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Abstract—The generative semantic nature of probabilistic topic
models has recently shown encouraging results within the remote
sensing image fusion field when conducting land cover categoriza-
tion. However, standard topic models have not yet been adapted to
the inherent complexity of remotely sensed data, which eventually
may limit their resulting performance. In this scenario, this paper
presents a new topic-based image fusion framework, specially de-
signed to fuse synthetic aperture radar (SAR) and multispectral
imaging (MSI) data for unsupervised land cover categorization
tasks. Specifically, we initially propose a hierarchical multi-modal
probabilistic latent semantic analysis (HMpLSA) model that takes
advantage of two different vocabulary modalities, as well as two
different levels of topics, in order to effectively uncover intersensor
semantic patterns. Then, we define an SAR and MSI data fusion
framework based on HMpLSA in order to perform unsupervised
land cover categorization. Our experiments, conducted using three
different SARandMSIdata sets, reveal that theproposed approach
is able to provide competitive advantages with respect to standard
clustering methods and topic models, as well as several multimodal
topic model variants available in the literature.

Index Terms—Image fusion, multispectral imaging (MSI), prob-
abilistic latent semantic analysis (pLSA), synthetic aperture radar
(SAR).

I. INTRODUCTION

THE current expansion of different Earth observation pro-
grams provides excellent opportunities to conduct interdis-

ciplinary research in many relevant application domains, such
as Earth monitoring [1]–[3], contingency management [4], [5],
climate warming [6], [7], and security applications [8]. In this
context, one of themost pressing challenges is how to effectively
combine the complementary information acquired by different
sensors in order to deal with the data integration requirements
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of all these applications. Precisely, the image fusion field aims
at combining remotely sensed data with complementary nature
[9]. From early years, synthetic aperture radar (SAR) and high-
resolution multispectral imaging (MSI) data have particularly
exhibited potential synergies, as they fundamentally represent
the Earth’s surface in a complementarymanner. That is, whereas
MSI instruments capture information about chemical character-
istics of materials, SAR sensors quantify the scattering prop-
erties of the objects in the scene, which makes image fusion a
very useful tool to relieve individual sensor limitations [10].

A. SAR and MSI Image Fusion

Broadly speaking, three different kinds of SAR and MSI
fusion techniques can be found in the literature, depending on
the data integration level [11]: decision, pixel, and feature-level
methods.
1) Decision level-based methods estimate a separate predic-

tor for each individual sensor and they eventually gen-
erate a final output by fusing all these independent re-
sults. For instance, Waske and van der Linden presented
in [12] a fusion model based on two independent lev-
els, with a first one to separately classify the input SAR
and MSI data using a support vector machine (SVM)
classifier, and a second one to combine both indepen-
dent results. Other authors propose more elaborated de-
cision schemes to uncover the correlation between SAR
and MSI classification results. It is the case of the work
presented in [13], where Mazher et al. proposed a novel
decision-based fusion technique, which initially computes
the posterior probability for each land-cover class and then
generates the fused result using a maximum a posteriori
approach.

2) Pixel-based fusion methods aim at directly combining im-
age pixels from different sensors in order to generate a
fused result with improved spatial-spectral data. It is the
case of the work presented in [14] that proposed a pan-
sharpening algorithm based on independent component
analysis and an adaptive curvelet-based fusion rule. Al-
ternative pixel-based fusionmethods use different kinds of
image transformations to generate the fused result, such
as the work presented in [15], which uses the principal
component analysis decomposition approach for combin-
ing SAR and MSI image pixels, and a genetic algorithm
together with an SVM-based classifier.
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3) Finally, feature-based fusion methods pursue to integrate
attributes extracted from multiple modalities in order to
generate a joint data representation that considers fea-
tures from several sensors. For instance, Zhang et al. in
[16] studied the fusion of four different gray-level optical
features together with polarimetric SAR data. Further-
more, the work presented in [17] proposed a data fusion
approach, which concatenates SAR features over both
polarizations, and three different optical features based
on information theory radiometric descriptors, local ho-
mogeneity texture information, and time-frequency spec-
tral features. Other relevant fusion methods consider only
features extracted from specific areas of interest to fuse
the data. For example, Sprohnle et al. [18] proposed an
object-based image analysis approach to combine optical
and SAR for dwelling detection in refugee camps. Anal-
ogously, the work presented in [19] integrates SAR and
MSI satellite data by means of imposing different fusion
rules for each initially segmented area.

B. Current Limitations and Trends

All the aforementioned techniques have shown to be effective
under particular circumstances [20]. Whereas decision-based
fusion models allow combining any kind of data from different
instruments, the performance for SAR and MSI imagery may
become rather limited because the data are independently ana-
lyzed and the fusion process is eventually defined as a postclas-
sification one, which may be difficult to design. In this regard,
pixel-based methods provide a more general fusion scheme be-
cause they generate amultisensor enhanced image.However, the
speckle noise typically present in SAR imagery makes this ap-
proach usually inefficient for SAR and MSI data fusion [11]. In
contrast, feature-based models overcome some of these limita-
tions by uncovering a higher-level image representation, which
associates correlative features from SAR and MSI sensors. In
other words, features extracted from SAR images can provide
discriminative object information to reduce some of the optical
uncertainty of MSI imagery, and this is precisely the rationale
behind feature-based SAR and MSI fusion methods. Some re-
cent research lines take advantage of so-called semantic features
in order to generate such high-level characterization using prob-
abilistic topic models [21], [22]; nonetheless additional research
is still required to adapt the standard architectures of these gener-
ativemodels to the particular requirements of the remote sensing
image fusion field [23].

C. Semantic Features Based on Topic Models

In general, probabilistic topic models [24] are a kind of gen-
erative statistical models that provide methods to represent data
collections according to their hidden semantic feature patterns.
As a result, these kinds of models have been successfully used
to provide data with a higher level of semantic understand-
ing in many different application domains, such as text cate-
gorization [25], vocabulary reduction [26], image segmentation
[27], object recognition [28] or even video retrieval [29], [30].
Within the remote sensing field, topic models have also shown a

growing potential in image fusion tasks, due to their effective-
ness to manage different data modalities at higher abstraction
levels. For instance, this is the case of the work presented in
[21] where Zhong et al. proposed a topic-based fusion approach,
which concatenates three complementary kinds of spatial and
spectral features to conduct remote sensing scene classification.
In [31], Zhu et al. also presented another relevant topic-based
fusion approach, which integrates spectral, texture and scale-
invariant feature transform features by using a novel sparse
semantic topic model framework. Despite the contrasted perfor-
mance of all these methods, their corresponding fusion schemes
are constrained by the use of standard topic models with a single
modality, because the remote sensing data fusion problem has
an intrinsic multimodal nature.
Recently, Bahmanyar et al. presented in [22] a novel SAR

and MSI fusion approach based on a multimodal topic model to
jointly manage multiple sources of data. Specifically, Bahman-
yar’s work conducts multisensor land-cover classification using
a visual bag-of-words (vBoW) characterization scheme and a
multimodal variant of the standard latent Dirichlet allocation
(LDA) model [32], which makes use of two different vocabular-
ies to represent SARandMSI datamodalities, respectively. Even
though this recent LDA-based fusion approach has been shown
to outperform individual single modality data, LDA is not the
only type of topic model available in the literature and, besides,
standard topic models’ architectures have not yet been specially
adapted to deal with the inherent complexity of remotely sensed
SAR and MSI data. As a result, improving the design of differ-
ent kinds of probabilistic topic models for fusing SAR and MSI
remotely sensed data still remains an open problem.

D. Contributions of This Work

With all the previous considerations in mind, this paper
proposes a new topic model, which has been specifically
designed to effectively fuse and categorize SAR and MSI
remotely sensed data from an unsupervised perspective. First,
we deeply analyze the performance of the two main topic
model families, i.e., the LDA [32] and probabilistic latent
semantic analysis (pLSA) [33] models within the remote
sensing SAR and MSI data fusion field. Second, we propose a
novel pLSA-based topic model, called hierarchical multimodal
pLSA (HMpLSA), which integrates two different features to
cope with the special complexity of remotely sensed data. On
the one hand, the proposed model integrates two divergent
vocabularies to jointly manage SAR and MSI data modalities.
On the other hand, HMpLSA makes use of a hierarchical latent
space to project the input data onto a high-dimensional space
useful to uncover highly descriptive multimodal semantic
patterns. Third, we define an image fusion framework based
on the proposed topic model in order to conduct unsupervised
land cover categorization. Finally, we conduct an experimental
comparison where different LDA and pLSA versions are tested
with respect to the proposed HMpLSA model.
The remainder of the paper is organized as follows.

Section II presents general background on probabilistic topic
models. In Section III, the proposed HMpLSA topic model is
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defined. Section IV describes an image fusion framework based
on the proposed topicmodel thatwe use to conduct unsupervised
land cover categorization. Section V presents our experimental
results, in which several LDA and pLSA unimodal and mul-
timodal variants are tested over two different SAR and MSI
data sets. Section VI discusses the obtained results. Finally,
Section VII concludes the paper with some remarks and hints at
plausible future research lines.

II. BACKGROUND ON PROBABILISTIC TOPIC MODELS

From a practical perspective, topic models [24] represent
probabilistic graphical models aimed at uncovering the hid-
den structure of a data collection. That is, given a corpus of
documents D = {d1 , d2 , . . . , dM } characterized in a particu-
lar word-spaceW = {w1 , w2 , . . . , wN }, latent topic algorithms
estimate two probability distributions: the description of topics
in words, p(w|z), and the description of documents in topics,
p(z|d). In the literature, it is possible to find two main differ-
ent topic model families depending on the generative process
nature, one based on pLSA and another one based on LDA.
On the one hand, pLSA [33] defines a semigenerative data

model by introducing a single latent random variable (z) to asso-
ciate documents (d) and word polysemy occurrences (w). Under
pLSA assumptions, documents are considered model parame-
ters because they set topic mixtures and, at the same time, they
are generated by topics, which eventually makes pLSA-based
models particularly memory-demanding and prone to overfit-
ting. On the other hand, Blei et al. [32] proposed a more general
scheme by using two different Dirichlet distributions, one to
model documents θ ∼ Dir(α) and another one to model top-
ics p(w|t, β) ∼ Dir(β). However, α and β hyper-parameters
have to be initially estimated by iterating over the document
collection, which makes LDA performance highly sensitive
to relatively small collections [34], [35]. As a result, pLSA-
based models are typically recommended when the amount of
available information is reduced, considering the complexity of
the problem [36]. Within the remote sensing field, the inherent
complexity of SAR and MSI imagery generally makes that the
amount of available information over a specific region of interest
is rather limited to effectively conduct unsupervised land cover
categorization [37], which makes pLSA a suitable generative
architecture to design remote sensing fusion models.

III. HIERARCHICAL MULTIMODAL PLSA

A. Proposed Model

Starting from the asymmetric formulation of the standard
pLSA scheme [33], the proposed hierarchical multimodal prob-
abilistic semantic analysis (HMpLSA) model (see Fig. 1) in-
troduces two different innovations to deal with the remotely
sensed SAR and MSI data fusion problem: 1) a multimodal vo-
cabulary nature, and 2) a two-level latent topic architecture. On
the one hand, HMpLSA makes use of two diverging vocabulary
modalities by introducing ws and wm random variables, which
represent SAR and MSI observable data. Note that this multi-
modal nature allows the proposed approach to uncover common

Fig. 1. Proposed HMpLSA fusion model.

patterns across SAR and MSI sensors, which is a key factor to
effectively associate correlative features from an image fusion
perspective. On the other hand, the proposed HMpLSA model
also defines two different levels of topics in order to increase
the abstraction level of the uncovered multimodal patterns. Note
that the visual uncertainty of remotely sensed data is one of the
most important problems when it comes to unsupervised land
cover categorization, and the use of hierarchical architectures
has recently shown to be very helpful to relieve this problem
in other application domains, e.g., supervised image classifi-
cation [38]. In particular, the hidden random variables zs and
zm represent the first level of specific topics for SAR and MSI
modalities, respectively. Over these two variables, a converging
hidden unit zc is used to generate a second level of common
topics, which is useful to unfold a higher level of semantic
patterns. Fig. 1 depicts an HMpLSA graphical model represen-
tation, where shaded nodes represent visible random variables.
Regarding the HMpLSA generative process, it can be summa-
rized by the following steps.
1) Adocumentd is chosen fromp(d) probability distribution.
2) For each one of the Nd words in the document d.

a) A hierarchical categorical topic zc is chosen accord-
ing to conditional distribution p(zc |d) that expresses
documents in high-level common multimodal
topics.

b) A pair of SAR-topics zs and MSI-topics zm

are chosen according to conditional distribution
p(zs, zm |zc), which encapsulates the relation be-
tween both levels of topics.

c) Finally, words ws and wm are sampled accord-
ing to the conditional distributions p(ws |zs) and
p(ws |zm ), which express SAR and MSI topics in
their corresponding observable vocabularies.

Unlike other latent topic-based fusion approaches available
in the literature [21], [22], [31], the proposed HMpLSA model
defines a novel pLSA-based architecture, which is able to work
on width and depth, simultaneously. That is, whereas the two
vocabulary modalities (dual-width) allow uncovering feature
patterns from SAR and MSI data, the second level of topics
(dual-depth) generates a high level semantic representation of
the data that is able to gather intersensor correlative feature
patterns. Precisely, this dual effect constitutes the main rationale
behind the use of HMpLSA for fusing SAR and MSI data to
conduct unsupervised land cover categorization. Initially, SAR-
topics (zs) and MSI-topics (zm ) generate a primary semantic
representation of the SAR and MSI data. Then, the hierarchical
categorical latent topic space (zc ) is uncovered to generate a
multimodal document characterization with a higher abstraction
level for land cover analysis. That is, zs and zm project the SAR



FERNANDEZ-BELTRAN et al.: REMOTE SENSING IMAGE FUSION USING HIERARCHICAL MULTIMODAL PROBABILISTIC 4985

Fig. 2. Two-step model relaxation for the proposed HMpLSA model.
(a) HMpLSA-1. (b) HMpLSA-2.

and MSI data onto a higher-dimensional fusion space in order
to capture fine common semantic patterns. Then, zc fuses these
patterns to conduct unsupervised land cover categorization by
fixing the number of categorical topics to the number of land
cover categories.

B. Model Relaxation

Another important contribution of our work is the develop-
ment of a two-stepmodel relaxation procedure in order to reduce
the computational cost of the proposed model. Note that the
two different levels of hidden random variables used by HM-
pLSA generate an additional degree of freedom with respect
to the standard pLSA. Therefore, each variable marginalization
over the posterior distribution requires to evaluate the Cartesian
product between zc and {zs, zm}, which may become rather
expensive in terms of computational cost as the number of input
documents increases. In order to relieve this cost, we propose to
estimate the HMpLSA parameters by using the following two
sequential steps.
1) Learning SAR and MSI Topics (HMpLSA-1): In the first

step [see Fig. 2(a)], the proposed model is simplified to un-
cover the primary SAR and MSI latent topic spaces using a
single level of hidden units. That is, the hidden random variable
zc is initially omitted to approximate p(ws |zs) and p(wm |zm )
model parameters directly from the observable input documents
d. Specifically, we make use of the expectation-maximization
(EM) algorithm [39] to maximize the HMpLSA-1 complete
log-likelihood function

�1
c =

M∑

d

N∑

ws

n(ws, d) log

(
p(d)

K∑

z

p(ws |zs) p(zs |d)

)

+
M∑

d

N∑

ws

n(wm , d) log

(
p(d)

K∑

z

p(wm |zm ) p(zm |d)

)

(1)

where M is the total number of documents, N represents the
SAR and MSI vocabulary size, n(w∗, d) contains document
word-counts, and K is the number of considered topics, which
is defined to project documents into a higher dimensional space
(K >> N ). Specifically, the EM algorithmworks in two stages:
1) E-step [(2)–(3)], where the expected value of the likelihood
is computed given the current estimation of the parameters,
and 2) M-step [(4)–(7)], where the new optimal values of the
parameters are calculated according to the current setting of the

hidden variables

p(zs |ws, d) =
p(ws |zs)p(zs |d)∑
zs

p(ws |zs)p(zs |d)
(2)

p(zm |wm , d) =
p(wm |zm )p(zm |d)∑
zm

p(wm |zm )p(zm |d)
(3)

p(ws |zs) =
∑

d n(ws, d)p(zs |ws, d)∑
ws

∑
d n(ws, d)p(zs |ws, d)

(4)

p(zs |d) =

∑
ws

n(ws, d)p(zs |ws, d)
∑

zs

∑
ws

n(ws, d)p(zs |ws, d)
(5)

p(wm |zm ) =
∑

d n(wm , d)p(zm |wm , d)∑
wm

∑
d n(wm , d)p(zm |wm , d)

(6)

p(zm |d) =

∑
wm

n(wm , d)p(zm |wm , d)
∑

zm

∑
wm

n(wm , d)p(zm |wm , d)
. (7)

More specifically, the EM process is performed as follows.
First, (4)–(7) are randomly initialized. Then, the E-step and the
M-step are alternated until themodel converges. As convergence
conditions, we use a 10−6 stability threshold in the difference of
the log-likelihood [(1)] between two consecutive iterations or a
maximum number of 1000 EM iterations.
2) Learning Hierarchical Categorical Topics (HMpLSA-2):

In the second step, we relax the proposed model to learn the hi-
erarchical categorical topic space from the previously estimated
parameters. As Fig. 2(a) shows, ws and wm random variables
are omitted from the model and, accordingly, zs and zm nodes
become observable. The rationale behind this model simpli-
fication is based on using the previous p(zs |d) and p(zm |d)
parameter estimations as the input word-document distribution
for HMpLSA-2, i.e., n(zs, zm , d) ≈ p(zs |d)p(zm |d). Then, it
is possible to uncover the proposed multimodal fused space
p(zc |d) using only a single level of topics. Like in the first step,
we estimate HMpLSA-2 parameters by using the EM algorithm
to maximize the complete log-likelihood function

�2
c =

M∑

d

N∑

ws ,wm

n(zs, zm , d)

log

(
p(d)

C∑

z

p(zs, zm |zc) p(zc |d)

)
(8)

where C represents the number of categorical topics, which is
set to the number of categories considered to conduct unsu-
pervised land cover categorization. Eventually, the E-step and
M-step procedures are defined according to (9) and (10)–(11),
respectively

p(zc |zs, zm , d) =
p(zs, zm |zc)p(zc |d)∑
zc

p(zs, zm |zc)p(z|d)
(9)

p(zs, zs |zc) =
∑

d n(zs, zm , d)p(zc |zs, zm , d)∑
zs ,zs

∑
d n(zs, zm , d)p(zc |zs, zm , d)

(10)

p(zc |d) =

∑
zs ,zs

n(zs, zm , d)p(zc |zs, zm , d)
∑

zc

∑
zs ,zs

n(zs, zm , d)p(zc |zs, zm , d)
.

(11)
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Fig. 3. Overview of the proposed image fusion framework.

After the model convergence (considering a 10−6 stability
threshold and a maximum of 1000 EM iterations), the p(zc |d)
parameter provides the fused representation of the input data,
which jointly models SAR and MSI high level feature patterns.

IV. PROPOSED IMAGE FUSION FRAMEWORK

The hierarchical multimodal pLSA-based SAR and MSI fu-
sion scheme presented in this work consists of the three steps
(see Fig. 3): 1) image characterization, 2) HMpLSA-based im-
age fusion, and 3) land cover categorization.

A. Image Characterization

The first step of the proposed latent topic-based fusion model
is based on defining the corresponding image characterization
framework in order to enable the use of topic models over
SAR and MSI remote sensing imagery. Specifically, we use
the vBoW approach [40], which consists of a three-step proce-
dure. First, SAR and MSI data products are tiled into 32 × 32
image patches, which define topic model documents, i.e., d.
Second, the k-means clustering algorithm [41] is globally ap-
plied over each image modality to build the corresponding SAR
and MSI visual vocabularies. In particular, we consider a to-
tal number of N = 50 clusters (visual words) and vectorized
3 × 3 image patches with one-pixel of overlapping as clustering
local primitive features. Eventually, the local primitive features
(vectorized 3 × 3 image patches) within each topic model docu-
ment (a 32 × 32 image patch) are encoded in a single histogram
of visual words by accumulating the number of local features
into their closest clusters. After this step, we obtain a collection
of documents D = {d1 , d2 , . . . , dM } described in both SAR
andMSI vocabularies, i.e., di = {n(wj

s , di), n(wk
m , di)}∀j, k ∈

{1, 2, . . . , 50}.

B. HMpLSA-Based Image Fusion

The second step consists of applying the proposed HMpLSA
model over a document collection in order to obtain the corre-
sponding topic-based fused characterization, that is, the p(zc |d)
probability distribution. According to the aforementioned two-
step model relaxation (described in Section III-B), HMpLSA-
1 is initially used to uncover the two independent semantic
representations for SAR and MSI modalities, i.e., p(zs |d) and
p(zm |d), using K = 1000 topics. Then, these two semantic
characterizations are fused by HMpLSA-2 in order to estimate
p(zc |d), which jointly models SAR and MSI feature patterns in

a single data distribution of C categorical topics. Note that the
proposed model relaxation aims at reducing HMpLSA compu-
tational cost to the standard pLSA one, and C needs to be set to
the number of land cover categories.

C. Land Cover Categorization

After the input SAR and MSI data products have been char-
acterized and fused according to the proposed HMpLSAmodel,
the third step is based on providing a land cover categoriza-
tion for documents based on p(zc |d). In particular, we assume
that each of the C uncovered categorical topics represents a
land cover class. Then, documents are categorized according
to the topic with the highest probability value in p(zc |d), i.e.,
arg maxz ∗

c
p(z∗c |d). It should be noted that the uncovered cat-

egorical topics (unsupervised categories) need to be sorted ac-
cording to the available ground-truth information in order to
guarantee the use of the same labels for assessment purposes.
In order to establish this correspondence, the cosine similarity
function is computed between the uncovered categorical topics
and the centroids of the ground-truth classes [42]. Then, each
topic is tagged with the closest ground-truth land-cover label.

V. EXPERIMENTS

The experimental part of our work aims at validating the per-
formance of LDA [32], pLSA [33], dual-depth pLSA (DpLSA)
[42], multimodal LDA (MMLDA) [43], multimodal pLSA
(MpLSA) [44], [45], and the proposed HMpLSA model in the
task of unsupervised land cover categorization within the SAR
andMSI image fusion field. Additionally, we also test the perfor-
mance of K-Means [41] and BIRCH [46] clustering algorithms
over the concatenated SAR andMSI modalities as a baseline fu-
sion result. Section V-A introduces the three different data sets
used in the experiments and Section V-B shows the obtained
unsupervised land cover categorization results. Note that all the
methods considered in this work follow the same unsupervised
experimental protocol as the proposed approach.

A. Data Sets

Three different data sets (Munich, Berlin, and Rome), made
up of paired Sentinel-1 (SAR) and Sentinel-2 (MSI) data prod-
ucts, have been selected for the experimental part of the work
(see Fig. 4). On the one hand, Munich and Berlin data products
have been downloaded from theGermanEarthObservationCen-
ter website (https://goo.gl/qTEpEQ) where ground-truth land-
cover information is also available for assessment purposes.
Specifically, four different land cover types are provided: “Agri-
culture,” “Building,” “Forest,” and “Water.” On the other hand,
the Rome data set has been obtained from the available Euro-
pean training data of the 2017 IEEE GRSS Data Fusion Con-
test (https://goo.gl/C4y82i), which is based on Sentinel-2 and
Landsat-8 imagery. In particular, we adapted this data set to
a SAR and MSI data fusion context by downloading the cor-
responding Sentinel-1 product from the Copernicus Open Ac-
cess Hub (https://goo.gl/uXmPxL). Regarding the ground-truth
data, the class label information available for the contest has
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Fig. 4. In rows, Munich, Berlin, and Rome data sets. In columns, Sentinel-1
(SAR), Sentinel-2 (MSI), and the ground-truth data (“Agriculture” labeled in
brown color, “Building” in red, “Forest” in green, and “Water” in blue).

been simplified by fusing the 17 available classes [47] into the
four aforementioned categories: “Agriculture” (15, 16), “Forest”
(11–14), “Building” (1–10), and “Water” (17).
1) Munich: The first data set [22] comprises coupled

Sentinel-1 and Sentinel-2 data products collected over
the City ofMunich (Germany). In particular, these images
were acquired onSeptember 29 and 30, 2016, respectively,
and they cover the Earth surface between the (48.33 °N,
11.06 °E) upper left coordinates and (47.77 °N, 11.78 °E)
lower right coordinates. Regarding the product features,
the Sentinel-1 image is a Level-1 ground-range-detected
SAR product, which has been taken in interferometric
wide swath mode with 10.13-m ground sampling dis-
tance (GSD) and geometrically rectified. Additionally, the
Sentinel-1 data were preprocessed using the Refined Lee
speckle filtering of the Sentinel Application Platform tool-
box. The Sentinel-2 product is a multispectral Level-2A
reflectance image generated from the corresponding geo-
metrically rectified Level-1C product using the Sen2Cor
software. For the experiments, only the highest resolution
Sentinel-2 bands (10-m GSD), i.e., B2 (blue), B3 (green),
B4 (red), and B8 (infra-red), have been considered. Be-
sides, the Sentinel-1 product has been accordingly resam-
pled to 10-m GSD. Eventually, both resulting Sentinel-1
and Sentinel-2 images have been coregistered obtaining
a final size of 5596 × 6031 and 5596 × 6031 × 4 pixels,
respectively.

2) Berlin: The second data set [22] contains two Sentinel-
1 and Sentinel-2 data products acquired over Berlin
(Germany), whichwere captured onMay 26 and 27, 2017,
respectively, and cover the area between the (52.78 °N,
12.45 °E) upper left coordinates and (52.26 °N, 13.67 °E)
lower right coordinates. Analogously to the Munich

data set, both Sentinel-1 and Sentinel-2 data products
have been processed following the aforementioned pro-
cedure in order to obtain a final size 8149 × 5957 and
8149 × 5957 × 4 pixels, respectively.

3) Rome: The third data set [47] is also made up of two
Sentinel-1 and Sentinel-2 data products captured over
Rome (Italy), on September 2 and 3, 2016, respectively,
and cover the area between the (42.12 °N, 12.26 °E) upper
left coordinates and (41.73 °N, 12.71 °E) lower right coor-
dinates. Both Sentinel-1 and Sentinel-2 data products have
been processed following the aforementioned process to
obtain a final size of 3200 × 3200 and 3200 × 3200 × 4
pixels, respectively.

B. Results

Tables I–III provide a quantitative assessment of the unsuper-
vised land cover categorization experiments for Munich, Berlin,
and Rome data sets. In particular, four different quality metrics
are computed to evaluate the results, i.e., accuracy, precision, re-
call, and f-score. For each one of these metrics, we show in rows
the result for each individual ground truth category, aswell as the
corresponding average value. In columns, we provide Sentinel-1
(SAR), Sentinel-2 (MSI), and fusion (SAR+MSI) results, where
tables’ headers indicate the method used in each case. Note that
the SAR and MSI column blocks correspond to single-modal
experiments, whereas SAR+MSI contains the multimodal fu-
sion results. It should be noted that each table cell contains the
average percentage and the corresponding standard deviation
value obtained after five runs of the indicated topic models. Ad-
ditionally, the best result for each metric and column block is
highlighted in bold font. Regarding the computational time, the
last row in each table reports the average computational time
in seconds of the corresponding experiments using a hardware
environment made of an Intel Xeon CPU E5-2640 at 2.50 GHz
and 189 GB of RAM.
In addition to the quantitative evaluation provided by the four

considered metrics, we also provide the visual results of the
land cover categorization experiments as a qualitative evalua-
tion of the tested methods. Specifically, Figs. 5–7 show the cor-
responding land cover categorization maps for Munich, Berlin,
and Rome data sets, using the following order: 1) ground-truth
data, 2) standard LDA with SAR data, 3) standard pLSA with
SAR data, 4) dual-depth pLSA with SAR data, 5) standard
LDA with MSI data, 6) standard pLSA with MSI data, 7) dual-
depth pLSA with MSI data, 8) K-means with SAR + MSI data,
9) BIRCH with SAR+MSI data, 10) multimodal LDA with
SAR+MSI data, 11) multimodal pLSA with SAR+MSI data,
and 12) the proposed HMpLSA with SAR+MSI data.

VI. DISCUSSION

According to the results reported in Tables I–III, there are
several points, which deserve to be mentioned regarding to the
considered topic models’ performance in the task of unsuper-
vised land cover categorization.When considering single-modal
data, i.e., Sentinel-1 (SAR) and Sentinel-2 (MSI) columns, it is
possible to observe that pLSA obtains a better result than LDA,
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TABLE I
QUANTITATIVE ASSESSMENT OF THE UNSUPERVISED LAND COVER CATEGORIZATION RESULTS FOR MUNICH DATA SET

TABLE II
QUANTITATIVE ASSESSMENT OF THE UNSUPERVISED LAND COVER CATEGORIZATION RESULTS FOR BERLIN DATA SET

with the exception of Munich and Rome SAR data. The higher
complexity of the MSI imagery, together with the fact that some
land cover categories are significantly unbalanced, make that
pLSA can take advantage of using the document collection as
model parameters in order to uncover more descriptive semantic
patterns than LDA. Note that LDA’s Dirichlet hyper-parameter
estimation may become rather inaccurate when considering
a limited number of documents, like in the case of Berlin’s

“Water” category, where experiments show that LDA perfor-
mance substantially decreases. Despite the general good perfor-
mance of pLSA with single SAR and MSI data, we can see that
DpLSA, which is a dual-depth pLSA version where only one
vocabulary has been taken into account, is able to consistently
achieve even a superior result. That is, DpLSA exploits the two
different levels of topics to extract a more informative high-level
patterns than regular LDAand pLSA,which eventually leads to a
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TABLE III
QUANTITATIVE ASSESSMENT OF THE UNSUPERVISED LAND COVER CATEGORIZATION RESULTS FOR ROME DATA SET

noteworthy average accuracy improvement of 3.66 and 1.54
points, respectively. These quantitative results are also supported
by the corresponding land cover categorization maps presented
in Figs. 5–7, where DpLSA generally provides the best visual
results, followed by pLSA and LDA models.
When analyzing the quantitative results of the considered

fusion schemes, i.e., fusion (SAM+MSI) columns, the pro-
posed model achieves a remarkable metric improvement with
respect to the baseline K-Means and BIRCH clustering methods
as well as the MMLDA and MpLSA topic models. On aver-
age, HMpLSA obtains 90.25% (accuracy), 75.06% (precision),
76.28% (recall), and 72.72% (f-score) metric results, whereas
MMLDA average results are 84.17% (accuracy), 64.36% (preci-
sion), 61.23% (recall), and 61.41% (f-score) and the correspond-
ing MpLSA ones are 88.19% (accuracy), 71.02% (precision),
74.22% (recall), and 69.81% (f-score). Even though the three
considered multimodal topic models (i.e., MMLDA, MpLSA,
and HMpLSA) are able to obtain an important improvement
with respect to the baseline clustering algorithms (i.e., K-Means
and BIRCH) and the corresponding single-modal topic models
(i.e., LDA, pLSA, and DpLSA), the proposed approach exhibits
the best overall performance, obtaining an average precision im-
provement of 10.70 and 4.04 points over MMLDA andMpLSA,
respectively. Like in the single-modal case, pLSA-based models
show a better performance than LDA-based ones; however, the
two levels of topics defined by the proposed HMpLSA model
provide an additional performance advantage to fuse SAR and
MSI data. According to the qualitative results in Figs. 5–7, HM-
pLSA obtains the most accurate land cover categorization maps.
For instance, it is possible to see that HMpLSA [see Fig. 5(j)]
substantially reduces the amount of noise present in Munich’s
“Building” category with respect to MMLDA and MpLSA [see

Fig. 5(h) and (i)]. In the case of Berlin, HMpLSA shows the best
land cover estimation because it obtains a significantly better re-
sult than MMLDA and it also reduces a significant proportion
appearing in MpLSA “Water” category. Finally, the proposed
approach also obtains themost accurate visual result in theRome
data set according to the available ground-truth information.
In all the conducted experiments, the proposed HMpLSA

model has shown to provide a competitive advantage with re-
spect to the rest of the tested methods, because it combines two
important features to effectively deal with the remote sensing
image fusion problem: a multimodal nature and a hierarchical
latent feature space. On the one hand, the problem of fusing
SAR and MSI imagery raises the challenge of dealing with
more complex data to uncover intersensor feature patterns useful
to conduct land cover categorization. In this regard, HMpLSA
makes use of two different vocabulary modalities to integrate
SAR and MSI features acquired by different sensors within the
same probabilistic characterization space. In other words, the
multimodal nature of the proposed approach allows HMpLSA
to inherently associate correlative features from SAR and MSI
modalities, which eventually enhances the amount of informa-
tion available in the fused characterization space with respect
to the single-modal approach. On the other hand, the proposed
model also provides two different levels of topics, which pur-
sue to uncover high-level semantic patterns over the previously
extracted multimodal features. That is, the first level of topics
(SAR and MSI topics) aim at independently extracting the se-
mantic representations of the input data. Then, the second level
of topics (categorical topics) is used to fuse the multimodal
data over these semantic representations in order to conduct the
data fusion at a higher abstraction level and, consequently, to
generate more descriptive multimodal patterns.
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Fig. 5. Qualitative assessment of the unsupervised land cover categorization results for Munich data set. (a) GT. (b) LDA-SAR. (c) pLSA-SAR. (d) DpLSA-SAR.
(e) LDA-MSI. (f) pLSA-MSI. (g) DpLSA-MSI. (h) K-Means. (i) BIRCH. (j) MMLDA. (k) MpLSA. (l) HMpLSA.

Fig. 6. Qualitative assessment of the unsupervised land cover categorization results for Berlin data set. (a) GT. (b) LDA-SAR. (c) pLSA-SAR. (d) DpLSA-SAR.
(e) LDA-MSI. (f) pLSA-MSI. (g) DpLSA-MSI. (h) K-Means. (i) BIRCH. (j) MMLDA. (k) MpLSA. (l) HMpLSA.

Fig. 7. Qualitative assessment of the unsupervised land cover categorization results for Rome data set. (a) GT. (b) LDA-SAR. (c) pLSA-SAR. (d) DpLSA-SAR.
(e) LDA-MSI. (f) pLSA-MSI. (g) DpLSA-MSI. (h) K-Means. (i) BIRCH. (j) MMLDA. (k) MpLSA. (l) HMpLSA.
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Precisely, the main advantage of the proposed approach over
MMLDA and MpLSA lies on its ability to simultaneously com-
bine these two different aspects within the same fusion scheme:
the multimodal nature of multisensor features and two different
levels of hidden random variables to introduce a higher ab-
straction level. First, the dual vocabulary allows the proposed
approach to uncover multimodal patterns, which intrinsically
relate features from different sensors. Second, the two levels of
topics are aimed at uncovering the unsupervised categories over
a semantic space instead of over the original feature space. That
is, the hierarchical architecture of the proposed approach makes
that the unsupervised categories are based on multimodal fea-
ture patterns instead of raw features from different sensors (like
in the case of MMLDA and MpLSA), which eventually leads to
significant noise reduction, especially in the most challenging
scenarios. Despite the proposed approach potential, it may still
have some limitations on the use of arbitrary taxonomies due to
the own constrains of the vBoW encoding procedure [23]. Note
that the proposed approach represents SAR and MSI images
as a collection of documents via the vBoW approach using a
specific image patch size, i.e., 32 × 32. Therefore, ground-truth
land cover categories are required to be sufficiently general to
make sense at this spatial level, otherwise the vBoW image char-
acterization, used as the proposed approach input, may become
unrepresentative for the expected detail level.

VII. CONCLUSION AND FUTURE WORK

This paper has proposed a new latent topic-based image fu-
sion framework specially designed to fuse SAR and MSI re-
motely sensed data for land cover categorization tasks. Initially,
we have defined a new topic model, called HMpLSA, which
makes use of two different vocabulary modalities as well as two
different levels of topics in order to deal with the complex na-
ture of remote sensing data. Then, we present an SAR and MSI
data fusion framework to effectively perform unsupervised land
cover categorization. Our experimental comparison, conducted
using two different Sentinel-1 and Sentinel-2 data sets, reveals
that the proposed approach is able to provide competitive per-
formance with respect to standard pLSA and LDA topic models,
and also to several multimodal topic model variants available in
the literature.
One of the first conclusions that arises from this work is

the potential of the pLSA architecture to fuse SAR and MSI re-
motely sensed data. In general, pLSA-based models have shown
to obtain better land cover categorization results than LDA be-
cause they can take advantage of the use of input documents as
model parameters in order to uncover more descriptive seman-
tic patterns with a limited amount of data. Another important
conclusion is based on the fact that multimodal models provide
a remarkable precision gain with respect to their corresponding
single-modal counterparts. Nonetheless, the most relevant con-
clusion of the work is related to the effectiveness of the proposed
HMpLSA-based fusion approach to effectively fuse SAR and
MSI remote sensing data. Whereas other existing topic models
only rely on the multimodal component, the proposed approach
also integrates two different levels of topics in order to provide a

higher level representation space of multimodal patterns, which
have shown to be useful to reduce the uncertainty in unsuper-
vised land cover categorization tasks.
Finally, our future work will be aimed at the following direc-

tions: 1) extending HMpLSA to incorporate sparsity constrains
for multimodal semantic patterns, 2) implementing automatic
tools to find out the ideal number of topics in HMpLSA first
latent space, and 3) studying the effect of using different quan-
tization techniques over the initial characterization space.
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