucial to use the ELM as an unsupervised autoencoder 
(ELM-AE) [64–66, 82, 86], in which the desired output T 
is equal to the input X. In this case, the goal is to find the 
optimal solution to Eq. 12, modified as follows:

The easy design of the basic ELM, together with its fast 
processing capability and easy implementation, makes it 
a powerful tool. However, it has been demonstrated that 
ELM requires more hidden neurons than other conventional 
tuning-based neural network algorithms, which can lead to 
slower performance and model overfitting. This problem 
becomes worse with the use of high-dimensional data such 
as hyperspectral remotely sensed images. To address this 
issue, we have developed a new fast DR technique with the 
goal of using ELM architectures for processing and com-
pression of hyperspectral datasets in real-time. To achieve 
this, the newly developed method consists of two main parts:

1.	 An ELM based autoencoder, used to compress the spec-
tral signatures (pixels) of the remotely sensed hyper-
spectral image.

(12)min
W,B,�

∥ H(W,B,X)� − T ∥2

(13)� = H†T ,

(14)min
W,B,�

∥ H(W,X,B)� − X ∥2
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2.	 A classifier that processes, analyzes and classifies these 
hyperspectral images.

In the following section we describe in more details these 
two main steps of our newly developed method.

3 � Proposed method

3.1 � Spectral compression

ELMs have demonstrated to be useful and efficient in com-
pression tasks [64–66, 82, 86] with different structures. In 
[86], the basic ELM (see Fig. 2) is modified to perform an 
unsupervised learning process of a dimensionality reduction 
method, equaling the input to the output ( X = T  ) and choos-
ing orthogonal random W and B to project the input data 
space from ℝN×d to the hidden layer space ℝN×L . Depending 
on the number of neurons in the hidden layer, L, the ELM-
AE hidden layer’s output can have three different behaviours: 
(1) if L > d , where d is the number of nodes in the input 
layer, the ELM feature function is a sparse representation of 
the input data X; (2) if L = d , the ELM feature function is an 
equal dimension representation of the input data X, and (3) if 
if L < d , the ELM feature function is a compressed represen-
tation of the original input X [86]. Additionally, depending 
on the L size, Eq. 13 can be rewritten as:

when L > d or L < d , being H† =
(
HTH

)−1
HT the Moore-

Penrose generalized inverse [98–100] and C a regularization 
term that makes the solution more robust and allows the 
ELM to achieve better generalization performance [81, 101]. 
On the other hand, when L = d , Eq. 13 can be rewritten as:

In this case, Eq. 16 cannot been solved by the standard least 
squares solution given by Eq. 15 because this equation does 
not impose the constraint that � must be orthogonal. So, 
Eq. 16 must be solved as an orthogonal Procrustes problem 
[102], where we want to calculate the orthogonal matrix � 
that relates H and X. The objective function in this case will 
be min� ∥ H� − X ∥F , being ∥ ⋅ ∥F the Frobenius norm. The 
final solution will be � = UVT , where U and V are the singu-
lar value decomposition (SVD) matrices of HTX = UΣVT.

The architecture of our proposed fast method for hyper-
spectral dimension reduction has been selected as a single 
hidden layer ELM-AE. The model is composed by three lay-
ers: d − L − d (see Fig. 2), i.e., one input layer, with d input 
neurons, being d the number of spectral bands; one hidden 
layer with L hidden neurons, being L < d the compression 
ratio, i.e. the number of spectral bands that the hyperspectral 

(15)� =
(
I

C
+ HTH

)−1

HTX

(16)� = H−1X → �T� = ��T = I

data will preserve while the compression percentage can be 
calculated as 100 ⋅

(
1 −

(
L

d

))
% , and one output layer with 

d output neurons to reconstruct the input data. The decom-
pression error has been selected as the reference measure-
ment that will be taken into account to determine the accu-
racy of the method. This reference is calculated as indicated 
in Eq. 9 by the mean square error (MSE) as follows:

where X ∈ ℝ
N×d is the desired output, O ∈ ℝ

N×d is the net-
work output, and N is the number of samples. Once the net-
work is trained, a test set is presented to the network. Also, 
the error incurred by the network during the test phase is 
calculated with Eq. (17).

3.2 � Compressed spectrum classification

The ELM can be extended to a deeper architecture by 
simply stacking layer by layer to create the hierarchical 
structure of a multilayer ELM (ML-ELM) [86]. As we 
can see in Fig. 3, the ML-ELM calculates each layer’s � 
as an independent, basic ELM, having two steps: the first 
random feature mapping operation, and the construction of 
the ML-ELM. The idea is simple; to obtain the �i weights 
that relate the layer i with the layer i − 1 , the ML-ELM 
constructs a classic ELM where the input layer will be 
layer i − 1 with input data Hi−1 = Hi−2�i−1 , the hidden layer 
will be the layer i, with output Hi = (W,Hi−1,B) passed 
thought an activation function, being W and B orthogonal 
random weights and biases, respectively, and the output 
layer will be again the layer i − 1 . The objective function is 
min�i ∥ Hi�i − Hi−1 ∥2 and we can employ Eq. 13 to obtain 
the solution �i = H

†

i
Hi−1 . The resulting �i weights store 

representative information of the input data and can pro-
ject the data from the defined space in layer i (data ∈ ℝ

Li ) 
into the defined space in layer i − 1 (data ∈ ℝ

Li−1 ), so, to 
adapt �i to the ML-ELM, only the transposition is needed: 
�T
i

.
On the other hand, to calculate each �i , in the ML-ELM 

random feature mapping that involves random orthogonal 
weights W and biases B, the logistic sigmoid function has 
been used as the activation function of each auxiliary Hi:

Following the same operation, a stack ELM architecture was 
used in order to implement our fast DR and classification 
method. Its architecture is composed by two main parts: (1) 
the compressor network, implemented as an ELM-AE, and 
(2) the classifier network, implemented as a classical ELM 

(17)MSE =
(X − O)2

N
,

(18)Hi =
1

1 + e−(Hi−1W+B)
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(see Fig. 4). The network is composed by four layers with 
sizes d − L1 − L2 − m:

–	 The input layer is composed by d neurons, i.e., the 
spectral bands of the input data X ∈ ℝ

N×d.
–	 The first hidden layer, or compression layer, projects 

the original d-dimensional data, X ∈ ℝ
N×d , onto a 

lower dimensional subspace ℝN×L1 defined by the acti-
vations of the L1 hidden neurons, and extracts the most 
representative features of the data. L1 < d indicates the 

compression ratio and (�1)T represents the weights that 
connect the input layer with the compression layer, fol-
lowing the ML-ELM procedure.

–	 The second hidden layer, or sparse layer, expands the 
data representation, cleaning the data for later classifi-
cation. It is composed by L2 > L1 neurons, being W the 
random orthogonal weights that connect the output of 
the compression layer with the sparse layer.

–	 Finally, the output layer performs the classification task 
and is composed by m neurons, being m the number of 
classes and �2 the ELM weights that connect the sparse 
layer with the output.

These four layers are trained separately, being the ELM-AE 
trained with a different training percentage than the ELM-clas-
sifier. In the test phase, both networks are stacked to obtain the 
classification results with compressed data.

Fig. 3   ML-ELM architecture for hyperspectral image classification. To calculate each �
i
 of the deep network, two main steps should be per-

formed: (1) a basic ELM random feature mapping, and (2) the transpose of the output weight �
i
 , to reconstruct the output ML-ELM matrix

Fig. 4   Fast dimensionality reduction and classification architecture
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4 � Experimental validation

4.1 � Experimental configuration

To test the performance of our proposed fast DR and clas-
sification method for hyperspectral remote sensing image 
compression, a comparison between the proposed method 
and a PCA compressor and MLP-based autoencoder has 
been carried out. The hardware architecture used for 
the comparison is composed of a 6th Generation Intel® 
Core™i7-6700K processor with 8M of Cache and up to 
4.20 GHz (4 cores/8 way multitask processing), 64GB of 
DDR4 RAM with a serial speed of 2400 MHz, a Toshiba 
DT01ACA HDD with 7200 RPM and 2TB of capacity, and 
an ASUS Z170 pro-gaming motherboard.

On the other part, the software environment is com-
posed by Ubuntu 16.04 as operating system. Proposed 
method has been implemented on python, using the librar-
ies for scientific computing Scipy and Numpy. Addition-
ally, to compare with a GPU-implemented multilayer per-
ceptron (MLP), CUDA 8 has been employed.

4.2 � Hyperspectral datasets

Compression (and posterior classification) experiments 
have been carried out using five hyperspectral remote sens-
ing images, characterized by the availability of categorized 
ground-truth with the objective of testing the method in 
several applications, in particular to analyze the effect of 
compression on classification, with different spectral-spatial 
characteristics:

1.	 The first hyperspectral scene is known as Indian Pines. 
It was collected by he Airborne Visible-Infrared Imag-
ing Spectrometer (AVIRIS) [103] in 1992 over a set of 
agricultural fields with regular geometry, with multi-
ple crops and irregular forest areas in northwestern 
Indiana. This scene forms a data cube of dimensions 
145 × 145 × 224 , with a spatial resolution of 20m per 
pixel. The spectral bands capture the solar spectrum in 
the range from 0.4 to 2.5 μ m, being 4 zero bands and 
another 20 bands with lower SNR because of atmos-
pheric absorption bands that are removed, preserving 

Color Land cover type Samples train Samples test Color Land cover type Samples train Samples test
Background 649816 Grass-healthy 198 1053

Grass-stressed 190 1064 Grass-synthetic 192 505
Tree 188 1056 Soil 186 1056
Water 182 143 Residential 196 1072

Commercial 191 1053 Road 193 1059
Highway 191 1036 Railway 181 1054

Parking-lot1 192 1041 Parking-lot2 184 285
Tennis-court 181 247 Running-track 187 473

Total samples 2832|12197

Fig. 5   Ground-truth of the Houston 349 × 1905 × 144 hyperspectral scene: Training data (top) with a total of 2832 samples and testing data (bot-
tom) with a total of 12197 samples



	 Journal of Real-Time Image Processing

1 3

the remaining 200 channels. About half of the pixels 
in the image (10366 of 21025) contain ground-truth 
information, which comes in the form of a single label 
assignment having a total of 16 ground-truth classes (see 
Fig. 7).

2.	 The second hyperspectral scene is a large version of 
Indian Pines called large Indian Pines. Also, it was col-
lected by AVIRIS [103] in 1992 over a set of agricultural 
fields and irregular patches of forest in Northwestern 
Indiana over the same area, but spanning a much larger 

Color Land cover type Samples Color Land cover type Samples
Background 1310047 BareSoil 57
Buildings 17195 Concrete/Asphalt 69

Corn 17783 Corn? 158
Corn-EW 514 Corn-NS 2356

Corn-CleanTill 12404 Corn-CleanTill-EW 26486
Corn-CleanTill-NS 39678 Corn-CleanTill-NS-Irrigated 800

Corn-CleanTilled-NS? 1728 Corn-MinTill 1049
Corn-MinTill-EW 5629 Corn-MinTill-NS 8862

Corn-NoTill 4381 Corn-NoTill-EW 1206
Corn-NoTill-NS 5685 Fescue 114

Grass 1147 Grass/Trees 2331
Grass/Pasture-mowed 19 Grass/Pasture 73

Grass-runway 37 Hay 1128
Hay? 2185 Hay-Alfalfa 2258
Lake 224 NotCropped 1940
Oats 1742 Oats? 335

Orchard 39 Pasture 10386
pond 102 Soybeans 9391

Soybeans? 894 Soybeans-NS 1110
Soybeans-CleanTill 5074 Soybeans-CleanTill? 2726

Soybeans-CleanTill-EW 11802 Soybeans-CleanTill-NS 10387
Soybeans-CleanTill-Drilled 2242 Soybeans-CleanTill-Weedy 543

Soybeans-Drilled 15118 Soybeans-MinTill 2667
Soybeans-MinTill-EW 1832 Soybeans-MinTill-Drilled 8098
Soybeans-MinTill-NS 4953 Soybeans-NoTill 2157
Soybeans-NoTill-EW 2533 Soybeans-NoTill-NS 929

Soybeans-NoTill-Drilled 8731 Swampy Area 583
River 3110 Trees? 580
Wheat 4979 Woods 63562
Woods? 144

Total samples 1644292

Fig. 6   Ground-truth of the large Indian Pines 2678 × 614 × 220 hyperspectral scene. Labels with “?” correspond with categories related to the 
name referred but which have been defined as independent classes
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extent, with a size of 2678 × 614 pixels containing 220 
spectral bands with 58 ground-truth classes (see Fig. 6).

3.	 The third hyperspectral scene is known as Pavia Uni-
versity. It was collected by the Reflective Optics System 
Imaging Spectrometer (ROSIS) sensor [104] during a 
flight campaign in northern Italy, over the city of Pavia, 
covering an urban environment, with solid structures, 
natural objects and their shadows. Fig. 8 shows this 
scene comprising 9 classes. It contains 103 spectral 
bands of 610 × 340 pixels in the spectral range from 0.43 
to 0.86 μ m, with spatial resolution of 1.3 m/pixel.

4.	 The fourth hyperspectral dataset is known as Pavia Cen-
tre (Fig. 9), and it was collected by ROSIS too, dur-
ing a flight campaign over Pavia. This scene contains 
1096 × 715 pixels with 102 spectral bands, with geomet-

ric resolution of 1.3 meters. The ground truth contains 9 
different classes.

5.	 Finally, the fifth hyperspectral dataset is known as 
Houston [105]. It was collected by the Compact Air-
borne Spectrographic Imager (CASI) in June 2012 over 
the University of Houston campus and the neighbor-
ing urban area. This scene forms a cube of dimension 
349 × 1905 × 144 , with spatial resolution of 2.5 m and 
spectral information captured in the range from 0.38 to 
1.05 μm, containing 15 ground-truth classes (see Fig. 5) 
divided in two categories: training and testing.

4.3 � Performance evaluation

To validate the proposed implementation, two kinds of 
experiments have been conducted: the first one has been 
designed to check the process of compression and decom-
pression, and the second one has been designed to evalu-
ate the classification results for the images compressed by 
the proposed fast method. In both cases, X ∈ ℝ

N×d , random 
samples are acquired from the original input data and split 
into a training and testing set. For the compression experi-
ment, 85% of X has been selected for the training phase, 
using the remaining 15% of X for testing. For compression 
and classification, 1, 2, 3, 5, and 10% of the compressed X 
has been used for the training phase and the remaining 99, 
98, 97, 95, and 90% for the testing phase. In both cases, 
the data are pre-processed with L2 normalization, to prevent 
the premature saturation of the mapping nodes. Addition-
ally, has been executed ten times and the average values are 
reported, together with the standard deviation, to measure 
the robustness of the method.

Color Land cover type Samples
Background 10776

Alfalfa 46
Corn-notill 1428
Corn-min 830

Corn 237
Grass/Pasture 483
Grass/Trees 730

Grass/pasture-mowed 28
Hay-windrowed 478

Oats 20
Soybeans-notill 972
Soybeans-min 2455
Soybean-clean 593

Wheat 205
Woods 1265

Bldg-Grass-Tree-Drives 386
Stone-steel towers 93

Total samples 21025

Fig. 7   Ground-truth of the Indian Pines 145 × 145 × 200 hyperspec-
tral scene

Color Land cover type Samples
Background 164624

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self-Blocking Bricks 3682

Shadows 947

Total samples 207400

Fig. 8   Ground-truth of the Pavia University 610 × 340 × 103 hyper-
spectral scene

Color Land cover type Samples
Background 635488

Water 65971

Trees 7598

Asphalt 3090

Self-Blocking Bricks 2685

Bitumen 6584

Tiles 9248

Shadows 7287

Meadows 42826

Bare Soil 2863

Total samples 783640

Fig. 9   Ground-truth of the Pavia Centre 1096 × 715 × 102 hyperspec-
tral scene



	 Journal of Real-Time Image Processing

1 3

4.3.1 � Testing compression–decompression performance

In order to test the compression–decompression functional-
ity of our method, this work makes a comparison between 
a single hidden layer ELM based implementation of our 
method with a multicore PCA, the parallel FastICA, the 
NMF algorithm and GPU MLP-based autoencoder, taking 
into account the decompression error of each algorithm. 
The characteristics of our single hidden layer ELM based 
approach have been described in Sect. 3.1, with an archi-
tecture d − L − d , being d the number of spectral bands and 
L the compression ratio. The topology of the MLP based 
autoencoder has been chosen following the same single layer 
ELM architecture, implementing sigmoid function as activa-
tion function in all its layers and Adam [106] as optimizer 
with learning rate set to 0.001, batch size of 512 and 100 
epochs. All compression methods have been trained over the 
85% of the data, being the remaining 15% used for testing.

Table 1 shows the execution times and decompression 
error of each method over small Indian Pines scene. In this 
case, PCA, ICA, NMF, MLP-AE and proposed method have 
used 10 different compression ratio, defined by L. In fact, 
they have compressed the 95, 85, 75, 65, 55, 45, 35, 25, 
15, 5% of the spectral bands, setting L to 10, 30, 50, 70, 90, 
110, 130, 150, 170 and 190, respectively. In general, we can 

observe in the five methods that the execution time increases 
as L increases, while the reconstruction error is more inde-
pendent. In particular, PCA is the fastest DR method due to 
the simplicity of its algorithm (reduced to multiplications of 
matrices), followed closely by proposed DR method, while 
NMF is the slowest one, followed by ICA and MLP-AE. 
Comparing execution times of ELM-AE, NMF, ICA and 
MLP-AE we can observe a speedup of 357.05, 72.19 and 
37.86 on average, respectively, while PCA has an average 
speedup over proposed DR method of 6.04. On the other 
part, although PCA provides the lowest execution times, it 
also provides the worst reconstruction error together with 
ICA algorithm. On the other part, NMF provides the best 
MSE values, followed very closely by the proposed DR 
method (with a distance of 6.81e−08 on average), which is 
able to reach better MSE values than PCA, ICA an MLP-AE 
and provides the lowest MSE value when compressing the 
15% of spectral bands, setting L to 170 bands. The aforemen-
tioned behaviour is consistent in the experiments with all the 
considered hyperspectral scenes, being the single layer ELM 
the one with the best MSE-execution time tradeoff, with 
MSE better than PCA and similar or even better than MLP 
and NMF methods (but much faster performance).

Fig. 10 shows the reconstruction of a randomly selected 
spectral signature of the small Indian Pines using the 

Table 1   Execution times and decompression MSE for the small Indian Pines image compression experiment

Best values obtained are given in bold

Components Ratio (%) PCA ICA NMF MLP-AE Proposed

Time execution
   10 95 3.66e−02 (2.90e−03) 9.37e−01 (7.81e−02) 3.21e+00 (1.14e−02) 6.96e+00 (2.37e−01) 3.07e−02 (1.03e−03)
   30 85 3.42e−02 (1.26e−04) 4.81e+00 (5.58e−01) 7.29e+00 (2.95e−02) 7.11e+00 (1.01e−01) 5.84e−02 (7.73e−05)
   50 75 3.43e−02 (1.97e−04) 7.85e+00 (2.81e−02) 2.11e+01 (1.23e−01) 7.37e+00 (9.51e−02) 8.37e−02 (3.59e−04)
   70 65 3.49e−02 (1.47e−03) 1.09e+01 (2.63e−02) 3.25e+01 (7.50e−02) 7.60e+00 (7.88e−02) 1.19e−01 (1.59e−03)
   90 55 3.44e−02 (2.50e−04) 1.41e+01 (3.78e−02) 4.96e+01 (4.32e−01) 7.79e+00 (5.54e−02) 1.78e−01 (6.58e−04)
   110 45 3.46e−02 (1.18e−04) 1.75e+01 (5.64e−02) 7.16e+01 (2.54e−01) 8.01e+00 (7.08e−02) 2.64e−01 (6.17e−03)
   130 35 3.45e−02 (1.24e−04) 1.93e+01 (3.94e−02) 9.40e+01 (2.77e+00) 8.28e+00 (1.07e−01) 2.40e−01 (8.24e−03)
   150 25 3.45e−02 (1.17e−04) 2.23e+01 (2.45e−02) 1.23e+02 (2.11e+00) 8.53e+00 (8.03e−02) 3.41e−01 (2.02e−03)
   170 15 3.44e−02 (8.31e−05) 2.53e+01 (5.56e−02) 1.56e+02 (5.61e+00) 8.74e+00 (1.36e−01) 3.36e−01 (1.70e−03)
   190 5 3.44e−02 (1.26e−04) 2.83e+01 (3.44e−02) 1.90e+02 (5.47e+00) 8.96e+00 (9.02e−02) 4.45e−01 (2.49e−03)

Mean square error
   10 95 1.78e−02 (5.73e−05) 1.78e−02 (5.62e−05) 2.84e−07 (2.26e−09) 6.65e−06 (1.48e−06) 7.41e−07 (1.25e−07)
   30 85 3.89e−03 (1.86e−05) 3.90e−03 (1.58e−05) 1.12e−07 (7.06e−10) 5.22e−06 (4.49e−07) 2.15e−07 (9.35e−09)
   50 75 1.96e−03 (5.79e−06) 1.96e−03 (3.43e−06) 6.27e−08 (5.79e−10) 4.42e−06 (2.02e−07) 1.19e−07 (2.55e−09)
   70 65 1.23e−03 (6.69e−06) 1.23e−03 (1.19e−06) 4.36e−08 (8.08e−10) 4.19e−06 (2.55e−07) 7.40e−08 (1.32e−09)
   90 55 7.59e−04 (5.91e−06) 7.53e−04 (1.39e−06) 3.12e−08 (6.58e−10) 4.06e−06 (1.48e−07) 4.75e−08 (7.34e−10)
   110 45 4.78e−04 (4.53e−06) 4.71e−04 (1.56e−06) 2.03e−08 (5.93e−10) 4.08e−06 (1.93e−07) 3.07e−08 (5.89e−10)
   130 35 2.92e−04 (4.83e−06) 2.85e−04 (7.43e−07) 1.22e−08 (4.30e−10) 4.17e−06 (2.32e−07) 1.93e−08 (4.47e−10)
   150 25 1.59e−04 (5.02e−06) 1.51e−04 (2.93e−07) 9.10e−09 (3.56e−10) 4.57e−06 (3.76e−07) 1.23e−08 (2.72e−10)
   170 15 6.92e−05 (5.19e−06) 6.20e−05 (1.04e−07) 7.61e−09 (1.30e−10) 4.42e−06 (3.88e−07) 7.41e−09 (2.59e−10)
   190 5 2.37e−05 (5.21e−06) 1.65e−05 (6.08e−08) 6.18e−09 (1.22e−10) 5.23e−06 (7.42e−07) 3.99e−09 (1.34e−10)
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proposed method as compressor. We can see that both the 
original signature (blue) and the reconstructed signature 
(orange) are very similar, even when compression percent-
ages are high, such as compressing the 97.5% of the spec-
tral bands ( L = 5 ). Additionally, in Fig. 11, we can see the 
reconstruction error of the proposed method. Each row is 
composed by the false color map of band b, from the original 
data cube (before compressing the 80% of spectral bands 
with L = 40 , left), the obtained band b after decompres-
sion (center) and the difference (MSE) between the original 
spectral value and the decompressed or reconstructed value 
obtained by the proposed DR method (right). Color-bar indi-
cates that differences that are closely to zero corresponds 
with white color, while dark-blue color indicates the maxi-
mum difference between the original spectral band and the 
reconstructed one. As we can observe, both maps (original 
and reconstructed) are quite similar.

Table 2 shows the execution times and the decompression 
error using the Pavia University hyperspectral scene, reached 
by each DR method: PCA, ICA, NMF, MLP-based autoen-
coder and the proposed method based on a single layer ELM. 
In this case, 5 different compression ratios have been used, 
determined by the size of L, i.e., the number of output spec-
tral bands in compressed image, in particular 10 (we round 
the percentage for better understanding, compressing about 
the 90.29–90% of bands), 30 (70.87–71% ), 50 (51.46–51% ), 
70 (32.04–32% ) and 90 (12.62–13% ). In this hyperspectral 

scene, Pavia University has 207 400 pixels, 9.86 times 
greater than small Indian Pines, which has 186 375 pixels 
less, so the execution times are increased in all the studied 
DR methods. Again, PCA becomes the faster one, with a 
speedup of 10.22 over ELM-AE on average. NMF, MLP-AE 
and ICA are the slowest again, having the proposed method 
a speedup of 160.41, 39.71 and 32.79 over them on aver-
age. Also, the PCA reaches the poorest reconstruction error, 
being NMF the best compression method when performs 
the compression of the 71, 51, 32, and 13% of the spectral 
bands, setting L = 30, 50, 70 and 90, respectively. These 
results are followed very closely by MLP-based autoencoder 
(whose MSE differs from the NMF one by 1.70e−06 points 
on average) and by the proposed single layer ELM (in fact, 
MSEs of NMF and ELM differ on 3.83e−06 points on aver-
age), with an acceptable execution time (the slowest execu-
tion has only 2.85 s).

Table 3 shows the execution times and decompression 
error of each considered method using the Pavia Centre 
hyperspectral scene. Again, 5 different compression ratios 
have been selected, fixing L to 10 (about the 90.20–90% of 
the spectral bands has been compressed), 30 (70.59–71% ), 
50 (50.98-51% ), 70 (31.37–31% ) and 90 (11.76–12% ). In this 
case, Pavia Centre has 783 640 pixels, that means it is 3.78 
times larger than Pavia University, which has 576 240 pixels 
less, and 37.27 times larger than small Indian Pines. As in 
the previous experiments the increase in the number of pixels 

Fig. 10   Fast spectral reconstruction of a randomly-selected spectral signature from small Indian Pines scene with compression ratio L = 5 
(97.5%), 30 (85%), 80 (60%) and 150 (25%)
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Fig. 11   Fast reconstruction with L = 40 (80%). Comparison between the original false-color band (left), the decompressed band with the pro-
posed fast method (center), and the difference between them (right). This comparison has been made using spectral bands 50, 100 and 150

Table 2   Execution times and decompression MSE of the Pavia University compression experiment

Best values obtained are given in bold

Components Ratio (%) PCA ICA NMF MLP-AE Proposed

Time execution
   10 90 1.31e−01 (1.22e−03) 8.73e+00 (3.51e−01) 2.10e+01 (6.69e−02) 5.11e+01 (3.09e−01) 1.73e−01 (3.25e−03)
   30 71 1.31e−01 (2.07e−04) 1.85e+01 (2.42e+00) 7.83e+01 (8.26e−02) 5.20e+01 (2.83e−01) 5.78e−01 (1.63e−02)
   50 51 1.31e−01 (1.32e−04) 5.87e+01 (1.29e+01) 1.75e+02 (5.32e−01) 5.31e+01 (2.84e−01) 1.17e+00 (3.30e−02)
   70 32 1.31e−01 (1.65e−04) 5.54e+01 (1.60e+01) 2.98e+02 (1.07e+00) 5.42e+01 (4.70e−01) 1.92e+00 (4.98e−02)
   90 13 1.31e−01 (1.67e−04) 7.81e+01 (1.60e+01) 5.01e+02 (6.33e+01) 5.53e+01 (4.10e−01) 2.85e+00 (5.74e−02)

Mean square error
   10 90 2.09e−03 (1.90e−04) 2.12e−03 (1.71e−04) 6.08e−06 (9.36e−08) 5.95e−06 (9.94e−08) 2.20e−05 (5.29e−06)
   30 71 4.18e−04 (5.55e−05) 4.29e−04 (4.67e−05) 1.52e−06 (2.78e−08) 2.97e−06 (1.24e−07) 3.58e−06 (1.20e−07)
   50 51 1.17e−04 (1.04e−05) 1.17e−04 (6.83e−06) 6.47e−07 (1.69e−08) 2.65e−06 (1.37e−07) 1.43e−06 (6.39e−08)
   70 32 2.68e−05 (3.52e−06) 2.63e−05 (2.00e−06) 2.81e−07 (1.29e−08) 2.69e−06 (2.30e−07) 5.89e−07 (2.74e−08)
   90 13 4.38e−06 (1.02e−06) 3.78e−06 (6.85e−07) 1.41e−07 (7.40e−09) 2.89e−06 (2.03e−07) 2.39e−07 (2.19e−08)
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results in an increase in the computation time of all compres-
sion methods, being PCA the fastest one, whose average 
speedup over ELM-AE is 11.07. Also, NMF, MLP-AE and 
ICA are the slowest methods, while the ELM-AE’s average 
speedup over NMF is 149.91, over MLP-AE is 41.86 and 
over ICA is 27.52, being the slowest execution of the single 
layer ELM only 11.1 s when the 12% of the spectral bands 
are compressed with L = 90 , and the fastest one 0.73 second 
with L = 10 (90%). Pavia Center’s spectral characteristics 
allow the MLP-based autoencoder to reach the best decom-
pression errors when the 90% ( L = 10 ), 71% ( L = 30 ) and 
51% ( L = 50 ) of spectral bands are compressed, while NMF 
reaches the best MSE values when the 31% ( L = 70 ) and 

12% ( L = 90 ) of spectral bands are compressed, although 
the single layer ELM can reach MSE values similar to MLP 
and NMF and NMF (the average MSE difference between 
MLP-AE and ELM-AE is 1.08e−05, while the difference 
between NMF and ELM-AE is 1.05e−05) in a much shorter 
time. With the Pavia University and Pavia Centre datasets we 
have shown that, despite of being slower than the PCA (and 
with results slightly inferior than the NMF and MLP-based 
autoencoder), our single layer ELM reaches a good balance 
between computation time and compression result, being a 
good option to compress hyperspectral images.

Another large hyperspectral scene is the Houston data 
set, with 664 845 pixels, i.e., 31.62 times larger than the 

Table 3   Execution times and decompression MSE of the Pavia Centre compression experiment

Best values obtained are given in bold

Components Ratio (%) PCA ICA NMF MLP-AE Proposed

Time execution
   10 90 4.78e−01 (9.60e−03) 3.44e+01 (1.90e+00) 1.09e+02 (6.06e+00) 2.12e+02 (1.08e+00) 7.26e−01 (6.59e−03)
   30 71 4.73e−01 (7.65e−04) 6.72e+01 (3.90e+00) 3.01e+02 (8.25e−01) 2.15e+02 (1.68e+00) 2.32e+00 (3.35e−02)
   50 51 4.75e−01 (7.16e−03) 1.47e+02 (1.58e+01) 6.66e+02 (6.36e+00) 2.20e+02 (1.18e+00) 4.66e+00 (4.91e−02)
   70 31 4.73e−01 (7.06e−04) 2.11e+02 (1.12e+01) 1.13e+03 (3.17e+00) 2.23e+02 (1.80e+00) 7.45e+00 (4.18e−02)
   90 12 4.73e−01 (5.25e−04) 2.63e+02 (4.18e+01) 1.73e+03 (5.15e+00) 2.29e+02 (4.08e+00) 1.11e+01 (1.19e−01)

Mean square error
   10 90 2.26e−03 (1.30e−04) 2.27e−03 (1.48e−04) 1.97e−05 (4.75e−07) 1.78e−05 (2.26e−07) 6.03e−05 (7.79e−06)
   30 71 3.54e−04 (2.86e−05) 3.61e−04 (3.33e−05) 5.54e−06 (1.14e−07) 4.59e−06 (1.10e−07) 1.27e−05 (8.38e−07)
   50 51 9.84e−05 (9.98e−06) 1.01e−04 (1.24e−05) 2.35e−06 (7.59e−08) 1.98e−06 (6.28e−08) 5.21e−06 (2.15e−07)
   70 31 2.21e−05 (2.67e−06) 2.24e−05 (3.15e−06) 1.01e−06 (2.75e−08) 1.42e−06 (2.24e−07) 2.24e−06 (1.12e−07)
   90 12 3.08e−06 (5.89e−07) 2.93e−06 (5.93e−07) 4.47e−07 (2.12e−08) 1.52e−06 (4.62e−07) 1.04e−06 (4.33e−08)

Table 4   Execution times and decompression MSE of the Houston compression experiment

Best values obtained are given in bold

Components Ratio (%) PCA ICA NMF MLP-AE Proposed

Time execution
   10 93 5.08e−01 (8.78e−04) 4.15e+01 (1.29e+00) 8.97e+01 (7.39e−02) 1.84e+02 (1.66e+00) 6.87e−01 (5.36e−03)
   30 79 5.10e−01 (2.07e−03) 7.34e+01 (8.41e+00) 2.79e+02 (6.62e−01) 1.87e+02 (9.00e−01) 2.06e+00 (3.43e−02)
   50 65 5.11e−01 (6.56e−03) 1.31e+02 (3.97e+01) 6.06e+02 (1.51e+00) 1.91e+02 (1.09e+00) 4.08e+00 (7.10e−02)
   70 51 5.14e−01 (9.58e−03) 1.71e+02 (3.37e+01) 1.02e+03 (1.74e+00) 1.94e+02 (1.15e+00) 6.52e+00 (1.10e−01)
   90 38 5.09e−01 (1.79e−03) 3.13e+02 (5.12e+01) 1.52e+03 (2.89e+00) 1.99e+02 (3.00e+00) 9.62e+00 (2.84e−01)
   110 24 5.13e−01 (8.16e−03) 4.03e+02 (4.43e+01) 2.32e+03 (7.30e+00) 2.02e+02 (1.30e+00) 1.30e+01 (3.52e−01)
   130 10 5.12e−01 (6.34e−03) 4.87e+02 (1.39e+00) 3.14e+03 (1.10e+01) 2.05e+02 (1.22e+00) 1.30e+01 (1.85e−01)

Mean square error
   10 93 1.11e−03 (1.72e−04) 1.14e−03 (2.03e−04) 9.33e−07 (1.74e−08) 8.51e−07 (4.96e−08) 3.61e−06 (6.57e−07)
   30 79 3.73e−04 (8.65e−05) 3.84e−04 (9.49e−05) 3.45e−07 (1.17e−08) 7.50e−07 (1.87e−07) 6.84e−07 (3.59e−08)
   50 65 2.27e−04 (7.35e−05) 2.44e−04 (7.98e−05) 2.25e−07 (8.87e−09) 7.37e−07 (7.00e−08) 3.90e−07 (1.54e−08)
   70 51 1.29e−04 (5.56e−05) 1.30e−04 (6.22e−05) 1.75e−07 (7.04e−09) 7.64e−07 (1.30e−07) 2.57e−07 (1.22e−08)
   90 38 7.13e−05 (3.44e−05) 7.04e−05 (3.89e−05) 1.36e−07 (4.98e−09) 7.54e−07 (1.03e−07) 1.76e−07 (7.56e−09)
   110 24 3.92e−05 (2.58e−05) 4.79e−05 (3.07e−05) 1.04e−07 (5.15e−09) 7.59e−07 (7.70e−08) 1.15e−07 (4.06e−09)
   130 10 2.05e−05 (1.61e−05) 2.67e−05 (1.77e−05) 7.82e−08 (3.25e−09) 7.49e−07 (9.64e−08) 6.89e−08 (3.36e−09)
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small Indian Pines, 3.21 times larger than Pavia University 
and 1.18 times smaller than Pavia Centre. Table 4 shows 
the execution times and the decompression error reached 
by each compression method: PCA, ICA, NMF, MLP-based 
autoencoder and the single layer ELM-AE, with 7 different 
compression ratios, reducing about the 93.06–93% of the 
spectral bands with L = 10 , the 79.17–79% with L = 30 , 
the 65.28–65% with L = 50 , the 51.39–51% with L = 70 , 
the 37.5–38% with L = 90 , the 23.61–24% with L = 110 
and the 9.72–10% with L = 130 . In this case, although 
PCA is the faster method with 13.68 as average speedup 
over ELM-AE method, it provides the worst MSE values. 
The proposed method exhibits good decompression MSE 
results in less time than NMF and MLP-AE algorithm, with 
183.28 and 27.81 of average speedup, respectively (33.08 
of speedup compared with ICA). Once more, NMF, ICA 
and MLP-based autoencoder are the slowest methods, being 
the MSE results of NMF and MLP-AE very similar to the 
single layer ELM (the MSE difference between ELM-AE 
and NMF is 4.72e−07, while between ELM-AE and MLP-
AE is 9.01e−09). The single layer ELM offers again a good 
balance between computation time and compression results.

Finally, we also tested the proposed DR method with a 
larger hyperspectral scene, such as the large Indian Pines 
(with 1 644 292 pixels, i.e., 78.21 times larger than small 
Indian Pines, 79.28 times larger than Pavia University, 20.98 
times larger than Pavia Centre and 24.73 times larger than 
Houston scene). Table 5 shows the obtained results in terms 
of execution time and decompression MSE for each DR 
method. 11 different compression rates have been evalu-
ated, in particular L = 10 (compressing about 95.45–95% 

Table 5   Execution times and decompression MSE of the large Indian Pines compression experiment

Best values obtained are given in bold

Components Ratio (%) PCA ICA NMF MLP-AE Proposed

Time execution
   10 95 2.10e+00 (8.41e−03) 1.49e+02 (2.19e+00) 3.03e+02 (7.72e−01) 5.21e+02 (1.44e+01) 2.07e+00 (8.07e−02)
   30 86 2.09e+00 (5.27e−03) 2.38e+02 (9.28e+01) 7.98e+02 (1.10e+00) 5.33e+02 (4.15e+00) 5.70e+00 (1.43e−01)
   50 77 2.09e+00 (5.84e−03) 3.72e+02 (1.47e+01) 1.60e+03 (1.77e+00) 5.33e+02 (5.10e+00) 1.07e+01 (1.83e−01)
   70 68 2.09e+00 (6.09e−03) 7.43e+02 (1.57e+01) 2.59e+03 (2.81e+01) 5.34e+02 (8.79e+00) 1.68e+01 (2.36e−01)
   90 59 2.09e+00 (6.13e−03) 6.52e+02 (1.59e+02) 3.81e+03 (9.57e+00) 5.52e+02 (8.21e+00) 2.46e+01 (6.53e−01)
   110 50 2.09e+00 (5.83e−03) 1.00e+03 (2.10e+02) 5.76e+03 (1.19e+01) 5.62e+02 (4.83e+00) 3.39e+01 (8.97e−01)
   130 41 2.09e+00 (6.83e−03) 1.11e+03 (2.48e+02) – 5.69e+02 (3.48e+00) 3.36e+01 (8.86e−01)
   150 32 2.09e+00 (6.71e−03) 1.39e+03 (2.27e+02) – 5.73e+02 (4.13e+00) 4.30e+01 (1.68e+00)
   170 23 2.09e+00 (6.41e−03) 1.74e+03 (1.11e+02) – 5.79e+02 (4.94e+00) 4.33e+01 (1.54e+00)
   190 14 2.10e+00 (6.48e−03) 1.39e+03 (2.13e+02) – 6.00e+02 (5.10e+00) 5.39e+01 (1.61e+00)
   210 5 2.10e+00 (5.36e−03) 1.68e+03 (1.40e+02) – 6.19e+02 (1.15e+01) 5.43e+01 (1.47e+00)

Mean square error
   10 95 8.28e−02 (6.16e−04) 8.28e−02 (7.11e−04) 3.40e−07 (5.01e−09) 3.36e−07 (1.09e−08) 9.02e−07 (7.25e−08)
   30 86 1.40e−02 (8.76e−05) 1.40e−02 (6.51e−05) 1.35e−07 (6.04e−10) 2.10e−07 (1.16e−08) 2.59e−07 (1.03e−08)
   50 77 3.60e−03 (6.97e−06) 3.61e−03 (5.22e−06) 7.64e−08 (3.45e−10) 1.91e−07 (9.56e−09) 1.45e−07 (3.79e−09)
   70 68 1.78e−03 (4.33e−06) 1.78e−03 (4.51e−06) 5.02e−08 (3.54e−10) 1.86e−07 (7.73e−09) 9.41e−08 (1.27e−09)
   90 59 1.12e−03 (3.84e−06) 1.13e−03 (3.71e−06) 3.51e−08 (1.69e−10) 1.82e−07 (5.61e−09) 6.30e−08 (9.14e−10)
   110 50 7.42e−04 (2.83e−06) 7.44e−04 (2.79e−06) 2.36e−08 (2.17e−10) 1.78e−07 (5.33e−09) 4.30e−08 (8.89e−10)
   130 41 4.69e−04 (1.52e−06) 4.69e−04 (1.13e−06) – 1.80e−07 (7.67e−09) 2.95e−08 (4.43e−10)
   150 32 2.75e−04 (9.01e−07) 2.76e−04 (8.49e−07) – 1.81e−07 (6.32e−09) 1.99e−08 (2.27e−10)
   170 23 1.52e−04 (5.53e−07) 1.53e−04 (5.98e−07) – 1.80e−07 (8.05e−09) 1.32e−08 (2.71e−10)
   190 14 7.42e−05 (2.05e−07) 7.42e−05 (2.00e−07) – 1.89e−07 (1.80e−08) 8.17e−09 (1.62e−10)
   210 5 2.05e−05 (9.64e−08) 2.04e−05 (8.06e−09) – 1.50e−07 (1.72e−08) 4.50e−09 (1.72e−10)

Fig. 12   Execution times of the compression experiment with the 
large Indian Pines scene
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of the spectral bands), 30 (86.36–86% ), 50 (77.27–77% ), 
70 (68.18–68% ), 90 (59.09–59% ), 110 (50–50% ), 130 
(40.91–41% ), 150 (31.82–32% ), 170 (22.73–23% ), 190 
(13.64–14% ) and 210 (4.55–5% ). In this case, NMF has been 
executed until L = 110 because from compressing the50% of 
spectral bands the execution times are unmanageable. Also 
the single hidden layer ELM reaches good performances 
in most cases, quite similar to NMF and MLP-AE, even 
better than MLP-AE in some cases (average MSE differ-
ence between NMF and ELM-AE is 3.37e−08 and between 
MLP-AE and ELM-AE is 5.29e−08). Again, the PCA and 
ICA provide the worst decompression results, being PCA the 
fastest compression method and the NMF the slowest one.

Figures 12 and 13 show graphically the execution times 
of each compression method in big and small Indian Pines 
with different values of L for large Indian Pines scene. As 
we can see in Fig. 12, the execution time of MLP-AE is 
very stable, between 500 and 600 s. On the other hand, 
PCA has an execution time that is close to zero, being our 
method more close to PCA than to parallel FastICA (in 
the firs stages) and MLP-AE, while NMF grows exponen-
tially. We can compare this results with those presented 
in Fig. 13, where the same behaviour can be observed in 
small Indian Pines. These experiments demonstrate that 
the single layer ELM can be used as a fast and accurate 
compression method, which is very useful for the trans-
mission of compressed hyperspectral data from sensors 
and computers onboard space or airborne platforms to the 
ground station on Earth, without losing data quality dur-
ing the decompression stage even with large amounts of 
hyperspectral data.

4.3.2 � Testing classification performance

At this point, we evaluate the classification results obtained 
for the hyperspectral images compressed with the proposed 
method. In this case, with the aim of taking compressed 
pixels in classification stage, for both training and testing 

the network, and following the procedure of the Sect. 4.3.1, 
hyperspectral scenes are entire compressed by the proposed 
method in the first place, using the 85% of the data for 
training. Our rationale for this experiment is that ANNs in 
general (and ELMs in particular) suffer from the Hughes 
effect when applied to hyperspectral image classification [6], 
mainly due to the unbalance between the high dimensional-
ity of the hyperspectral data and the limited number of train-
ing samples available in advance. To avoid this problem, our 
proposed method can be used to mitigate the Hughes effect 
and perform a good classification. The selected topology 
has been described in Sect. 3.2 (see Fig. 4): four layers with 
sizes d − L1 − L2 − m , being d the number of spectral bands, 
L1 the compression ratio (set to 40), L2 the sparse ratio (that 
has been traced in ranges 1000, 2000, … , 8000) and m the 
number of labels. Additionally, the regularization parameter 
C (see Eq. 15) has been traced from 1e−08 to 1e+08. On the 
other hand, in order to address the Hughes effect, different 
and reduced training sets have been selected, in particular 
1, 3, 5, and 10% of samples per class have been randomly 
selected from the available labeled data for each image.

To test the proposed method, we perform a comparison 
between our fast approach and the ELM network described 
in [107]. The ELM proposed in [107] has three layers: one 
input layer with d neurons, being d the number of spectral 
bands; one hidden layer with L neurons, being L a num-
ber traced in the ranges 400, 600, 800, … and 2000, with 
parameter of regularization C = 10−3, 10−2,..., 104 . Also, an 
owner version of multinomial logistic regression (MLR), 
random forest (RF) and spectral convolutional neural net-
work (1D-CNN) classifiers have been implemented and 
executed for this paper to compare their performance with 
that obtained by the proposed DR + classification method. 
We must remark that ELM in [107], the MLR, the RF and 
1D-CNN are using non-compressed data, that means, they 
are taking information of the entire spectral bands, while 
the proposed method first compress and then classifies the 
hyperspectral data. This fact repercute into execution times, 
being the proposed method the fastest one.

Table 6 shows the obtained results using small Indian 
Pines and Pavia University hyperspectral scenes. As we 
can observe, with small Indian Pines dataset, the proposed 
method reaches the best accuracy results, followed by the 
implemented 1D-CNN classifier and the ELM proposed in 
[107], while the MLR and the RF presents their results so 
far away from the proposed method. Focusing on the pro-
posed method and the ELM of [107], we can observe that 
the proposed method is 1.10 (with 5% of training) and 1.07 
(with 10% of training) times better than the ELM in [107]. 
Even without considering the data in [107], we can observe 
that the proposed method reaches very good classification 
results with only 1% and 3% of training. On the other part, 
with Pavia University the proposed approach is the second 

Fig. 13   Execution times of the compression experiment with the 
small Indian Pines scene
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method with best overall results, following closely the 
1D-CNN classifier. Moreover, the proposed method is able 
to achieve better results than the ELM proposed in [107], 
reaching an overall accuracy which is 1.03 times better than 
the ELM in [107], with 1%, 5% and 10% of training. With 

Pavia University, MLR and RF present very similar results 
to proposed method, however they are using 103 spectral 
bands, while the proposed method uses only L1 = 40 spectral 
bands. Finally, in both cases, with small Indian Pines and 

Table 6   Overall classification 
accuracy comparison (using the 
small Indian pines and Pavia 
University hyperspectral scenes) 
between proposed method, the 
MLR, RF, 1D-CNN and the 
ELM in [107]

The proposed method has been executed ten times and the overall accuracy results are reported, with the 
standard deviation in the parentheses
Best values obtained are given in bold

Hyperspectral scene Training (%) MLR RF 1D-CNN ELM [107] Proposed

Small Indian Pines 1 57.24 (1.41) 56.78 (1.24) 69.74 (1.82) − 64.91 (1.17)
3 65.16 (1.01) 66.08 (1.49) 75.45 (1.46) − 75.91 (0.67)
5 69.74 (0.61) 69.97 (0.92) 75.47 (3.03) 72,23 (1.02) 79.77 (0.67)
10 74.17 (0.70) 75.49 (0.85) 83.71 (0.11) 78.88 (0.88) 84.76 (0.53)

Pavia University 1 82.22 (0.87) 82.18 (0.62) 90.37 (0.52) 80.28 (1.00) 82.83 (0.05)
3 85.56 (0.45) 86.31 (0.31) 92.75 (0.26) − 86.43 (0.13)
5 86.97 (0.23) 88.05 (0.34) 93.83 (0.43) 85.35 (0.37) 87.86 (0.03)
10 88.55 (0.16) 90.57 (0.30) 94.94 (0.27) 86.72 (0.20) 89.42 (0.04)

Fig. 14   Classification maps for the small Indian Pines scene with the 
original ground truth (left), the obtained classification map without 
background (center), and the obtained classification map with back-

ground (right) by the proposed method, with 1% of training (top), 
reaching 63.52% accuracy in 0.25 s, and with 10% of training (bot-
tom), reaching 83.23% accuracy in 1.34 s
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Pavia University, the proposed method is also more robust, 
with lower standard deviation.

Second experiment performs a comparison between the 
proposed fast DR and classifier and the fastest DR method, 
the multicore PCA compressor, whose compressed hyper-
spectral representation is classified by a neural classifier, 
implemented by the GPU MLP classifier. Again, the PCA 
compresses the hyperspectral image to L1 bands, and the 
MLP-classifier is a single hidden layer network L1 − L2 − m , 
where the hidden layer expands the input data in L2 nodes, 
being L2 > L1 and m the number of classes. For all experi-
ments, L1 has been set to 40. Table 7 shows the classifica-
tion results obtained using the small and large Indian Pines 
hyperspectral scenes and the execution times, respectively. 
We can see that the proposed method can achieve very simi-
lar accuracy results to those obtained by the PCA+MLP 
network, reaching good results with few samples per class 
(e.g., 63.52% with only 1% of training for the small Indian 
Pines and 52.77% with 3% of training for the large Indian 
Pines scene) and improving the accuracy as the number of 
samples per class increases. However, in Table 7 we can 
see that the proposed method based on ELMs achieves the 
best execution times, being the fasted method in comparison 
with the PCA+MLP. From this table we can see that the pro-
posed method not only achieves results very similar to the 
PCA+MLP, but it is also much faster than it, being a viable 
option for real-time applications. In this regard, it is worth 
noting that all the results reported for our method are strictly 
in real-time, which means that they are obtained in a time 
that is smaller than the data acquisition time for the consid-
ered images. Nowadays, hyperspectral data acquisition rates 
have been increased due to technological advances [108, 
109], allowing new instruments to provide a continuous flow 
of data in the order of several terabytes per hour [110]. For 
instance, NASA is continuously gathering hyperspectral 
data through instruments such as the airborne Jet Propulsion 

Laboratory’s sensor AVIRIS which comprises several GBs 
per flight [111], with a collection rate of 2.5 MB/s (nearly 9 
GB/hour1). In this particular experiment, Small Indian Pines 
stores 8.49 MB of raw data in memory, and Big Indian Pines 
stores 2894 MB (both in 16 bit format). To meet real-time 
processing performance, the compression and classifica-
tion times must be smaller than the acquisition time of the 
images, i.e., they must be smaller than 8.49∕2.5 = 3.40 s and 
2894∕2.5 = 1157.6 s. We can conclude that proposed fast 
DR method is able to process and classify these amounts 
of data in real-time, with a compression and classification 
time much lower than the acquisition times of these remote 
sensing images.

For illustrative purposes, we represent the aforemen-
tioned results graphically in Figs. 14 and 15, where we can 
observe that the classification maps obtained by the pro-
posed method with 1% of training (top), reaching 63.52% 
accuracy with the small Indian Pines scene and 46.64% with 
the large Indian Pines scene, and with 10% of training (bot-
tom), reaching 83.23% accuracy with the small Indian Pines 
scene and 59.00% with the large Indian Pines scene. These 
classification maps are very similar to any map obtained by 
a MLP network. However, the execution times are much 
smaller (and strictly in real-time) when the proposed method 
is used, which is very important for practical exploitation of 
the considered hyperspectral images in a number of applica-
tions with time-critical constraints.

4.4 � Conclusions and future research lines

In this paper, we have developed a new ELM-based dimen-
sionality reduction and classification technique that can offer 
different functionalities for remotely sensed hyperspectral 

Table 7   Classification results 
(accuracy) and execution times 
(in seconds) for the small and 
large Indian Pines hyperspectral 
datasets of PCA+MLP and the 
fast DR method, and Speedup 
reached by the proposed 
method in comparison with the 
PCA+MLP

Both methods have been executed 10 times and the average results are reported, with the standard deviation 
in the parentheses
Best values obtained are given in bold

Classification accuracy Execution times Speedup

Hyperspectral scene Training PCA+MLP Proposed PCA+MLP Proposed

Small Indian Pines 1 58.56% (3.27) 63.52% (0.51) 1.01 (0.01) 0.25 (0.01) 4.04
3 72.01% (1.45)  74.52% (0.38) 3.87 (0.15) 0.38 (0.01) 10.18
5 79.62% (1.22) 79.11% (0.42) 9.53 (0.14) 1.73 (1.16) 5.51
10 83.75% (0.32) 83.23% (0.22) 14.31 (0.22) 1.34 (1.02) 10.68

Big Indian Pines 1 46.82% (0.64) 46.64% (0.18) 14.99 (0.07) 1.67 (0.20) 8.98
2 51.13% (0.24) 50.13% (0.37) 29.75 (0.18) 1.45 (0.03) 20.52
3 52.72% (1.97) 52.77% (0.45) 45.12 (0.24) 4.72 (0.05) 9.56
5 56.82% (0.66) 55.43% (0.77) 75.41 (0.44) 13.45 (0.13) 5.61
10 62.69% (0.65) 59.00% (2.31) 150.46 (0.53) 23.70 (0.32) 6.35

1  https​://aviri​s.jpl.nasa.gov/aviri​s/instr​ument​.html

https://aviris.jpl.nasa.gov/aviris/instrument.html
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data exploitation. First and foremost, the proposed approach 
can compress the huge data volume of hyperspectral remote 
sensing data resulting from its large spectral dimensionality. 
In addition, the proposed method can also perform advanced 
classification of the compressed hyperspectral scene, provid-
ing a framework that allows fast and accurate exploitation of 
hyperspectral scenes since the problems motivated by their 
large dimensionality (e.g., the Hughes effect) can be circum-
vented. Our experimental results indicate that, although the 
compression stage of the proposed method is slower than 
the widely used PCA, the method can produce better com-
pression/decompression error reconstruction, being much 
faster than other fast approaches such as the NMF, ICA and 
MLP, reaching quite similar or even lower errors in compari-
son with NMF and MLP (despite NMF and MLP employ a 
more significant computational effort). As a result, the non-
iterative nature of our newly proposed single layer ELM fast 
approach can achieve an acceptable error without data loss 
in less time, offering a powerful tool for high-dimensional 

data transmission between the onboard platform and the 
ground station on Earth. In addition, we have also shown 
that the proposed method can reach very good classifica-
tion performance when compared with other methods such 
as the classical ELM in [107], the MLR, RF and 1D-CNN, 
even when using very small amounts of training data. The 
proposed method can also reach similar classification results 
as compared to other widely used approaches, such as the 
PCA+MLP of one hidden layer, employing significantly 
less time than this method, even when analyzing very large 
hyperspectral scenes. In fact, the proposed approach offers 
important advantages for practical exploitation since the 
compression and classification results obtained in our exper-
iments are strictly in real-time. Future work will focus on 
the development of hardware implementations in specialized 
platforms that can reduce even more the processing times for 
large-scale processing of large hyperspectral data reposito-
ries. Also, new ELM approaches will be studied for hyper-
spectral compression, such as the sparse ELM (SELM).

Fig. 15   Classification maps for the large Indian Pines scene with the 
original ground truth (left), the obtained classification map without 
background (center) and the obtained classification map with back-

ground (right) by the proposed method, with 1% of training (left), 
reaching 46.64% accuracy in 1.67 s, and with 10% of training (right), 
reaching 59.00% accuracy in 23.70 s
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