
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018 1131

GPU Parallel Implementation of Spatially Adaptive
Hyperspectral Image Classification

Zebin Wu , Member, IEEE, Linlin Shi , Jun Li , Member, IEEE, Qicong Wang, Le Sun , Member, IEEE,
Zhihui Wei, Javier Plaza , Senior Member, IEEE, and Antonio Plaza , Fellow, IEEE

Abstract—Image classification is a very important tool for re-
motely sensed hyperspectral image processing. Techniques able to
exploit the rich spectral information contained in the data, as well
as its spatial-contextual information, have shown success in re-
cent years. Due to the high dimensionality of hyperspectral data,
spectral-spatial classification techniques are quite demanding from
a computational viewpoint. In this paper, we present a compu-
tationally efficient parallel implementation for a spectral-spatial
classification method based on spatially adaptive Markov random
fields (MRFs). The method learns the spectral information from
a sparse multinomial logistic regression classifier, and the spatial
information is characterized by modeling the potential function
associated with a weighted MRF as a spatially adaptive vector to-
tal variation function. The parallel implementation has been car-
ried out using commodity graphics processing units (GPUs) and
the NVIDIA’s Compute Unified Device Architecture. It optimizes
the work allocation and input/output transfers between the cen-
tral processing unit and the GPU, taking full advantages of the
computational power of GPUs as well as the high bandwidth and
low latency of shared memory. As a result, the algorithm exploits
the massively parallel nature of GPUs to achieve significant ac-
celeration factors (higher than 70x) with regards to the serial and

Manuscript received May 31, 2017; revised August 15, 2017; accepted
September 14, 2017. Date of publication October 11, 2017; date of current
version April 11, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61772274, Grant 61471199, Grant
61701238, Grant 91538108, and Grant 11431015, in part by the Fundamental
Research Funds for the Central Universities under Grant 30917015104, in part
by the Jiangsu Province Six Top Talents project of China underGrantWLW-011,
in part by the Jiangsu Provincial Natural Science Foundation of China under
Grant BK20170858, and in part by the Research Fund of Jiangsu High Tech-
nology Research Key Laboratory for Wireless Sensor Networks under Grant
WSNLBKF201507. (Corresponding Author: Zebin Wu.)
Z. Wu is with the School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing 210094, China, Jiangsu
High Technology Research Key Laboratory for Wireless Sensor Networks,
Nanjing 210003, China, and also with the Hyperspectral Computing Labora-
tory, Department of Technology of Computers and Communications, Escuela
Politécnica, University of Extremadura, Cáceres E-10003, Spain (e-mail: ze-
bin.wu@gmail.com).
L. Shi, Q. Wang, L. Sun, and Z. Wei are with the School of Computer

Science and Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China (e-mail: 1353622861@qq.com; wqclandy@163.com;
gswei@njust.edu.cn).
J. Li is with the Guangdong Provincial Key Laboratory of Urbanization and

Geo-Simulation, and the Center of Integrated Geographic Information Analy-
sis, School of Geography and Planning, Sun Yat-Sen University, Guangzhou
510275, China (e-mail: lijun48@mail.sysu.edu.cn).
J. Plaza and A. Plaza are with the Hyperspectral Computing Labora-

tory, Department of Technology of Computers and Communications, Es-
cuela Politécnica, University of Extremadura, Cáceres E-10003, Spain (e-mail:
jplaza@unex.es; aplaza@unex.es).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSTARS.2017.2755639

multicore versions of the same classifier on an NVIDIA Tesla K20C
platform.

Index Terms—Graphics processing units (GPUs), hyperspectral
image, parallel, sparse multinomial logistic regression (SMLR),
spatially adaptive Markov random fields (MRFs), spectral-spatial
classification.

I. INTRODUCTION

HYPERSPECTRAL image classification intends to assign
the pixel vectors of a scene into a set of predefined classes.

Different from panchromatic and multispectral remote sensing
images, hyperspectral images contain hundreds of narrow spec-
tral bands, spanning the visible to infrared spectrum, and exhibit
a wealth of information in the spectral domain. In the literature,
it has been shown that techniques able to exploit both the spec-
tral and the spatial information contained in the scene represent
successful approaches to hyperspectral image classification [1].
However, a remaining challenge is to take full advantage

of the spectral and spatial information contained in the hyper-
spectral data. Since each pixel is given by a high-dimensional
vector, supervised and semisupervised classification requires a
sufficient number of training samples, which is difficult to sat-
isfy in many remote sensing applications [2]. Recently, many
(supervised and unsupervised) methods have been presented for
hyperspectral image classification [1]–[3], among which those
based on machine learning methods such as the support vec-
tor machine (SVM) [4] or the multinomial logistic regression
(MLR) [5], [6] have been proven to be able to deal with limited
training samples in a robust way.
Another important challenge in hyperspectral image classi-

fication is the extremely high dimensionality of hyperspectral
data cubes. The dimensionality and volume of hyperspectral
data is ever increasing, and high-speed classification is very im-
portant for applications with time-critical constraints, such as
target detection for military purposes, monitoring of chemical
contamination, and wildfire tracking. Fortunately, recent ad-
vances in high performance computing [7]–[15] have allowed
for the exploitation of specialized hardware devices such as
field-programmable gate arrays (FPGAs) [11], Beowulf clus-
ters and distributed computers [12], multicore central process-
ing units (CPUs) [13], and graphics processing units (GPUs)
[13]–[17] in hyperspectral imaging applications. Specifically, it
is possible to greatly accelerate the hyperspectral image pro-
cessing on a GPU-based parallel computing platform, benefit
from its capacity of performing compute-intensive, massively

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7162-0202
https://orcid.org/0000-0003-1908-4390
https://orcid.org/0000-0003-1613-9448
https://orcid.org/0000-0001-6465-8678
https://orcid.org/0000-0002-2384-9141
https://orcid.org/0000-0002-9613-1659

1132 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

parallel computations [9]. For example, a GPU implementation
of a sparse MLR (SMLR) classifier has been recently presented
as one of the first techniques achieving real-time classification
performance [7].
Nevertheless, the SMLR is a pixel-based classifier that only

exploits the spectral information contained in the scene. To fur-
ther improve the classification accuracy and robustness [18], the
spatial-contextual information has been successfully included
in many classification techniques, such as composite kernels
(CK) [19], [20], graph kernels [21], morphological filters [22],
[23], partitional clustering [24], [25], and joint sparse repre-
sentation [26], [27]. Among these techniques, Markov random
fields (MRFs) [28]–[31] have achieved great popularity and ef-
fectiveness in the task of incorporating the spatial information
to spectral information under a Bayesian inferring framework.
High classification accuracy is extremely important for proper

decision-making in many critical scenarios [3], including, for
instance, precision agriculture, urban planning, or military re-
connaissance. Take into consideration that neighboring pixels
in natural scenes usually comprise materials with similar spec-
tral characteristics, especially in homogeneous regions, many
techniques have included the spatial-contextual information in
addition to spectral-based analysis in order to improve the clas-
sification accuracy and robustness [18]. This is, for instance, the
case of techniques such as CK [19], [20], graph kernels [21],
morphological filters [22], [23], partitional clustering [24], [25],
and joint sparse representation [26], [27]. Among these tech-
niques, MRFs [28]–[31] have achieved great popularity and
effectiveness in the task of incorporating the spatial information
to spectral information under a Bayesian inference framework.
In order to further exploit the spatial structure and contextual

information to improve the classification accuracy in hyper-
spectral image classification, Sun et al. [32] proposed a novel
spectral-spatial approach based on spatially adaptive MRFs. In
this approach, the spectral information is learnt by an SMLR
classifier, and the spatial information is characterized by mod-
eling the potential function associated with a weighted MRF
as a spatially adaptive vector total variation function, which is
defined on the real-valued hidden marginal probabilities of the
posterior distribution, where the weights are calculated by the
gradients of the original hyperspectral image to model the spa-
tial structure of the original data. This classifier has the poten-
tial to outperform other spectral-spatial approaches, as shown in
[32]. Meanwhile, the utilization of spatial information leads to a
significant computational burden, and its execution is computa-
tionally too expensive to achieve real-time performance, which
compromises its application in time-critical scenarios.
In this paper, we develop an efficient parallel implementa-

tion of a spatial-spectral classification method based on spa-
tially adaptive MRFs, implemented on commodity GPUs. The
proposed parallel implementation has been developed using
NVIDIA’s Compute Unified Device Architecture (CUDA), as
well as the cuFFT library. It optimizes the work allocation and
input/output (I/O) transfers between the CPU and the GPU,
taking full advantages of the computational power of GPUs as
well as the high bandwidth and low latency of shared memory.
Both classification accuracy and computational performance are
evaluated, using two different GPUplatforms byNVIDIA: Tesla

C2075 and Tesla K20C. The experimental results, conducted on
two real hyperspectral images, reveal remarkable acceleration
factors while retaining exactly the same classification accuracy
achieved by the corresponding serial and multicore versions.
The remainder of this paper is organized as follows. Sec-

tion II briefly describes the spatially adaptive hyperspectral im-
age classification method based on weighted MRFs. Section III
describes its GPU parallelization in detail. Section IV evaluates
the proposed parallel implementation in terms of both classi-
fication accuracy and computational performance. Section V
concludes with some remarks and hints at plausible future re-
search lines.

II. HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON
SPATIALLY ADAPTIVE MRFS

Let us assume that x = [x1 ,x2 , . . . ,xN] ∈ RL×N is a
hyperspectral image with N pixels and L bands (features),
S ≡ {1, 2, . . . , N} denotes the set of indexes of the N pix-
els, and y = [y1 , y2 , . . . , yN] ∈ KN is an image of class la-
bels, where K ≡ {1, 2, . . . ,K} denotes a set of K class labels,
xi ∈ RL is an L-dimensional hyperspectral pixel observation,
and each yi = [yi

(1) , y
(2)
i , . . . , yi

(K)] denotes a “1-of-K” en-
coding of the K classes (yi

(j) ∈ {0, 1}, forj ∈ K).
In a Bayesian framework, hyperspectral classification can be

interpreted as estimating y given the observed image x. The
maximum a posteriori (MAP) classification [32], [33] can be
modeled as

ŷ = arg max
y∈KN

(log p(y|x))

= arg max
y∈KN

{
N∑

i=1

(log p(yi |xi) − log p(yi)) + log p(y)

}
.

(1)

The densities p(yi |xi) are learnt by a probabilistic classifier,
and the density p(y) is usually modeled to impose a spatial
prior on the labels y. The classification task can be defined by
the MAP marginal solution [34],

ŷi ≡ max
k

qi
(k) = max

k
p(yi = k|xj , j ∈ Ni), i ∈ S. (2)

In our previous work [32], we used SMLR [35] to model
p(yi |xi) as a spectral data fidelity term, and modeled the spatial
prior on the implicit marginal probability of the posterior dis-
tribution q, instead of using a Gibbs distribution on the discrete
labels y.
Let us denote by pC ≡ [p1 ,p2 , . . . ,pN] ∈ RK×N the

probability matrix obtained through the SMLR, where
pi = [pi

(1) , pi
(2) , . . . , pi

(K)]T , and let us denote by q ≡
[q1 , q2 , . . . , qN] ∈ RK×N the implicit marginal matrix, where
qi = [qi

(1) , qi
(2) , . . . , qi

(K)]T . Since the SMLR classifier does
not utilize the spatial-contextual information, it often leads to
classification outliers in homogeneous areas. Here wemodel the
SMLR outliers as additive Gaussian white noise, and define the
posterior probability p(q|pC) to infer q from pC as follows:

q = arg max
q

p(q|pC) = arg max
q

p(pC |q)p(q)/p(pC) (3)

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1133

whose solution is equivalent to

q = arg max
q

p(q|pC) = arg min(− log p(pC |q) − log p(q))
q

.

(4)
Bearing in mind that modeling the spatial structure is impor-

tant for classification purposes [36], a spatially adaptive MRF
[32] is used here to model the spatial prior term, taking full
advantage of the spatial-contextual information of the hyper-
spectral image as follows:

p(q) =
1
Z

exp

⎧⎨
⎩−μs · a(xi)

∑
|i−j |<δ

‖qi − qj‖1

⎫⎬
⎭ (5)

where Z is a normalization constant for the density, μs tunes
the degree of homogeneity of each region in the hyperspec-
tral image. |i − j| < δ indicates that pixel i and j are a pair of
neighbors in spatial sense, and a(xi) is a spatially adaptive reg-
ularization parameter imposing the edge structure information
and adjusting the power of the spatial smoothness in different
pixel locations as follows:

a(xi) =
1

1 +

√
L∑

j=1
((∇hxj

i)
2

+ (∇vxj
i)

2
)

(6)

where∇hxj
i and∇vxj

i are the horizontal and vertical first-order
gradients of xi at the jth band. Moreover, the true labels of the
training samples used for the learning stage can be fixed as
an additional constraint to characterize their spatial structure by
spreading the class information to their neighbors. The probabil-
ity distribution q must be nonnegative, and its columns must be
sum-to-1. Then, the proposed hyperspectral image classification
model based on spatially adaptive MRFs can be summarized as
follows:

q̂ = arg min
q

⎧⎨
⎩‖q − pC ‖2

F + μs · a(xi)
∑

|i−j |<δ

‖qi − qj‖1

⎫⎬
⎭

s.t. q ≥ 0, qΛ l
= yΛ l

, 1T qi = 1, i = 1, 2, . . . , N (7)

where ‖ · ‖F denotes the Frobenius norm, and Λl is the index
set of training samples.

By defining Hq ≡
[
Hhq
Hvq

]
=

∑
|i−j |<δ

‖qi − qj‖1 and λ =

μs · a(xi), the model can be transformed into

q̂ = arg min
q

1
2
‖q − pC ‖2

F + λHq

s.t. q ≥ 0, qΛ l
= yΛ l

, 1T qi = 1, i = 1, 2, . . . , N (8)

where ‖ · ‖1 denotes the l1 norm, qi is the i-th column of q corre-
sponding to pixel i, δ controls the size of the neighborhood, and
H is a convolution operator.Hh andHv denote linear operators
computing the horizontal and vertical differences, respectively,
between the components of q corresponding to neighboring pix-
els [37]. Let us takeHh for example,Hhq = [d1 ,d2 , . . . ,dN],
where di = qi − qih

, i and ih denote a pixel and its horizontal

neighbor. By introducing variables V 1 ,V 2 ,V 3 ,V 4 , and V 5 ,
model (8) can be rewritten as

q̂ = arg min
V 1 ,V 2 ,V 3 ,V 4 ,V 5

{
1
2
‖V 1 − pC ‖2

F + λ‖V 5‖1,1

+ lR+ (V 2) + l{1}{V 3}
}

s.t. V 1 = q V 2 = q V 3 = q V 4 = q V 5 = HV 4 (9)

where ‖x‖1,1 =
N∑

i=1
‖xi‖1 , xi is the ith column of x, and

lS (x) =

{
0, x ∈ S
+∞, x /∈ S

.
At this point, the alternating direction method of multipliers

[38], [39] can be utilized to efficiently solve model (9). In terms
of the probability matrix pC , we use the logistic regression
via variable splitting and augmented Lagrangian (LORSAL)
algorithm [40] to solve the SMLR model. A detailed algorith-
mic description of our spatially adaptive hyperspectral image
classification algorithm based on weighted MRF (referred to
hereinafter as SAHIC) is given in Algorithm 1.

III. GPU PARALLEL IMPLEMENTATION BASED ON CUDA

The proposed parallel implementation has been developed
following the philosophy that the most time-consuming opera-
tions are always carried out by GPU, and that it is particularly
important to optimize the memory allocation and to minimize
the I/O transfers between the CPU (host) and the GPU (device).
First, we analyzed Algorithm 1 in detail to determine the most
time-consuming parts that should be implemented in parallel.
After analyzing Algorithm 1, the following observations are in
place.
1) Algorithm 1 requires serial iterative loop executions for

calculating the implicit marginal matrix q. In every loop,
D1 , . . . ,D5 ,V 1 , . . . ,V 5 , and q need to be updated, each
of which is a big matrix of size K × N .

2) The algorithm involves many big matrix operations. Ev-
ery read-write and arithmetic operation involving these
big matrices is very time consuming on the CPU, and the
multistep iterative process increases the computational
burden even more. As a result, it is necessary to particu-
larly optimize the operations relevant to these bigmatrices
on the GPU.

3) The calculation of V 5 is the most time-consuming step
with computational complexity of O(LN log N), and the
convolution operations in steps 2.7 and 2.8 are the most
expensive parts (computationally) of the algorithm.There-
fore, wemainly concentrate on the efficient parallelization
of these operations in our GPU implementation.

With the aforementioned issues in mind, a GPU parallel im-
plementation of SAHIC (SAHIC_P) has been designed as illus-
trated by the flowchart in Fig. 1.

1134 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

Algorithm 1: Serial version of SAHIC (SAHIC_S).
Input: Training samples set A ∈ RL×J , class labels of
training samples Y A ∈ RK×J , test samples set
X ∈ RL×N

Initialization: Set λ > 0, λC > 0, β > 0, μ > 0, t = 0, M
= MaxIteration, Ã = h(A), X̃ = h(X), h(x) is the
radial basis function (RBF), initialize V

(0)
1 , V (0)

2 , V (0)
3 ,

V
(0)
4 , V (0)

5 , D(0)
1 , D(0)

2 , D(0)
3 , D(0)

4 , D(0)
5

Step 1. pC = LORSAL(Ã,Y A , X̃, λC , β)
Step 2. Calculate q

Do:
Step 2.1.

q(t+1) =
1
4
(V (t)

1 + D
(t)
1 + V

(t)
2 + D

(t)
2 + V

(t)
3 + D

(t)
3

+ V
(t)
4 + D

(t)
4)

q
(t+1)
∧l

= Y ∧l

Step 2.2. s = q(t+1) − D
(t)
3

Step 2.3. b(j) =
(

1 −
K∑

i=1
s(i,j)

)
/K, j ∈ (1, . . . , N)

Step 2.4. V
(t+1)
1 = 1

1+μ (pC + μ(q(t+1) − D
(t)
1)

Step 2.5. V
(t+1)
2 = max(q(t+1) − D

(t)
2 , 0)

Step 2.6. V
(t+1)
3 = s + 1 · b,1 = [1,, 1]T ,

a=q(t+1) − D
(t)
4

Step 2.7. V
(t+1)
4 = (HT H + I)−1

(a + HT (V (t)
5 + D

(t)
5)

Step 2.8. V
(t+1)
5 = soft(D(t)

5 − HV
(t+1)
4 , λ/μs)

Step 2.9. Update multipliers

D
(t+1)
1 = D

(t)
1 − (q(t+1) − V

(t+1)
1)

D
(t+1)
2 = D

(t)
2 − (q(t+1) − V

(t+1)
2)

D
(t+1)
3 = D

(t)
3 − (q(t+1) − V

(t+1)
3)

D
(t+1)
4 = D

(t)
4 − (q(t+1) − V

(t+1)
4)

D
(t+1)
5 = D

(t)
5 − (HV

(t+1)
4 − V

(t+1)
5)

Step 2.10. t = t + 1
While t > M

Step 3. [qmax ,Y x] = max(q), qmax ∈ R1×N is a vector
that consists of the maximum entry of each column in q,
Y x ∈ R1×N is the corresponding row subscripts of the
maximum entries.
Output: Y X , the class labels of training samples X .

In the following, we describe the optimizations related to low
level architecture and themost relevant parallelization steps con-
ducted in the GPU for developing the computationally efficient
parallel implementation of SAHIC in Algorithm 1.

A. Optimization of the Memory Allocation and I/O Transfer

First and foremost, we need to properly arrange the data stor-
age and I/O communication between the host (CPU) and the
device (GPU), to minimize the cost of data transfers. The train-
ing samples and test samples are stored by columns, and then
manually transferred from the CPU to the local GPU memory
after initialization. During the parallel optimization process, the
data is stored in the GPU memory as much as possible, and
the storage space for the intermediate variables of the iterative
process is allocated in advance. By taking full advantage of
the shared memory to achieve an efficient interaction with low
latency, we maximize the memory bandwidth and optimizing
accesses. In addition, the I/O communication between the host
and the device mainly takes place when updating parameters
or determining the termination conditions in the loop iterative
process. After the iterative process is completed, the data will
be transferred back from device to host, and the device memory
will be set free when it is no longer needed.

B. Parallel Optimization for Calculating V 1 ,V 2 , and V 3

Once the data set is loaded into the GPU memory, we exe-
cute the GPU version of the variable splitting and augmented
Lagrangian algorithm for sparse multinomial logistic regression
(LORSAL_P) in [7] to obtain the probability matrix pC . After
that, we define a CUDA kernel function called q_kernel, config-
ured with a grid that consists of as many threads as the size of q.
Here every thread is responsible for calculating an element of q.
To fix the true labels of the training samples, a kernel fixq_kernel
is realized to perform the execution of q

(t+1)
∧l

= Y ∧l
.

After that, we encapsulate the calculation of s and b into
a single CUDA kernel function nu_aux3_sum_kernel (see
Fig. 2), and optimize the calculation of b by means of a
column batch sum. The kernel function nu_aux3_sum_kernel
is designed to launch n blocks (n = (N + ThreadNum −
1)/ThreadNum), and each block includes ThreadNum threads
and a shared memory with the size of ThreadNum and data type
of Double. Bearing inmind that the sharedmemory in the device
has much lower latency, higher bandwidth, and smaller memory
size than the global memory, we develop a strategy to perform
the column batch sum to efficiently calculate the b, as Fig. 3
shows, making full use of the shared memory.
Taking into consideration that the calculation of V 1 ,V 2 ,V 3

are loosely coupled and involvematrices of the same dimension-
ality, and that there are no data dependences among the matrix
elements, steps 2.4, 2.5, and 2.6 in Algorithm 1 are merged and
encapsulated into a single CUDA kernel function Vs_kernel to
minimize the startup times of the kernel functions. This kernel
launches as many threads as elements in V 1 , and each thread
performs the calculations for one matrix element, thus making
better use of the intrinsic concurrency of the CUDA blocks.

C. Parallel Optimization for Calculating V 4 ,V 5

The calculation of V 4 and V 5 is very time-consuming, and
this represents a bottleneck of the algorithm. First of all, we com-
puteL = (HT H + I)−1 and store it outside the loop, since its

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1135

Fig. 1. Flowchart of the proposed GPU parallel implementation (SAHIC_P).

Fig. 2. CUDA codes for kernel nu_aux3_sum_kernel.

computation remains unchanged in the iterative process. As a
result, we define a kernel function named IL_kernel to com-
pute L, which launches a block with the same size of H on
the GPU, and every thread is in charge of calculating one el-
ement of L, taking full advantages of parallelism of the GPU
device.
After that, we further analyze the steps 2.7 and 2.8. Since H

acts only on the spatial domain, it can be independently handled
in band-by-band fashion. For each band, we need to perform
a convolution operation, which can be solved by means of a
discrete Fourier transform (DFT) diagonalization. Therefore,
it is crucial to efficiently implement the DFT on the GPU. In
this paper, we accomplish this important step using the cuFFT
library [41] in the CUDA Toolkit, which provides a simple in-
terface for computing fast Fourier transforms (FFTs) on GPUs
[42]. By employing the cuFFT library and applying the con-
figuration mechanism plan, the transform is optimized for the
particular GPU hardware. Then, the actual transform takes place
following the plan of execution by calling the execution func-
tion. This is a key aspect to the performance of our GPU parallel

Fig. 3. Diagram that illustrates our efficient strategy to perform the column
batch sum of a matrix.

implementation. It is worth noting that, by the plan interface, it is
very easy to reuse the thread configurations and GPU resources
for different kinds of FFTs. After the configuration of the plan,
the function cufftExec∗ is invoked to conduct the FFT calcula-
tion in the GPU. Since the convolution operation on each band
is carried out independently, the FFT calculation is configured
by means of a cufftPlanMany function, for which the size of the
batch is set to the number of bands (i.e.,K) in the original hyper-
spectral image, and every branch performs the two-dimensional
Fourier transform with the same scale (i.e., the spatial size of
the image), thus leveraging the parallelism of the GPUs and the
floating-point power.
Then, a CUDA kernel called V4_kernel is implemented to

compute in parallel the operations of matrix addition and sub-
traction (see Fig. 4). A kernel function called V5_kernel is
launched next (see Fig. 5), where the number of threads equals
the size of the matrix V 5 , and each thread implements the oper-
ation V

(t+1)
5 = soft(D(t)

5 − HV
(t+1)
4 , λ/μ) and the updating

of the multipliers for a matrix element. In this way, we can
minimize the launch times of the kernel functions by merged
refactoring.
The parallel algorithm now repeats from step 2.1 to 2.10 until

a maximal number of iterations is reached. We implement the
remaining operations in the CPU, since they have much lower
computation costs, and can be realized very quickly in the CPU
without the need for parallelization.

1136 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

Fig. 4. CUDA codes for kernel V4_kernel.

Fig. 5. CUDA codes for kernel V5_kernel.

Fig. 6 gives an overall illustration of our GPU parallel imple-
mentation of the spatially adaptive hyperspectral image classi-
fication algorithm based on weighted MRFs (SAHIC_P). And a
detailed step-by-step algorithm description of the SAHIC_P is
summarized in Algorithm 2.

Fig. 6. Detailed illustration of our GPU parallel hyperspectral image classifi-
cation algorithm based on spatially adaptive MRFs (SAHIC_P).

IV. EXPERIMENTAL RESULTS

A. GPU Platforms and Experimental Datasets

In order to evaluate the performance of our GPU parallel al-
gorithm on different high performance computing architectures,
two GPU platforms of different CUDA Compute Capabilities
(i.e., NVIDIA Tesla C2075 and Tesla K20C) have been used
in our experiments. The hardware specifications and computing
capabilities of these GPUs and the corresponding CPU plat-
forms, as well as the software specifications, are described in
Tables I and II, respectively.
Two widely used hyperspectral images collected by two dif-

ferent imaging spectrometers: the Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) and theReflectiveOptics Spec-
trographic Imaging System (ROSIS), are used to assess the pro-
posed algorithm. A summary of these images, respectively, col-
lected over the Indian Pines region in NW Indiana USA and the
Urban area of Pavia University, Pavia, Italy, is given in Table III,
as well as in Figs. 7 and 8.

B. Performance Evaluation

In our experiments, we focus on evaluating both the classi-
fication accuracy and the computational performance of our
GPU-based SAHIC algorithm, as compared with the corre-
sponding serial version and a multicore version. The serial ver-

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1137

Algorithm 2: GPU parallel version of SAHIC (SAHIC_P).
Input: Training samples set A ∈ RL×J , class labels of
training samples Y A ∈ RK×J , test samples set
X ∈ RL×N

Initialization: Set λ > 0, λC > 0, β > 0, μ > 0, t = 0, M
= MaxIteration, Ã = h(A), X̃ = h(X), h(x) is the
radial basis function (RBF), initialize
V

(0)
1 ,V

(0)
2 ,V

(0)
3 ,V

(0)
4 ,V

(0)
5 ,D

(0)
1 ,D

(0)
2 ,D

(0)
3 ,D

(0)
4 ,D

(0)
5

Step 1. Copy data from host to device.
Step 2. Invoke LORSAL P (Ã,Y A , X̃, λC , β) to
calculate pC .
Step 3. Calculate q on GPU

Step 3.1. Invoke IL_kernel to compute L.
Do:

Step 3.2. Invoke q_kernel to calculate q, and invoke
fixq_kernel to perform the execution of
q

(t+1)
∧l

= Y ∧l
.

Step 3.3. Invoke nu_aux3_sum_kernel to calculate s
and b by means of column batch sum.

Step 3.4. Invoke Vs_kernel to consolidate the
calculation of V 1 ,V 2 ,V 3

Step 3.5. Invoke V4_kernel to compute in parallel the
operations of matrix addition and
subtraction in calculating V 4 .

Step 3.6. Perform the DFT on the GPU by employing
the cuFFT library to calculate the HV

(t+1)
4

Step 3.7. Invoke V5_kernel to perform the operation
V

(t+1)
5 = soft(D(t)

5 − HV
(t+1)
4 , λ/μ), and

update the multipliers.
While t > M

Step 4. Copy q from device to host.
Step 5. Compute [qmax ,Y x] = max(q) on CPU.
Output: Y X , the class labels of training samples X .

TABLE I
HARDWARE SPECIFICATIONS AND COMPUTING CAPABILITIES OF THE

CONSIDERED PLATFORMS

Specification NVIDIA Tesla
C2075 Platform

NVIDIA Tesla
K20C Platform

Processor Number Intel Xeon
E5-2609

Intel Xeon
E5-2620 v2

CPU Processor Base Frequency 2.4 GHz 2.10 GHz
Number of Cores 8 in total

(2 CPUs)
24 in total
(2 CPUs)

Main Memory 32 GB 16 GB
Architecture Fermi Kepler
Frequency of CUDA Cores 1150 MHz 706 MHz
Number of CUDA Cores 448 2496
Double Precision Floating
Point Performance (Peak)

0.515 Tflops 1.17 Tflops

GPU Single Precision Floating Point
Performance (Peak)

1.03 Tflops 3.52 Tflops

Dedicated Memory 6 GB 5 GB
Memory Interface 384-bit 320-bit
Memory Bandwidth 144 GB/sec 208 GB/sec
CUDA Compute Capability
(version)

2.0 3.5

TABLE II
SOFTWARE SPECIFICATIONS OF THE CONSIDERED PLATFORMS

Specification NVIDIA Tesla
C2075 Platform

NVIDIA Tesla
K20C Platform

OS Windows 7 64bit Windows 7 64bit
CUDA version 5.5 6.0
CULA library R17 R17
MKL version 11.2 11.2
OpenMP 2.0 2.0
Compiler Visual C++ 2010 Visual C++ 2010

TABLE III
DETAILS OF THE TWO EXPERIMENTAL HYPERSPECTRAL IMAGES USED IN OUR

EXPERIMENTS

Scenes Indian Pines Dataset Pavia University Dataset

Instruments AVIRIS ROSIS
Image spatial size 145∗145 610∗340
Spectral bands 200 (220 in total, and

20 noise and water
absorption bands are

removed)

103 (115 in total, and
12 noise bands are

removed)

Wavelength range 0.4–2.5 μm 0.43–0.86 μm
Spectral resolution 10 nm 4 nm
Spatial resolution 20 m 1.3 m
Ground-truth classes 16 Details are shown in

Fig. 7(b)
9 Details are shown in

Fig. 8(b)
Labeled pixels 10366 43923

Fig. 7. AVIRIS Indian Pines hyperspectral dataset. (a) False color composi-
tion. (b) Ground truth as a collection of mutually exclusive classes.

sion (denoted as SAHIC_S) has been implemented in the C++
programming language and used as a basis for the subsequent
parallel implementations. This version has been executed in one
CPU core of the considered platforms. The multicore version of
SAHIC (denoted as SAHIC_M) has been implemented follow-
ing the design principles in [43] using the OpenMP language
and the Intel Math Kernel (MKL), a library of optimized math
routines provided by Intel [44]. This version exploits all the
cores in the considered CPU platforms. We evaluate the per-
formance improvements (acceleration factors) achieved by the
multicore version and the GPU implementation over the serial
version.
On the other hand, three metrics have been used to measure

the classification accuracies [45].

1138 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

Fig. 8. ROSIS Pavia University hyperspectral dataset. (a) False color compo-
sition. (b) Ground truth as a collection of mutually exclusive classes.

1) Overall accuracy (OA), computed as the ratio between the
correctly classified test samples and the total number of
test samples.

2) Average accuracy (AA), the mean of the accuracies across
the different classes.

3) Kappa statistic (Kappa), computed by weighting the mea-
sured accuracies. It incorporates both of the diagonal and
off-diagonal entries of the confusionmatrix and is a robust
measure in terms of the degree of agreement.

According to Sun et al. [32] and our repeated experiments,
the parameterswere empirically set toλC = 0.001,β = 0.0001,
μ = 0.05, μs = 2, δ = 0.8 (RBF kernel parameter), and λ = 2
for the AVIRIS Indian Pines scene, and δ = 0.35 and λ = 1
for ROSIS Pavia University image. For each value reported
in experiments, ten Monte Carlo runs were performed and the
average values were reported.
We first evaluated the classification performance using the

ROSIS Pavia University dataset. We randomly chose 40 labeled
pixels from each class as training samples, and used the remain-
ing labeled pixels as test samples. Moreover, we used exactly
the same training-test sets for the three considered versions of
SAHIC when compared the achieved classification accuracies
in a fair way. Table IV summarizes the classification accuracies
(OA, AA, and Kappa), measured after processing the ROSIS
Pavia University dataset on the two considered platforms. Some
of the obtained classification maps are given in Fig. 9. It is worth
noting that the proposed SAHIC_S, SAHIC_M, and SAHIC_P
obtain exactly the same classification accuracies (when using
exactly the same training and test sets) on the considered plat-
forms, leading to very smooth maps of classification as depicted
in Fig. 9. We find that the time they need to complete their cal-
culations is the only difference between the serial and parallel
versions. The corresponding timing results (in seconds), and the
acceleration factors (speedups) are shown in Table V.
It is obvious from Table V that the parallel version SAHIC_P

achieves remarkable acceleration factors on both platforms as

TABLE IV
CLASSIFICATION ACCURACIES (%) OBTAINED FOR THE ROSIS

PAVIA UNIVERSITY DATASET

Class Class Name Training Samples Test Samples Accuracy

1 Asphalt 40 6591 93.56
2 Meadows 40 18609 94.71
3 Gravel 40 2059 92.43
4 Trees 40 3024 89.13
5 Metal sheets 40 1305 99.7
6 Bare soil 40 4989 100
7 Bitumen 40 1290 99.92
8 Bricks 40 3642 98.72
9 Shadows 40 907 99.09

OA (%) 95.36
AA(%) 360 42416 96.36
Kappa 0.9394

Fig. 9. Some of the obtained classification maps for the ROSIS University of
Pavia dataset. (a) Result of SAHIC_S. (b) Result of SAHIC_M. (c) Result of
SAHIC_P.

TABLE V
EXECUTION TIMES AND ACCELERATION FACTORS OBTAINED FOR THE ROSIS

PAVIA UNIVERSITY DATASET

Implementations Tesla C2075 Platform Tesla K20C Platform

SAHIC
_S

SAHIC
_M

SAHIC
_P

SAHIC
_S

SAHIC
_M

SAHIC
_P

Time (sec) 1427.69 179.08 17.73 1309.54 157.89 10.85
Acceleration
factor (X)

– 7.97 80.52 – 8.29 120.69

compared to both the serial and multicore versions. This is be-
cause the SAHIC_P takes full advantages of the computational
power of GPUs, the high bandwidth, as well as low latency of
shared memory, and benefits from exploiting the massively par-
allel nature of GPUs. Specifically, the SAHIC_P achieves high
speedups of about 81× and 121×, respectively, with regards to
the serial version in the two considered GPU platforms.
Now, we evaluate the performance of the considered clas-

sifiers using the AVIRIS Indian Pines dataset. In this test, we
randomly chose nearly 10% of the labeled pixels of each class
(1043 pixels in total) as training samples, and used the remaining
labeled pixels as test samples. For illustrative purposes, Fig. 10
shows some of the classification maps and Table VI reports the

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1139

Fig. 10. Some of the obtained classification maps of the AVIRIS Indian
Pines dataset. (a) Result of SAHIC_S. (b) Result of SAHIC_M. (c) Result
of SAHIC_P.

TABLE VI
CLASSIFICATION ACCURACIES (%) OBTAINED FOR THE AVIRIS INDIAN

PINES DATASET

Class Class Name Training
Samples

Test
Samples

Accuracy

1 Alfalfa 6 48 91.67
2 Corn-no till 144 1290 97.05
3 Corn-min till 84 750 98.4
4 Corn 24 210 100
5 Grass/Pasture 50 447 95.3
6 Grass/Trees 75 672 99.11
7 Grass/Pasture-

mowed
3 23 78.26

8 Hay-windrowed 49 440 100
9 Oats 2 18 16.67
10 Soybeans-no till 97 871 97.7
11 Soybeans-min till 247 2221 99.77
12 Soybean-clean till 62 552 99.82
13 Wheat 22 190 100
14 Woods 130 1164 100
15 Building-Grass-

Trees-Drives
38 342 97.66

16 Stone-steel
Towers

10 85 74.12

OA(%) 1043 9323 98.32
AA(%) 90.35
Kappa 0.9808

TABLE VII
EXECUTION TIMES AND ACCELERATION FACTORS OBTAINED FOR THE AVIRIS

INDIAN PINES DATASET

Implementation Tesla C2075 Platform Tesla K20C Platform

SAHIC
_S

SAHIC
_M

SAHIC
_P

SAHIC
_S

SAHIC
_M

SAHIC
_P

Time (sec) 228.66 43.66 4.62 211.02 38.17 2.95
Acceleration
factor (X)

– 5.24 49.49 – 5.53 71.53

classification accuracies of tenMonte Carlo runs. The results re-
ported in Table VI demonstrate that the SAHIC_S, SAHIC_M,
and SAHIC_P obtain very competitive results on bothGPUplat-
forms. Here it should be also noted that the accuracies obtained
by the three implementations of SAHIC are exactly the same,
when using the same train and test sets.
Table VII reports the execution times and acceleration factors

obtained for the AVIRIS Indian Pines dataset. As it can be seen
in Table VII, the processing time of SAHIC_P is less than 5 s,
including the I/O data transfer times between device and host.

TABLE VIII
EXECUTION TIMES AND ACCELERATION FACTORS OF THE KERNEL FUNCTIONS

AND ITS CORRESPONDING SERIAL VERSION IN ONE ITERATION

Pavia University Dataset

Kernels Serial Time(s) Parallel Time(s) Speedup
q_kernel 0.07368 0.00002 3312.98
fixq_kernel 0.00012 0.00003 3.52
nu_aux3_sum_kernel 0.00692 0.00003 200.26
Vs_kernel 0.06727 0.00004 1841.65
V4_kernel 0.02709 0.00006 476.19
V5_kernel 0.08223 0.00017 477.58

Indian Pines Dataset
Kernels Serial Time(s) Parallel Time(s) Speedup
q_kernel 0.01734 0.00002 929.66
fixq_kernel 0.00056 0.00004 14.11
nu_aux3_sum_kernel 0.00191 0.00003 57.25
Vs_kernel 0.01482 0.00005 303.34
V4_kernel 0.00538 0.00015 35.29
V5_kernel 0.01442 0.00031 46.41

It shows that our proposed parallel implementation makes a
significant improvementwith regard to the versions of SAHIC_S
and SAHIC_M. The best speedup obtained in our experiments
is above 70× (achieved on the NVIDIA Tesla K20C platform).
These results exhibit the potential of GPUs for parallelizing the
considered spectral-spatial classification algorithm.
It is worth noting that our proposed GPU parallel imple-

mentation is efficient on different GPU computing architectures
(for instance, Fermi and Kepler), and is scalable with different
CUDA compute capabilities. Specifically, even with the CUDA
compute capabilities of 2.0, the SAHIC_P can achieve signif-
icant speedup with regards to the serial version in the Tesla
C2075 platform.
To further evaluate the efficiency of the proposed parallel

approach, we perform the tests on the Tesla K20C Platform,
and compare the computation time of kernel functions in our
GPU implementation with their corresponding serial versions.
As can be seen from Table VIII, most of the kernel functions
achieve remarkable acceleration factors, especially for the most
time-consuming step of the calculation of V 5 , which is ideal in
terms of parallel efficiency.
Let us now take a closer look at the performance of the parallel

spatial-spectral classifier SAHIC_P as compared to the parallel
spectral-only classifier LORSAL_P in [7]. For simplicity, we
present an illustrative example using the AVIRIS Indian Pines
dataset. Fig. 11 compares the classification accuracies and the
computational performance of these two classifiers. It can be
concluded from Fig. 9 that the proposed SAHIC_P greatly im-
proves the classification accuracy with some additional compu-
tational burden, as expected. In particular, as noted by Tables VI
and VII, the total processing time of SAHIC_P is less than 3 s
on the NVIDIA Tesla K20C, and its accuracy reaches up to
98.32%, which is very compelling for an efficient hyperspectral
image classification method.
Fig. 12 shows the percentages of the data transfer time be-

tween the host and the device for the proposed parallel method,
which is also an important issue for GPU parallelization. It can

1140 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

Fig. 11. Comparison between LORSAL_P in [7] and the proposed SAHIC_P
on the AVIRIS Indian Pines dataset. (a) Classification accuracy. (b) Computa-
tional performance.

be observed from Fig. 12 that, in our GPU parallel implemen-
tation, the data transfer time is relatively low. In particular, our
implementation uses more than 99% of the total GPU time for
executing the kernels and less than 1.0% of the time for memory
transfers in all cases. Therefore, for SAHIC_P, the most signif-
icant portion of the time is taken by pure computation steps,
which can be defined as compute-bound. We emphasize that the
performance of the algorithm is driven by the processing units
themselves (not by data transfers) and, as a result, the algorithm
is expected to scale very effectively for larger size problems.
Several conclusions can be obtained from the experiments re-

ported in this section. First and foremost, our parallel SAHIC_P
produces good results in terms of both classification accuracy
and computational performance. The algorithm achieves sig-
nificant acceleration factors in the two considered GPU archi-
tectures, while in all experiments the classification accuracies
achieved by the parallel algorithm were shown to be exactly
the same to those obtained by the serial and multicore ver-
sions of SAHIC. Additionally, the SAHIC_P offered significant
improvements (in terms of classification accuracy and paral-
lel performance) with regards to the GPU implementation of a
spectral-based classifier (LORSAL_P). This fact results from

Fig. 12. Percentages of the total GPU time for kernel execution and data
transfers.

the inclusion of spatial-contextual information, which is also
accurately modeled and parallelized in the GPU. We believe
that these performance improvements for the considered spatial-
spectral classifier SAHIC can potentially enhance its applicabil-
ity in classification problems with time-critical constraints, thus
enhancing proper decision-making in these scenarios.

V. CONCLUSION AND FUTURE WORK

The incorporation of spatial-contextual information to
spectral-based characterization is crucial for hyperspectral im-
age classification. Despite the availability of many techniques

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1141

for spectral-spatial classification in the hyperspectral imaging
literatures, very few techniques have been effectively imple-
mented in parallel for their application in time-critical scenarios.
In this paper, we develop a new GPU parallel implementation
of a spatial-spectral hyperspectral image classification method
based on spatially adaptive MRFs, taking full advantage of the
computational power offered by commodity GPUs. Our ex-
perimental assessment, conducted using two GPU platforms,
demonstrated the superior performance of the proposed spectral-
spatial classifier in terms of both classification accuracy and
computational performance, using two widely used benchmark
hyperspectral scenes. Specifically, our experiments demonstrate
that the proposed method is more accurate and faster than sev-
eral other available techniques for hyperspectral image classifi-
cation, including the serial and multicore versions of the same
algorithm. In future works, we will explore other paralleliza-
tion frameworks for spectral-spatial classifiers using hardware
platformswith lower power consumption ratios, such as FPGAs.

REFERENCES
[1] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton,

“Advances in spectral-spatial classification of hyperspectral images,”Proc.
IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.

[2] A. Plaza et al., “Recent advances in techniques for hyperspectral image
processing,” Remote Sens. Environ., vol. 113, pp. S110–S122, Sep. 2009.

[3] A. Plaza, J. M. Bioucas-Dias, A. Simic, andW. J. Blackwell, “Foreword to
the special issue on hyperspectral image and signal processing,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 347–353,
Apr. 2012.

[4] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spec-
tral and spatial classification of hyperspectral data using SVMs and mor-
phological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11,
pp. 3804–3814, Nov. 2008.

[5] B. Krishnapuram, L. Carin, M. A. Figueiredo, and A. J. Hartemink,
“Sparse multinomial logistic regression: Fast algorithms and generaliza-
tion bounds,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6,
pp. 957–968, Jun. 2005.

[6] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspec-
tral image classification using soft sparse multinomial logistic regres-
sion,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318–322,
Mar. 2013.

[7] Z. Wu, Q. Wang, A. Plaza, J. Li, L. Sun, and Z. Wei, “Real-time imple-
mentation of the sparse multinomial logistic regression for hyperspectral
image classification on GPUs,” IEEE Geosci. Remote Sens. Lett., vol. 12,
no. 7, pp. 1456–1460, Jul. 2015.

[8] F. Xiao, G. Ge, L. Sun, and R. Wang, “An energy-efficient data gathering
method based on compressive sensing for pervasive sensor networks,”
Pervasive Mobile Comput., 2017. doi: 10.1016/j.pmcj.2017.02.005, to be
published.

[9] A. Plaza, Q. Du, Y. Chang, and R. L. King, “High performance computing
for hyperspectral remote sensing,” IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 3, pp. 528–544, Sep. 2011.

[10] F. Xiao, Z. Jiang, X. Xie, L. Sun, and R. Wang, “An energy-efficient
data transmission protocol for mobile crowd sensing,” Peer-to-Peer Netw.
Appl., vol. 10, no. 3, pp. 510–518, 2017.

[11] C. Gonzalez, D. Mozos, J Resano, and A. Plaza, “FPGA implementa-
tion of the N-FINDR algorithm for remotely sensed hyperspectral image
analysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 374–388,
Feb. 2012.

[12] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity cluster-
based parallel processing of hyperspectral imagery,” J. Parallel Distrib.
Comput., vol. 66, no. 3, pp. 345–358, 2006.

[13] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson, and R.
Sarmiento, “Hyperspectral unmixing on GPUs and multi-core processors:
A comparison,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 6, no. 3, pp. 1386–1398, Mar. 2013.

[14] A. Barberis, G. Danese, F. Leporati, A. Plaza, and E. Torti, “Real-time
implementation of the vertex component analysis algorithm on GPUs,”
IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 251–255, Feb. 2013.

[15] J. M. P. Nascimento, J. M. Bioucas-Dias, J. M. Rodriguez Alves, V. Silva,
and A. Plaza, “Parallel hyperspectral unmixing on GPUs,” IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 3, pp. 666–670, Mar. 2014.

[16] Y. Wu and L. Gao, “Graphics processing unit–accelerated computation
of the Markov random fields and loopy belief propagation algorithms for
hyperspectral image classification,” J. Appl. Remote Sens., vol. 9, no. 1,
2015, Art. no. 097295.

[17] Z. Wu, S. Ye, J. Liu, L. Sun, and Z. Wei, “Sparse nonnegative matrix
factorization on GPUs for hyperspectral unmixing,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 7, no. 8, pp. 3640–3649,
Aug. 2014.

[18] R. Ji, Y. Gao, R. Hong, Q. Liu, D. Tao, and X. Li, “Spectral-spatial con-
straint hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 3, pp. 1811–1824, Mar. 2014.

[19] J. Li, P. ReddyMarpu, A. Plaza, J. Bioucas-Dias, and J. Atli Benediktsson,
“Generalized composite kernel framework for hyperspectral image classi-
fication,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4816–4829,
Sep. 2013.

[20] J. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, “Spatial-spectral kernel
sparse representation for hyperspectral image classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2462–2471,
Dec. 2013.

[21] G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, “Spatio-spectral
remote sensing image classification with graph kernels,” IEEE Geosci.
Remote Sens. Lett., vol. 7, no. 4, pp. 741–745, Oct. 2010.

[22] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spec-
tral and spatial classification of hyperspectral data using SVMs and mor-
phological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11,
pp. 3804–3814, Nov. 2008.

[23] X. Kang, S. Li, and J. Benediktsson, “Spectral-spatial hyperspectral image
classificationwith edge-preserving filtering,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 5, pp. 2666–2677, May 2014.

[24] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and
classification of hyperspectral images using watershed transformation,”
Pattern Recognit., vol. 43, no. 7, pp. 2367–2379, Jul. 2010.

[25] S. Li, B. Zhang, A. Li, X. Jia, L. Gao, and M. Peng, “Hyperspectral
imagery clustering with neighborhood constraints,” IEEE Geosci. Remote
Sens. Lett., vol. 10, no. 3, pp. 588–592, Mar. 2013.

[26] X. Sun, Q. Qu, N. M. Nasrabadi, and T. D. Tran, “Structured priors
for sparse-representation-based hyperspectral image classification,” IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 7, pp. 1235–1239, Jul. 2014.

[27] L. Zhang et al., “Kernel sparse representation based classifier,” IEEE
Trans. Signal Process., vol. 60, no. 4, pp. 1684–1695, Apr. 2012.

[28] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3,
pp. 809–823, Mar. 2012.

[29] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM-and
MRF-based method for accurate classification of hyperspectral images,”
IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736–740, Apr. 2010.

[30] B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, “Adaptive Markov random
field approach for classification of hyperspectral imagery,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 5, pp. 973–977, May 2011.

[31] G. Moser and S. B. Serpico, “Combining support vector machines and
Markov random fields in an integrated framework for contextual image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734–
2752, May 2013.

[32] L. Sun, Z. Wu, J. Liu, L. Xiao, and Z. Wei, “Supervised spectral-spatial
hyperspectral image classification with weighted Markov random fields
(MRFs),” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 1490–
1503, Mar. 2015.

[33] J. Li, J.M.Bioucas-Dias, andA. Plaza, “Semisupervised hyperspectral im-
age segmentation using multinomial logistic regression with active learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085–4098,
Nov. 2010.

[34] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial classification
of hyperspectral data using loopy belief propagation and active learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844–856,
Feb. 2013.

[35] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmen-
tation using a new Bayesian approach with active learning,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3947–3960, Oct. 2011.

http://dx.doi.org/10.1016/j.pmcj.2017.02.005

1142 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 4, APRIL 2018

[36] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3,
pp. 809–823, Mar. 2012.

[37] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial
regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012.

[38] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction al-
gorithms for constrained sparse regression: Application to hyperspectral
unmixing,” in Proc. 2nd Workshop Hyperspectral Image Signal Process.
Evol. Remote Sens., 2010. pp. 1–4.

[39] W. Deng,W. Yin, andY. Zhang, “Group sparse optimization by alternating
direction method,” Dept. Comput. Appl. Math., Rice Univ., Houston, TX,
USA, 2011.

[40] J. M. Bioucas-Dias and M. Figueiredo, “Logistic regression via variable
splitting and augmented Lagrangian tools,” Instituto Superior T´ecnico,
Tech. Univ. Lisbon, Lisbon, Portugal, Tech. Rep., 2009.

[41] NVIDIA Developer Zone, “Cufft library user’s guide,” Mar. 2015.
[Online]. Available: http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf

[42] NVIDIA CUDA Zone, “CUDA toolkit,” Mar. 2015. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit

[43] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson, and R.
Sarmiento, “Hyperspectral unmixing on GPUs and multi-core processors:
A comparison,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 6, no. 3, pp. 1386–1398, Mar. 2013.

[44] Intel Developer Zone, “Reference manual for intel R© math kernel li-
brary 11.2,” Nov. 2014. [Online]. Available: https://software.intel.com/en-
us/mkl_11.2_ref

[45] G. M. Foody, “Classification accuracy comparison: hypothesis tests and
the use of confidence intervals in evaluations of difference, equivalence
and non-inferiority,” Remote Sens. Environ., vol. 113, no. 8, pp. 1658–
1663, Aug. 2009.

Zebin Wu (M’13) was born in Zhejiang, China, in
1981. He received the B.Sc. and Ph.D. degrees in
2003 and 2007, respectively, all in computer science
and technology, from Nanjing University of Science
and Technology.

He is currently a Professor in the School of
Computer Science and Engineering, Nanjing Uni-
versity of Science and Technology, Nanjing, China.
He was a Visiting Scholar in the Department of
Mathematics, University of California, Los Ange-
les, CA, USA, from August 2016 to September

2016, and from July 2017 to August 2017. From June 2014 to June
2015, he was a Visiting Scholar in the Hyperspectral Computing Labora-
tory, Department of Technology of Computers and Communications, Escuela
Politécnica, University of Extremadura, Cáceres, Spain. His research interests
include hyperspectral image processing, high performance computing, and com-
puter simulation.

Linlin Shi was born in Jiangsu, China, in 1993. He
received the B.Sc. degree in computer science and
technology from the School of Computer Science
and Engineering, Nanjing University of Science and
Technology, Nanjing, China, in 2016. He is currently
working toward the M.S. degree in computer appli-
cation, with the School of Computer Science and En-
gineering, Nanjing University of Science and Tech-
nology.

His research interests include hyperspectral image
classification, deep learning, and high performance

computing.

Jun Li (M’13) received the B.S. degree in geographic
information systems from Hunan Normal University,
Changsha, China, in 2004, the M.E. degree in remote
sensing from Peking University, Beijing, China, in
2007, and the Ph.D. degree in electrical engineering
from the Instituto de Telecomunicações, Instituto Su-
perior Técnico (IST), Universidade Técnica de Lis-
boa, Lisbon, Portugal, in 2011.

From 2007 to 2011, she was a Marie Curie Re-
search Fellow with the Departamento de Engenharia
Electrotécnica e de Computadores and the Instituto

de Telecomunicações, IST, Universidade Técnica de Lisboa, in the framework
of the European Doctorate for Signal Processing. She has also been actively in-
volved in the hyperspectral imaging network, a Marie Curie Research Training
Network involving 15 partners in 12 countries and intended to foster research,
training, and cooperation on hyperspectral imaging at the European level. Since
2011, she has been a Postdoctoral Researcher with the Hyperspectral Com-
puting Laboratory, Department of Technology of Computers and Communica-
tions, Escuela Politécnica, University of Extremadura, Caceres, Spain. She has
been a Reviewer of several journals, including the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING, IEEE GEOSCIENCE AND REMOTE SENSING
LETTERS, Pattern Recognition,Optical Engineering, Journal of Applied Remote
Sensing, and Inverse Problems and Imaging. Her research interests include hy-
perspectral image classification and segmentation, spectral unmixing, signal
processing, and remote sensing.

Dr. Li received the 2012 Best Reviewer Award of the IEEE JOURNAL OF
SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.

Qicong Wang was born in Henan, China, in 1988.
He received the B.Sc. degree in computer science and
technology from the School of Computer, HenanUni-
versity of Science and Technology, Luoyang, China,
in 2012. He is currently working toward the M.S.
degree in computer application, with the School of
Computer Science and Engineering, Nanjing Univer-
sity of Science and Technology, Nanjing, China.

His research interests include hyperspectral image
classification and high performance computing.

Le Sun (M’13) was born in Jiangsu, China, in 1987.
He received the B.S. degree in applied mathematics
from the School of Science, Nanjing University of
Science and Technology, Nanjing, China, in 2009,
where he is currently working toward the Ph.D. de-
gree in pattern recognition, with the School of Com-
puter Science and Engineering.

His research interests include the area of spec-
tral unmixing, hyperspectral classification, image
processing, sparse representation, and compressive
sensing.

WU et al.: GPU PARALLEL IMPLEMENTATION OF SPATIALLY ADAPTIVE HYPERSPECTRAL IMAGE CLASSIFICATION 1143

Zhihui Wei was born in Jiangsu, China, in 1963.
He received the B.Sc. and M.Sc. degrees in applied
mathematics and the Ph.D. degree in communica-
tion and information system all from the South East
University, Nanjing, China, in 1983, 1986, and 2003,
respectively.

He is currently a Professor and Doctoral Super-
visor in Nanjing University of Science and Tech-
nology, Nanjing, China. His main research interests
include partial differential equations, image pro-
cessing, multiscale analysis, sparse representation,
and compressed sensing.

Javier Plaza (M’09–SM’15) received the M.Sc. and
Ph.D. degrees in computer engineering from the Uni-
versity of Extremadura, Cáceres, Spain, in 2004 and
2008, respectively.

He is currently a Member of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. He has authored more than 120 pub-
lications, including 36 JCR journal papers, ten book
chapters, and 80 peer-reviewed conference proceed-
ing papers. He has guest edited two special issues on

hyperspectral remote sensing for different journals. His main research interests
include hyperspectral data processing and parallel computing of remote sensing
data.

Dr. Plaza is an Associate Editor for the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS and an Associate Editor of the IEEE REMOTE SENSING CODE
LIBRARY. He received the Outstanding Ph.D. Dissertation Award from the Uni-
versity of Extremadura in 2008. He received the Best Column Award of the
IEEE SIGNAL PROCESSING MAGAZINE in 2015 and the Most Highly Cited Pa-
per (during 2005–2010) in the Journal of Parallel and Distributed Computing,
and also Best Paper Awards at the IEEE International Conference on Space
Technology and the IEEE Symposium on Signal Processing and Information
Technology.

Antonio Plaza (M’05–SM’07–F’15) received the
M.Sc. and Ph.D. degrees both in computer engineer-
ing from the University of Extremadura, Cáceres,
Spain, in 1999 and 2002, respectively.

He is the Head of the Hyperspectral Computing
Laboratory, Department of Technology of Comput-
ers and Communications, University of Extremadura,
Cáceres, Spain. His main research interests include
comprise hyperspectral data processing and parallel
computing of remote sensing data. He has authored
more than 600 publications, including 197 JCR jour-

nal papers (more than 140 in IEEE journals), 23 book chapters, and 285 peer-
reviewed conference proceeding papers. He has guest edited ten special issues
on hyperspectral remote sensing for different journals.

Prof. Plaza is a Fellow of the IEEE “for contributions to hyperspectral data
processing and parallel computing of Earth observation data.” He received the
Best Reviewers of the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (in
2009) and the Best Reviewers of the IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING (in 2010), for which he served as Associate Editor dur-
ing 2007–2012. He is also an Associate Editor for IEEE ACCESS, and was a
member of the Editorial Board of the IEEE GEOSCIENCE AND REMOTE SENS-
ING NEWSLETTER (during 2011–2012) and the IEEE GEOSCIENCE AND REMOTE
SENSINGMAGAZINE (in 2013). He was also a member of the steering committee
of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS
AND REMOTE SENSING (JSTARS). He received the Best Column Award of the
IEEE SIGNAL PROCESSING MAGAZINE in 2015, the 2013 Best Paper Award of
the JSTARS journal, and the most highly cited paper (during 2005–2010) in
the Journal of Parallel and Distributed Computing. He received the Best Pa-
per Awards in the IEEE International Conference on Space Technology and
the IEEE Symposium on Signal Processing and Information Technology. He
served as the Director of Education Activities for the IEEE Geoscience and
Remote Sensing Society (GRSS) during 2011–2012, and as a President of the
Spanish Chapter of IEEE GRSS during 2012–2016. He has reviewed more than
500 manuscripts for more than 50 different journals. He is currently serving as
the Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

