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A B S T R A C T

Hyperspectral unmixing is an important technique for remote sensing image exploitation. It aims to decompose a
mixed pixel into a collection of spectrally pure components (called endmembers), and their corresponding pro-
portions (called fractional abundances). In recent years, many studies have revealed that unmixing using spectral
information alone does not sufficiently incorporate the spatial information in the remotely sensed hyperspectral
image, as the pixels are treated as isolated entities without taking into account the existing local correlation
among them. To address this issue, several spatial preprocessing methods have been developed to include spatial
information in the spectral unmixing process. In this paper, we present a new spatial preprocessing method
which presents several advantages over existing methods. The proposed method is derived from the Simple
Linear Iterative Clustering (SLIC) method, which adapts the global search scope of the clustering into local
regions. As a result, the spatial correlation and the spectral similarity are intrinsically incorporated at the
clustering step, which results in O(N) computational complexity of the clustering procedure with N being the
number of pixels in the image. First, a regional clustering is iteratively performed by using spatial and spectral
information simultaneously. The obtained result is a set of clustered partitions that exhibit both spectral simi-
larity and spatial correlation. Then, for each partition we select a subset of candidate pixels with high spectral
purity. Finally, the obtained candidate pixels are gathered together and fed to a spectral-based endmember
extraction method to extract the final endmembers and their corresponding fractional abundances. Our newly
developed method naturally integrates the spatial and the spectral information to retain the most relevant
endmember candidates. Our experimental results, conducted using both synthetic and real hyperspectral scenes,
indicate that the proposed method can obtain accurate unmixing results with less than 0.5% of the number of
pixels used by other state-of-the-art methods. This confirms the advantages of integrating spatial and spectral
information for hyperspectral unmixing purposes.

1. Introduction

Pixels in a hyperspectral image are often a mixture of different
substances (Schaepman et al., 2009). Spectral unmixing (Bioucas-Dias
et al., 2012) allows us to model each mixed pixel as a combination of
pure materials (endmembers), weighted by their corresponding propor-
tions (fractional abundances). Endmember extraction is a very important
step in the hyperspectral unmixing chain (Plaza et al., 2009). The
endmember spectral signatures can be obtained from existing spectral
libraries which are acquired from field or laboratory measurements
(Somers et al., 2011; Roberts et al., 1993; Herold et al., 2004; Roberts
et al., 2004; Okin et al., 2013). Many known spectral libraries are now
publicly available, such as the U.S. Geological Survey (USGS) digital

spectral library (available online: http://speclab.cr.usgs.gov/spectral-
lib.html), which contains over 1300 mineral spectral signatures. Also,
the endmember spectral signatures can be acquired from the image
itself (Somers et al., 2011; Dennison and Roberts, 2003). Compared
with the former approach, the latter exhibits consistent acquisition and
temporal conditions with the image pixels, and thus it can bring more
accurate explanatory ability for subsequent unmixing purposes.

Due to the aforementioned reasons, many automatic or semi-auto-
matic techniques have been developed for image endmember extrac-
tion, where the endmembers are directly extracted from the image data.
Available techniques can be grouped into two main categories: 1)
methods that assume the availability of pure signatures in the image,
such as the Pixel Purity Index (PPI) (Boardman et al., 1995), Vertex
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Component Analysis (VCA) (Nascimento and Bioucas-Dias, 2005), Or-
thogonal Subspace Projection (OSP) (Harsanyi and Chang, 1994), N-
FINDR (Winter, 1999) or Iterative Error Analysis (IEA) (Neville et al.,
1999), among many others (Bioucas-Dias et al., 2012); and 2) methods
that do not assume the presence of pure signatures in the image, such as
the Minimum Volume Spectral Analysis (MVSA) (Li et al., 2015), the
Simplex Identification via Split Augmented Lagrangian (SISAL), among
many others (Bioucas-Dias et al., 2012). In the recent literature, several
techniques have been developed to exploit a potentially very large
spectral library; the unmixing then amounts to choosing an optimal
subset of library endmembers to model each pixel (Iordache et al.,
2011). Methods, such as Orthogonal Matching Pursuit (OMP) (Pati
et al., 1995), Basis Pursuit (BP) (Chen et al., 2001), Basis Pursuit De-
noising (BPDN) (Chen et al., 2001), and Iterative Spectral Mixture
Analysis (ISMA) (Rogge et al., 2007b), belong to this category.

The above mentioned techniques used a fixed number of end-
member spectra, i.e. one single endmember spectrum per endmember
class, which is simple and easy to implement. However, due to en-
vironmental, atmospheric and temporal factors, endmember variability
commonly exists in hyperspectral image data. Relevant reviews on this
topic have been provided in Somers et al. (2011) and Zare and Ho
(2014). Compared with the use of a fixed number of endmember
spectra, the use of multiple endmembers per class can provide more
accurate spectral signature representation and fractional abundance
estimation. Numerous techniques and applications have been proposed
to consider endmember variability in spectral unmixing, such as
Iterative Endmember Selection (IES) (Roth et al., 2012; Schaaf et al.,
2011). Of particular importance is the Multiple Endmember Spectral
Mixture Analysis (MESMA) techniques (Roberts et al., 1998; Somers
and Asner, 2013; Liu and Yang, 2013; Quintano et al., 2013; Fernández-
Manso et al., 2012; Delalieux et al., 2012; Thorp et al., 2013; Franke
et al., 2009; Powell et al., 2007), which use variable endmember sets to
unmix each pixel of the scene.

In recent years, several studies have revealed that hyperspectral
unmixing by using spectral information alone does not sufficiently ex-
ploit the spatial information in the scene (Shi and Wang, 2015), as the
pixels are treated as isolated entities without taking into account the
existing local correlation between them. In real hyperspectral images,
pure pixels are more likely to be present in spatially homogeneous re-
gions, and the existing spatial correlation among neighboring pixels can
be exploited. To address this important issue, several endmember ex-
traction algorithms have been designed with the goal of integrating the
spatial and the spectral information. According to the cooperative use
of spectral and spatial information, these methods can be divided into
two categories: 1) integrated spatial-spectral methods, such as the Au-
tomatic Morphological Endmember Extraction (AMEE) (Plaza et al.,
2002), Spatial-Spectral Endmember Extraction (SSEE) (Rogge et al.,
2007a), Successive Projection Algorithm (SPA) (Zhang et al., 2008),
Spatial Purity based Endmember Extraction (SPEE) (Mei et al., 2010),
the Hybrid Automatic Endmember Extraction Algorithm (HEEA) (Li
and Zhang, 2011), Spatial Adaptive Linear Unmixing Algorithm
(SALUA) (Goenaga et al., 2013), the Unsupervised Unmixing based on
Multiscale Representation (UUMR) (Torres-Madronero and Velez-
Reyes, 2014), or the Image-based Endmember Bundle Extraction Al-
gorithm (Xu et al., 2015), among many others (Bioucas-Dias et al.,
2012); and 2) spatial preprocessing methods, which provide an (op-
tional) preprocessing step before the application of a spectral-based
endmember extraction algorithm. In this case, the output of the pre-
processing is not the final endmember set, but a set of candidate pixels
that need to be fed to an existing spectral-based endmember extraction
algorithm to obtain the final endmember set. Available methods in this
category include the Spatial Preprocessing (SPP) (Zortea and Plaza,
2009), Region-based Spatial Preprocessing (RBSPP) (Martín and Plaza,
2011), Spatial-Spectral Preprocessing (SSPP) (Martín and Plaza, 2012),

Superpixel Endmember Detection Algorithm (SEDA) (Thompson et al.,
2010), Spatial Edges and Spectral Extremes based Preprocessing
(SE2PP) (Lopez et al., 2013), a Fast Spatial-Spectral Preprocessing
Module (SSPM) (Kowkabi et al., 2016b), Clustering and Over-
segmentation-based Preprocessing (COPP) (Kowkabi et al., 2016a), etc.

Compared with integrated spatial-spectral methods, spatial pre-
processing methods can be flexibly included with existing spectral-
based endmember extraction methods without modifying such
methods. Also, since the number of candidate pixels is much smaller
than the number of original image pixels, the computational burden is
significantly reduced. However, a general issue with available spatial
preprocessing methods is that they generally prioritize one of the two
sources of information (spatial or spectral) when conducting the pre-
processing, which can have an important influence on the final results
as some important candidates may be lost in the preprocessing (Martín
and Plaza, 2012).

In this paper, we develop a new method for spatial preprocessing for
hyperspectral unmixing. The proposed method naturally balances the
spatial and the spectral information by means of a regional clustering
procedure that is similar to the one performed by the Simple Linear
Iterative Clustering (SLIC) (Achanta et al., 2012) method. Compared
with conventional global clustering procedures, the proposed method
presents two key differences. First, as conventional clustering algo-
rithms need to search the whole image domain to find the clusters, we
restricted the search scope to a local neighborhood around each clus-
tering center. Second, we adopted a clustering criterion that integrates
spatial and spectral information simultaneously. After the clustering
procedure, we obtain a set of clustering partitions that exhibit both
spatial correlation and spectral similarity, which are highly desirable
properties for spatial preprocessing purposes. Then we select a subset of
candidate pixels from each partition by accounting for their spectral
purity. Finally, the obtained candidate pixels are gathered together and
fed to a spectral-based endmember extraction method to obtain the
final endmember set. Our experimental results with synthetic and real
hyperspectral scenes indicate that, compared with other available
strategies for spatial preprocessing, the newly proposed method is fast
and able to consistently provide candidate pixels with higher quality
regarding their spatial and spectral information, which represents a
significant improvement over other existing methods.

The remainder of this paper is organized as follows. Section 2 pro-
vides a review of the endmember extraction methods considered in our
experiments. Section 3 describes the newly proposed method in step-by-
step fashion. Section 4 performs an extensive validation and quantita-
tive assessment of the proposed method by using both synthetic and
real hyperspectral data sets. Finally, Section 5 concludes the paper with
some remarks and hints at plausible future research.

2. Related work

The goal of our proposed spatial-spectral preprocessing strategy is to
extract spectrally pure candidates from the original image data set, thus
reducing the number of candidate endmembers and improving un-
mixing accuracy simultaneously. Considering that spectrally pure sig-
natures are more likely to appear in spatially homogeneous areas, and
that most pure candidates generally exhibit the most singular signature
in such homogeneous area, many existing methods adopted certain
homogeneous criteria to characterize spectral purity. In the AMEE
method (Plaza et al., 2002), a Morphological Eccentricity Index (MEI) is
assigned to the purest pixel (obtained by the dilation operation) in a
spatial kernel, where the MEI is calculated by using the Spectral Angle
Distance (SAD) between itself and the most highly mixed pixel (ob-
tained by the erosion operation) in the spatial kernel. In the HEEA
method (Li and Zhang, 2011), a joint Spectral Information Divergence
and Spectral Angle Mapper (SID-SAM) metric (Du et al., 2004),

X. Xu et al. Remote Sensing of Environment 204 (2018) 333–346

334



combined with a spatial distance weight, is adopted to determine the
purity of each candidate endmember in the neighborhood window. In
the SSPP method (Martín and Plaza, 2012), the pixel's spectral purity is
characterized by using the Root Mean Square Error (RMSE) (Keshava
and Mustard, 2002) between two images: the original image and a
filtered version obtained by using Multi-Scale Gaussian Filtering
(Young and Van Vliet, 1995). The lower the RMSE, the higher the si-
milarity between a pixel and its neighbors. In Xu et al. (2015), a
Homogeneous Index (HI) is assigned to each candidate. Such HI is
calculated by using the SID criterion between itself and its neighbors,
and the maximum SID value is adopted. In the SSPM method (Kowkabi
et al., 2016b), the values in cluster labels between the candidate and its
neighbors are adopted as the homogeneity criterion, where the cluster
label for each pixel is obtained by the K-means clustering algorithm.
The basic idea of all the above mentioned methods is to perform
spectral similarity measurements within a local neighborhood window
by using a spectral distance metric, such as the Euclidean Distance (ED),
Spectral Correlation Measure (SCM), SAD, and SID. However, there are
some pending issues in those methods. For instance, in the AMEE
method (Plaza et al., 2002), the properties of the spatial kernel (shape
and size) strongly influence the MEI result. Although a progressively
increased kernel size can be adopted, this will heavily increase the
computational burden. The problem of determining an optimal neigh-
borhood size also exists in other methods (Li and Zhang, 2011; Martín
and Plaza, 2012; Xu et al., 2015; Kowkabi et al., 2016b). In addition,
the setting of parameters is a difficult issue for all methods.

For better examining the spatially homogeneous regions in hyper-
spectral images, unsupervised clustering methods have been adopted in
existing spatial-spectral unmixing models. Specifically, RBSPP (Martín
and Plaza, 2011), SSPP (Martín and Plaza, 2012) and SSPM (Kowkabi
et al., 2016b) apply unsupervised clustering algorithms [such as
ISODATA (Ball and Hall, 1965), K-means, or the Hierarchical Seg-
mentation (HSEG) algorithm (Tilton, 2003)] to segment the original or
transformed image [e.g., by using the Principal Component Transform
(PCT)] into a set of spectral clusters, each made up of one or more
spatially connected regions. Compared with the SSEE (Rogge et al.,
2007a), SPEE (Mei et al., 2010), HEEA (Li and Zhang, 2011), LLC
(Canham et al., 2011) and the method in Xu et al. (2015), which all
segment the original image into non-overlapping sub-blocks with a
fixed size and shape, the partitions obtained by clustering algorithms
generally exhibit better smoothness and coherence. However, in most
of the aforementioned clustering algorithms, only spectral information
is considered during the clustering process, and the size of segmented
partitions is subject to diversity and inconsistencies. The SSPP method
(Martín and Plaza, 2012), which includes the spatial information,
however fuses the spatial and spectral information in a separate way.
Therefore, how to naturally combine the spatial information during the
clustering stage is a main difficulty for SSPP. In addition, other relevant
issues such as the computational complexity of clustering algorithms,
the determination of the number of clusters in advance, and the com-
putational efficiency need further discussion.

In recent years, many superpixel-based segmentation methods, such
as Graph-based Algorithms (Felzenszwalb and Huttenlocher, 2004),
Turbopixel method (Levinshtein et al., 2009), and SLIC (Achanta et al.,
2012), have been proposed. In essence, any image segmentation
method can generate superpixels, and the aforementioned methods
show faster speed and more accurate segmentation results than some
traditional methods such as Mean-Shift-based (Vedaldi and Soatto,
2008) and Watershed-based approaches (Vincent and Soille, 1991).
Superpixel methods have also been widely used in the hyperspectral
imaging community; relevant work can be found in Thompson et al.
(2010) and Saranathan and Parente (2016). In hyperspectral images, a
superpixel represents a homogeneous region which contains a number
of pixels that exhibit spatial continuity and spectral similarity. When

superpixels are used to represent spatial correlation information in
hyperspectral images, compared with the fixed size and shape of
window-based methods, they can represent adaptive spatial neighbor-
hoods as expected in natural scenes, which generally exhibit arbitrary
morphologies or sharp boundaries, thus reducing the sensitivity to
noise and outliers and significantly improving the computational effi-
ciency for subsequent processing tasks, such as endmember extraction
and spectral unmixing. In Thompson et al. (2010) and Saranathan and
Parente (2016), an efficient graph-based image segmentation algorithm
(Felzenszwalb and Huttenlocher, 2004), which performs an agglom-
erative clustering of pixels as nodes on a graph such that each super-
pixel represents the minimum spanning tree of the constituent pixels, is
adopted. This method adjusts well to natural image boundaries, but
produces superpixels with very irregular sizes and shapes (Achanta
et al., 2012). In Massoudifar et al. (2014), the well known Ultrametric
Contour Map (UCM) algorithm is extended to hyperspectral images,
conducting comparative experiments on the original hyperspectral
image, the transformed image by PCT, and a monochromatic image,
respectively. The results indicate that superpixel estimation on the
transformed image is generally more efficient than other methods. The
most important aspect of superpixel segmentation methods is how to
determine the number of superpixels. In order to obtain a good super-
pixel representation, over-segmentation is generally adopted. In
Saranathan and Parente (2016), a segment uniformity criterion is pro-
posed to control the segmentation scale, which adopts a threshold to
limit maximum variability inside one segment. The threshold is com-
puted by a statistical analysis of the within-class and between-class
spectral divergences of several endmember classes.

In Saranathan and Parente (2016), Thompson et al. (2010), and
Massoudifar et al. (2014), superpixel segmentation methods have been
shown to succeed when applied to hyperspectral imagery, and pre-
sented competitive results and significant improvements in the sub-
sequent processing steps (particularly from a computational stand-
point). However, the processing time of these superpixel segmentation
methods increases as the size of the images become larger. As a result,
finer segmentations are likely to result in significant computation times
and sensitivity to noise. Based on this observation, in this work we have
developed a new spatial preprocessing approach for hyperspectral un-
mixing. Compared with the aforementioned superpixel segmentation
methods, the proposed approach is faster and requires less memory
space. In addition, its computational complexity is not affected by the
image size. A detailed description of our proposed method is given in
the following section.

3. Regional clustering-based spatial preprocessing

In this section we describe a new method for spatial preprocessing
which consists of two main steps. The first one is a clustering procedure
which divides the original image into a set of homogeneous partitions.
As opposed to the RBSPP (Martín and Plaza, 2011) and the SSPP
(Martín and Plaza, 2012), we introduce a new efficient clustering
strategy which naturally integrates the spatial and the spectral in-
formation contained in the data. In a second step, we extract candidate
pixels from each partition. After these two steps, the candidate pixels
are gathered together and fed to a spectral-based method to obtain the
final endmembers and their corresponding abundances. An illustrative
flowchart of the method is shown in Fig. 1. A detailed description of
each step is given below.

3.1. Regional clustering

The proposed clustering strategy is inspired by the SLIC algorithm.
The core idea of SLIC is to constrain the search scope from the whole
image to a local region around the centroid. Compared with the SLIC
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algorithm, our method introduces several differences:

• First and foremost, we adopt a moderate number of partitions based
on the spatial resolution of the hyperspectral image. In the SLIC
algorithm, the number of partitions is a predefined parameter.
Generally, in order to obtain the lowest under-segmentation error,
the SLIC algorithm tends to perform an over-segmentation, thus the
number of partitions is set to a very large number. In our method,
we only need to divide the original image into a series of homo-
geneous regions with high spectral similarity and spatial correlation.
As a result, a very detailed segmentation is not required. According
to the definition of Spatial Neighborhood Purity Index (SNPI) in the
SPEE method (Mei et al., 2010), if SNPI of the generated cluster
partitions is greater than a predefined threshold, the clustering re-
solution does not need further subdivision. This principle is adopted
by our method in order to decide the number of partitions.

• Second, we use a different clustering criterion which is specifically
designed for hyperspectral images (Shi and Malik, 2000; Gillis and
Bowles, 2012). In the SLIC algorithm, a weighted 5-dimensional
vector is adopted, which includes a 3-dimensional color vector and a
2-dimensional spatial vector. This 5-dimensional vector is modified
in our work to work with hyperspectral data. In our strategy, the
color distance is substituted by a spectral distance such as the SID-
SAM.

• Most importantly, our newly developed strategy reduces the number
of unsuccessfully clustered pixels and gives a special treatment to
these pixels. In the SLIC algorithm, some pixels cannot be success-
fully clustered because of the over-segmentation. To address this
issue, the SLIC performs a rough postprocessing to force those un-
successfully clustered pixels into nearby superpixels. We emphasize
that the proposed method does not apply the final superpixel re-
moval step proposed in SLIC to keep outliers distinct. In our pro-
posed method, the unsuccessfully clustered pixels are very few be-
cause of the moderate segmentation scale. Also, in hyperspectral
images these pixels are often outliers or heterogeneous pixels. As a
result, we add these pixels into the set of candidate pixels for sub-
sequent endmember identification purposes.

Next, we will give a detailed description of our proposed regional
clustering strategy.

In the initialization step, we first choose the initial cluster centers.

Like the SLIC algorithm, we also adopt an equidistant sampling process.
For example, if the spatial size of the hyperspectral image is 100×100
and the number of initial clusters is 100, we divide the original image
into 100 sub-blocks with the same size of 10×10 pixels and the initial
cluster centers are selected from pixels closest to the center position of
each sub-block, e.g. anyone from the coordinates {(5,5),(5,6),(6,5),
(6,6)}, as illustrated in Fig. 2 (a). Then, in order to restrict the clustering
search scope to a local neighborhood around each cluster center, we set
the neighborhood as a rectangle around each cluster center with width
m and height n. For each cluster center we only search for the sur-
rounding m×n pixels, hence significantly reducing the computational
complexity as compared to conventional clustering algorithms (that
perform the search over the entire image) [see Fig. 2 (b)]. At this point,
it is important to emphasize that how to choose the neighborhood size
is very important for the algorithm. The larger the values of m and n,
the greater the computational complexity of the clustering process.
However, if the values of m and n are too small, many suitable neigh-
bors will not be assigned to the adjacent clusters. In our experiments,
we have empirically tested that a value that represents two times the
size of the initial image sub-block is generally required for m and n, as
shown in Fig. 2 (c). For values of m and n greater than two times, we did
not find obvious improvements. Although this choice cannot provide a
precise clustering for all pixels, from a local point of view the generated
cluster partitions exhibit good homogeneity which meet the require-
ments for the subsequent extraction of candidate pixels.

In the main loop step, for each cluster center the algorithm adopts a
distance criterion to cluster each pixel in the local neighborhood. In
order to integrate the spectral and the spatial information simulta-
neously, we considered several distance metrics in our experiments,
including the Euclidean Distance (ED), SAD, SID, and SID-SAM (Du
et al., 2004). After different experiments, we choose the SID-SAM as our
spectral distance measurement as it integrates the variability and si-
milarity of pixels in the image. For the spatial distance measurement,
we use the spatial Euclidean Distance (ED) to account for the distance
to the considered cluster center. The clustering criterion is the weighted
sum of the spectral and spatial measurements. If we denote by xi=
(xi1,xi2,⋯ ,xil) a given pixel with spatial coordinate (ix,iy) in the hy-
perspectral image and by xc=(xc1,xc2,⋯ ,xcl) the corresponding cluster
center with spatial coordinate (cx,cy), the clustering criterion Di,c can be
simply defined by the following distance:

Fig. 1. Flowchart of the newly proposed regional clus-
tering-based spatial preprocessing method.
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restricted to a local neighborhood around each cluster center, the spatial
correlation is locally constrained. Therefore, the spectral information
plays a more important role than the spatial information. The balance
parameter λ is then suggested to be less than 0.5. Taking into account the
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After each iteration, the new cluster centers are updated for the next
iteration. Here, we also give a detailed pseudocode illustrating the
adopted regional clustering strategy in Algorithm 1.
Algorithm 1. Pseudocode of the proposed regional clustering strategy

(a) (b) (c)
Fig. 2. An illustration of the proposed regional clustering procedure. (a) Choice of the initial cluster center. (b) Global search strategy implemented by conventional clustering
algorithms. (c) Local search strategy implemented by our regional clustering procedure.

Fig. 3. (a) False color composition of the ROSIS Pavia University scene. (b) Results of the proposed regional clustering strategy (the image is divided into 183 homogeneous partitions).
(c) Illustrative example of the extraction of candidate endmembers using three different partitions. Here, the min-max axis is the first principal component vector of the partition,min and
max denote two extreme projection positions, the pixels in red have the weight value ≥ 0.7, and the pixels in blue have the weight value <0.7. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 illustrates the performance of the proposed regional clustering
strategy. Here we use the well-known Pavia University hyperspectral
data set, collected by the ROSIS sensor over the University of Pavia,
Italy. The image size in pixels is 610×340, with very high spatial
resolution of 1.3 m per pixel. The number of spectral channels in the
acquired image is 103 (with spectral range from 0.43 to 0.86 μm). After
applying the Minimum Noise Fraction (MNF) (Green et al., 1988)
transformation, we obtained a reduced image with 20 bands. Fig. 3 (a)
shows a false color composite of this image, while Fig. 3 (b) shows the
results of the proposed regional clustering with 183 partitions.

3.2. Extraction of candidate endmembers

According to the description given in the previous subsection, the
output from the clustering step is a set of partitions and a few un-
successfully clustered pixels. In this step, we need to select a subset of
pixels that will be used for endmember identification purposes. These
candidate pixels should contain the most spectrally pure signatures in
the image. To achieve this goal, two strategies can be adopted. One is to
filter the candidate pixels as implemented by the SPEE algorithm (Mei
et al., 2010), which uses the SNPI to select the most spectrally pure
partitions (i.e., those with a SNPI that is above a predefined threshold).
Then, candidate pixels can be selected from these filtered partitions.
Another strategy is to choose spectrally pure pixels on all available
partitions, since these partitions represent spatially homogeneous areas
in the image. Our proposed method adopts this second strategy. As
suggested in Martín and Plaza (2012), for each partition we perform a
Principal Component Analysis (PCA) and choose the first q principal
components as the projection axis. Then, we project all pixels on these
principal components. For each projection axis, we assign a weight of 1
to the pixels with extreme projection positions, and mark them as max
and min projection values; then, the weight of the other pixels is cal-
culated as wi=(proji−min)/(max−min), where proji is the projection
value of pixel i. If wi ≥ 0.7, the final weight is wi. Otherwise if wi ≤ 0.3,
the final weight is 1−wi. Further, we assign a weight of 0 to those
pixels which meet the condition wi ∈ (0.3,0.7). Finally, the sum of all
the weights for each pixel is tallied as its spectral purity index. By de-
fining a percentage of pixels that will be selected per partition, we

obtain the final candidate pixels from each partition according to their
spectral purity index. Fig. 3 (c) illustrates the performance of the ex-
traction of candidate endmembers step using an example based on three
different partitions. Here, the min-max projection axis is the first prin-
cipal component vector in each partition, the red points denote the
pixels with the weights in the interval [0.7,1], and the blue points de-
note the pixels with the weights in the interval [0,0.7).

3.3. Extraction of final endmembers

Finally, endmember identification and abundance estimation algo-
rithms can be applied to the set of retained candidate pixels after the
procedure described in the previous subsection to obtain the final
endmembers and their corresponding abundances. Compared with
other spatial preprocessing techniques such as SPP (Zortea and Plaza,
2009), RBSPP (Martín and Plaza, 2011) and SSPP (Martín and Plaza,
2012), the proposed method offers two significant improvements: 1)
the computational complexity is much lower, mainly because we adopt
a regional clustering strategy that restricts the search scope to a small
neighborhood window around each cluster center, thus greatly accel-
erate the clustering speed; and 2) the proposed method is highly
adaptive by means of several parameters that can be configured de-
pending on the characteristics of the hyperspectral image, including the
number of partitions, percentage of candidate pixels, spectral and
spatial distance criteria, etc. In the following section we perform ex-
tensive experiments using both synthetic and real hyperspectral images
to validate the proposed method. We also provide a quantitative as-
sessment of our method with state-of-the-art endmember extraction
algorithms.

4. Experimental results

This section is organized as follows. Section 4.1 describes data sets,
including synthetic and real hyperspectral data. Section 4.2 presents a
comparative assessment of the segmentation performance using the
proposed regional clustering strategy and graph-based segmentation
methods. Section 4.3 presents a quantitative assessment of our spatial
preprocessing methods using synthetic and real hyperspectral data.
Real hyperspectral image data is collected by the Hyperspectral Digital
Imagery Collection Experiment (HYDICE). Section 4.4 presents a com-
parative assessment of the adaptivity of the method to spectral varia-
bility in the scene by analyzing the results obtained by our method with
regards to those provided by other state-of-the-art algorithms such
Sparse Unmixing by Variable Splitting and Augmented Lagrangian
(SUnSAL) introduced in Iordache et al. (2011) and its collaborative
version (CLSUnSAL) (Iordache et al., 2014). Section 4.5 analyzes the
sensitivity of our proposed method to different parameter settings, in-
cluding the number of partitions, clustering criteria, search scope, etc.
Finally, Section 4.6 analyzes the computational complexity of our
spatial preprocessing methods. All our experiments have been con-
ducted by using Matlab R2013a in a desktop PC equipped with an Intel
Core i7 CPU (at 3.6 GHz) and 32 GB of RAM.

4.1. Hyperspectral data sets

4.1.1. Synthetic data
The synthetic hyperspectral image used in the study is generated by

using fractals, which are often adopted to simulate distinct spatial
patterns found in nature. First, a set of endmember signatures are
randomly chosen from the USGS spectral library. Then, linear mixtures
of different endmembers are constructed to form the initial fractal
image. This initial fractal image is further divided into a number of
clusters by using the conventional K-means clustering method, where
the number of clusters is larger than the number of endmember sig-
natures used in the image. In our experiments, the number of end-
members is fixed to 9 (Fig. 4 shows the reflectance curves of the USGS
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signatures used in the Fractal 1 synthetic image). Then, a Gaussian filter
is applied to generate the abundance proportions of pixels in each
cluster partition, so that the pixels that are closer to the border of
partition are highly mixed, while the pixels located at the center of the
partition are spectrally pure in nature. The fractional abundances of
each pixel meet the abundance non-negativity (ANC) and sum-to-one
(ASC) constraints, thus ensuring that all pixels strictly adhere to a fully
constrained linear mixture model. Finally, zero-mean Gaussian noise is
added to the synthetic image in different signal-to-noise ratios (SNRs),
from 30:1 to 90:1, to simulate contributions from ambient and instru-
mental sources, following the procedure described in Harsanyi and
Chang (1994).

4.1.2. HYDICE data
The real hyperspectral image used in experiments is an urban scene,

which was acquired by HYDICE in October 1995. This urban scene is
located at Copperas Cove, TX, US, and is available online from the
following website: http://www.tec.army.mil/Hypercube. The portion
used in our experiments comprises a total of 307×307 pixels and 210
spectral bands, with spectral resolution of 10 nm, covering the wave-
length range from 0.4 to 2.5 μm. The spatial resolution is 2×2 m2 per
pixel. Considering the dense water vapor and atmospheric effects,
bands 1–4, 76, 87, 101–111, 136–153 and 198–210 were removed,
leaving a total of 162 bands to be used in the experiments. Fig. 5 (a)
shows a false color composition of the image.

This region contains a mixture of man-made objects and forestry.
The top of the image contains a highway that crosses the region from
left to right, a shopping mall along the highway, and a parking lot in
front of the mall. Some roads, houses, grass, and trees are scattered in
various areas of the scene. In addition, due to the low solar altitude at
the time of data collection, trees and houses cast long shadows on the

ground. Here we choose four classes of endmembers: asphalt, roof,
grass, and tree. However, some phenomena should be clarified. For the
roof target, there are mainly two classes. One is bright, while the other
one resembles the shadows on the ground. For the road target, most of
them, including the highway and the parking lot, are asphalt paved,
while a few others are made by concrete. Trees and grass also exhibit
some differences. In order to assess the methods quantitatively, we
extract the reference endmember spectra manually from the scene.
Using the asphalt class as an example, we first pick out 20 pixels in the
region defined by spatial coordinates [75,226] to [82,234] as the as-
phalt spectrum [see Fig. 5 (a)]. As mentioned before, this region com-
prises a parking lot, which belongs to the asphalt class. These asphalt
spectra are averaged to obtain a reference spectral signature (Jia and
Qian, 2009). It should be noted that the SAD between this reference
spectral signature and the asphalt spectrum in the spectral library
available in ENVI is less than 0.05, which indicates that the obtained
reference signature is reliable. The same has been done for other
classes. Fig. 5 (b) shows the obtained reference spectral signatures. As
we can see in this figure, the signatures of grass and trees exhibit very
similar spectral shape, which makes their separation difficult. In addi-
tion, using the obtained reference signatures as endmembers, the
fractional abundances are estimated by the Fully Constrained Least
Squares (FCLS) method. Fig. 6 shows the extracted fractional abun-
dance maps of the four reference endmember classes. In Fig. 6, the
grayscale values (from black to white) represents abundance values
(from 0 to 1).

4.2. Experiments with the segmentation strategy

In this set of experiments, we performed a comparison of the seg-
mentation performance for the hyperspectral images. The chosen

Fig. 4. Fractal 1 synthetic hyperspectral image and the corresponding USGS library signatures used to construct the Fractal 1 image.

(a) (b)

Fig. 5. (a) Urban HYDICE scene collected
at Copperas Cove, TX, US. Four end-
members are considered in our experi-
ments. For the reference endmember
spectra, we take 20 pixels in each rectangle
block, and calculate the average spectrum
of these pixels in order to obtain a reference
spectral signature. (b) The obtained end-
member spectral signatures considered in
experiments.
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approaches include our regional clustering strategy and the graph-
based segmentation developed by Felzenszwalb and Huttenlocher
(2004), which is a highly efficient segmentation algorithm with O(np
log(np)) complexity, with np being the number of pixels in the image.
This method has been used in the past to analyze hyperspectral images
(Thompson et al., 2010; Saranathan and Parente, 2016). Fig. 7 illus-
trates the segmentation results obtained for the urban HYDICE scene
with different levels of detail. As it can be seen in this figure, the par-
titions from the graph-based approach show obvious diversity in terms
of both size and shape, with many partitions containing less than
5 pixels, while other partitions containing a large number of pixels.
Moreover, the number of partitions is hard to establish in advance by
this approach. Relatively speaking, the regional clustering strategy can
generate more regular partitions, and the number of partitions is easy to
control. Most importantly, the obtained partitions naturally present
local spatial correlation, which can benefit the subsequent candidate
endmember extraction in such local areas.

Fig. 7 shows a visual comparison of the segmentation results. Here
we also provide a quantitative assessment by using some clustering
validity indices, aiming at measuring both the compactness and the

separation of clusters in the partitioning, where high compactness in-
dicates that pixels in a cluster are close to each other, while high se-
paration indicates that clusters are widely separated. In Legány et al.
(2006) and Li et al. (2016), several clustering validity indices are in-
troduced and compared to each other. Here, we choose the SD Validity
Index (Halkidi et al., 2000) to assess the segmentation performance,
which combines both compactness and separation. At the same time,
we adopted two ‘SNPI’ (Mei et al., 2010) metrics (including ‘AvgPI’ and
‘SV DPI’) to focus on the measurement of the spatial correlation within
each partition. Next, we will first give the definition of these indices,
and then we will analyze the segmentation performance by using these
indices.

• The SD validity index is defined as SD=α ⋅ Scatt+Dis, where Scatt
is the average scattering of clusters, defined by

=
∑ =Scatt

σ ν

σ x

( )

( )
,c i

c
i

1
1

(4)

where σ(x) is the variance of the entire data set, and σ(νi) is the

(a) Asphalt (b) Grass (c) Tree (d) Roof
Fig. 6. The fractional abundance maps of the four reference spectral signatures in the urban HYDICE image, which is estimated by the FCLS method. In these images, pure black denotes
that the abundance of an endmember class in this pixel is 0, while pure white denotes an abundance of 1.

Fig. 7. Segmentation results for the urban HYDICE scene. The first row shows the results obtained by the graph-based segmentation approach (Felzenszwalb and Huttenlocher, 2004).
The images in this row contain 107, 198, 287 and 424 partitions, respectively. The second row shows the results obtained by the regional clustering approach. The images in this row
contain 77, 159, 285 and 398 partitions, respectively.
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variance of the ith cluster, and c is the number of clusters. Dis is the
total separation of clusters, defined by

∑ ∑=

−

−

⎛

⎝
⎜ −

⎞

⎠
⎟

= …

= …
= = ≠

−

Dis

ν ν

ν ν
ν ν

max ( )

min ( )
.

i j c
j i

i j c
j i i

c

j j i

c

j i

, 1

, 1
1 1,

1

(5)

Finally, α is a weighting factor that is equal to the Dis value in case
that we have a maximum number of clusters. A lower SD index
means better cluster configuration.

• Two types of ‘SNPI’ metrics are used. One is called ‘AvgPI’, which is
formulated as = ∑ =AvgPI dist x x k( , )/i

k
i1 , where x is the average

value of pixels in a partition, k is the number of pixels in this par-
tition, and dist x x( , )i is the distance of xi to x . Here we adopted the
correlation coefficient as the distance measurement, which is de-
fined as =dist x x x x x x x x( , ) /( )T T T

1 2 1 2 1 1 2 2 . The range of the corre-
lation coefficient is [−1,1]. The greater the correlation coefficient
is, the more similar/relevant the two variables are. The ‘AvgPI’
quantitatively measures the average variance of all pixels in a par-
tition to their average value, which is also in the range [−1,1]. A
larger ‘AvgPI’ denotes better spatial homogeneity. The other metric
is called ‘SV DPI’, which is formulated as = ∑ =SVDPI S S/( )i

k
ii11 1 ,

where S11 is the largest singular value computed by the Singular
Value Decomposition (SVD) and Sii is the ith singular value. The ‘SV
DPI’ represents the domination of the first feature component. A
larger ‘SV DPI’ denotes that the partition exhibits better spatial
purity.

Table 1 illustrates the results of the aforementioned validity indices
with different segmentation levels for the urban HYDICE image. As we
can see in the table, if we only consider the compactness (such as Scatt
index value in Table 1), we obtain better compactness for small seg-
mentation scales. However, the separability increases when the seg-
mentation scale is moderate, which can be seen from the Dis index
value. By considering both the compactness and separability we can
observe that, when the segmentation scale is 100, the value of SD index
is smaller, which means better cluster configuration. As a result, we
suggest to choose a moderate segmentation scale in the experiments.
This is also reflected by the minimum value of the ‘AvgPI’ and ‘SV DPI’
metrics, where the moderate segmentation scale of 100 resulted in
better spatial purity than the other cases (with a greater minimum value
in ‘AvgPI’ and ‘SV DPI’).

4.3. Comparative experiments to evaluate RCSPP

4.3.1. Experiments with synthetic data
In our first experiment with the synthetic images, we used the SAD

and the Root Mean Square Error (RMSE) to assess the performance of
different endmember extraction methods. Specifically, the SAD is used
to compare the spectral similarity between the extracted endmembers
and their corresponding reference signatures from the USGS library (the
lower the SAD, the more similar the extracted endmembers). The RMSE
is used to compare the original image and the reconstructed one, which

is generated under the linear mixing model by using the extracted
endmembers and their corresponding fractional abundances. In this
work, the fractional abundances are estimated by the FCLS method.
Table 2 shows the SAD (in radians) and the RMSE calculated by dif-
ferent spectral-based endmember extraction methods, combined with
our spatial preprocessing methods. For the proposed Regional Clus-
tering-Based Spatial Preprocessing (hereinafter denoted as RCSPP), we
set the number of partitions to 25, the weighting value of λ=0.1 and
the percentage of candidate pixels to 20% of the total number of pixels
in each partition. The parameters involved in the other methods used
for comparison were carefully optimized, so that the best performance
results are reported in each case. The number of endmembers to be
extracted was set in all cases to 9, according to our previous knowledge
on the simulation process in which 9 USGS signatures were used to
simulate each scene. Nevertheless, the number of endmembers esti-
mated by the Hyperspectral Signal Identification with Minimum Error
(HySime) (Bioucas-Dias and Nascimento, 2008) is also 9, while the
Virtual Dimensionality (VD) (Chang and Du, 2004) algorithm provided
an estimation of 8 endmembers. We would like to emphasize that the
synthetic data sets are generated based on the linear mixing model,
with the ultimate goal of assessing the proposed method in a fully
controlled environment. For the linear model, many of the existing
methods can obtain very good results, such as VCA and MVSA. Here we
only choose OSP and N-FINDR (as highly representative algorithms) for
evaluation purposes. From Table 2 we can conclude that, as a pre-
processing for the OSP and N-FINDR, the proposed RCSPP can provide
comparable results to other preprocessing algorithms, especially in low
SNR circumstances, with the advantage that a much smaller number of
pixels needs to be used in the process. As a result, we can conclude that
the combination of spatial preprocessing with spectral-based methods
generally exhibits good results in the task of endmember extraction.

4.3.2. Experiments with the urban HYDICE data set
In this experiment, we use the urban HYDICE data set to assess the

performance of the proposed RCSPP method in comparison with other
algorithms. For the RCSPP, we obtained 77 partitions after segmenta-
tion, with λ=0.4, and the percentage of candidate pixels was reduced
to only 0.5% of the total number of pixels in each partition. The
parameters in the other methods used for comparison were carefully
optimized. For the number of endmembers, both VD (Chang and Du,
2004) and HySime (Bioucas-Dias and Nascimento, 2008) obtained the
same estimation of 9 endmembers. Considering that the estimated
number of endmembers is 9 and the number of reference endmembers
is 4, we used the Earth Movers Distance (EMD) (Zare and Anderson,
2013) to simultaneously compare the estimated endmember set and the
corresponding fractional abundances with the available reference
endmember set. EMD is a flexible distance metric between two sets of
distributions (Rubner et al., 2000). In Zare and Anderson (2013), the
EMD is adopted as a method to compare two endmember sets and the
corresponding fractional abundances. For a single pixel, let us assume
that h1={E,p} and h2={B,q}, where E ≡ [e1,e2,…,eM] is the first
endmember set with ei denoting the spectral signature of the ith end-
member in this set, and p denoting the corresponding abundance
vector. B ≡ [b1,b2,…,bN] is the second endmember set, and q is the

Table 1
Assessment of the SD and ‘SNPI’ indices with different segmentation levels for the urban HYDICE image. The first row tabulates the segmentation levels, where we indicate the preset
segmentation scale and (in the parentheses) the actual segmentation scale. For the two ‘SNPI’ indices we also give the minimum and maximum values reached in each segmentation level.

Indices 100 (77) 200 (159) 300 (285) 400 (398)

Scatt 0.7942 0.7424 0.6814 0.6425
Dis 0.0741 0.1534 0.17 0.354
SD 0.3552 0.4162 0.4112 0.5814
AvgPI [0.9417,0.9982] [0.9292,0.9994] [0.9346,0.9995] [0.9356,0.9996]
SV DPI [0.6008,0.8264] [0.5986,0.8511] [0.6002,0.8654] [0.5994,0.8667]

The entry value in bold presents the best segmentation level.
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corresponding abundance vector. Our goal is to find an optimal flow
F=[fij] (with fij denoting the flow between pi and qj) that minimizes the
objective function
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In Eq. (6), dij denotes the ground distance between endmember ei
and endmember bj. Here we adopt SAD as the distance measurement.
Once the optimal f* is found, the EMD is calculated as
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In order to measure the dissimilarity of all pixels in the hyper-
spectral data set, we adopted an appropriate summation of the EMD
values over all pixels, as defined in Zare and Anderson (2013):

∑=
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where Nx is the total number of pixels in the hyperspectral data set.
Table 3 presents the total EMD (EMDtot) of all pixels for any two

different methods. In Table 3, ‘Ref’ denotes the reference endmember
set and its corresponding fractional abundances. As shown by the re-
sults reported in Table 3, relative to the reference endmember set, the
RCSPP based methods (RCSPP + OSP, RCSPP + N-FINDR) have
smaller EMDtot, indicating that the RCSPP based methods can find more
spectrally similar endmembers (with regards to the reference spectral
signatures) than the spectral-based methods.

4.4. Analysis of the spectral variability

Due to variable illumination, atmospheric interferers and other

environmental conditions, spectral variability inevitably exists in real
hyperspectral scenes. In order to evaluate the quality of the proposed
RCSPP in the presence of this phenomenon, we conduct a set of ex-
periments to analyze its sensitivity to spectral variability. In our ex-
periments, considering that the knowledge about the different materials
in the scene is often not available in advance, we consider approaches
able to autonomously estimate the endmember sets and the corre-
sponding fractional abundances simultaneously. Here, we choose
SUnSAL and its collaborative version (CLSUnSAL) as our reference
unmixing approaches. These two sparse unmixing approaches can be
applied using large spectral libraries. In our RCSPP algorithm, the
candidate endmember set (obtained in Step 2 of the algorithm) can be
used to generate this kind of spectral library. At the same time, in order
to quantitatively evaluate the performance of RCSPP, we compared the
results with a previously developed Automated Endmember Bundles
(AEB) method in Somers et al. (2012). For the AEB method, we ran-
domly choose several sub-images from the original image, and then use
a spectral-based endmember extraction method to acquire an end-
member set in each sub-image. Then, all endmembers are gathered
together and fed to SUnSAL or CLSUnSAL for unmixing purposes.

Fig. 8 shows the error maps obtained using the AEB method and our
proposed RCSPP. For the AEB method, we randomly choose 20 sub-
blocks with a size that is 10% the size of the original image, ending up
with 180 candidate endmembers (each sub-block consists of 9 end-
members). For the RCSPP, as mentioned before the number of partitions
is 77, and the percentage of candidates selected in each partition is
0.5%. Thus, for the RCSPP a total of 513 candidate endmembers are
used for constructing the endmember bundles. From Fig. 8, we can
observe that the errors obtained by the proposed RCSPP are sig-
nificantly lower than those provided by the AEB method, and the re-
constructions achieved by the RCSPP exhibit much less error than those
obtained by the AEB. This is considered as a good indicator that the
spectral bundles estimated by the proposed RCSPP are better than those
provided by the AEB.

Finally, Fig. 9 shows the bundles obtained by the different methods
for the urban HYDICE scene. Here, we simply used the K-means clus-
tering method with ED distance and set the number of clusters to 9 to
construct bundles for four classes: ‘Asphalt’, ‘Grass', ‘Tree’, ‘Roof’, in
order to provide a visual assessment of the bundles constructed by the
two considered methods. It can be observed that man-made objects
such as ‘Asphalt’ and ‘Roof’ exhibit higher spectral variability than the
natural endmembers. Table 4 tabulates the SAD of the obtained bun-
dles. As can be seen in Table 4, for the proposed approach the variation
of the two natural classes (‘Grass' and ‘Tree’) is much smaller than that
of the two man-made classes (‘Asphalt’ and ‘Roof’). Similar observations
can be made for the AEB method, revealing that our proposed regional
clustering strategy also has the ability to perform similarly with regards
to a method that is specifically designed to model spectral variability,
such as the AEB.

4.5. Sensitivity to input parameters

To evaluate the sensitivity of the proposed RCSPP method to input
parameters, we performed a series of tests using the Fractal 1 synthetic

Table 2
SAD (in radians) and RMSE after reconstructing the Fractal 1 synthetic hyperspectral image. SAD is measured between the USGS mineral spectra and the corresponding endmember pixels
obtained by different endmember extraction methods. RMSE is measured between the original and the reconstructed version of the Fractal 1 image using different endmember extraction
algorithms and their corresponding fractional abundances, estimated by the FCLS method.

Algorithm SNR = 30:1 SNR = 50:1 SNR = 70:1 SNR = 90:1

SAD RMSE SAD RMSE SAD RMSE SAD RMSE
OSP 0.038 0.233 0.014 0.0252 0.0134 0.006 0.0136 0.0048
N-FINDR 0.0346 0.228 0.0135 0.0245 0.013 0.0048 0.0131 0.0036
RCSPP + OSP 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052
RCSPP + N-FINDR 0.0351 0.23 0.0137 0.0266 0.0131 0.0073 0.0132 0.0076

Table 3
EMDtot values (×104) between the reference spectral signatures and the endmembers
obtained by different methods for the urban HYDICE scene, which is calculated by Eq. (9).
The four reference spectral signatures are obtained as described in Section 4.1.2.

Algorithm OSP RCSPP + OSP N-FINDR RCSPP + N-FINDR

(M = 9) (M = 9) (M = 9) (M = 9)
Ref (M = 4) 4.391 3.1571 4.251 2.8782

The entry value in bold presents the best segmentation level.
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scene and the urban HYDICE scene with different numbers of partitions,
clustering criteria, and search scope. When one parameter is tested, the
other parameters are fixed and set to the same values reported in
Section 4.3.1 and Section 4.3.2. The adopted algorithm is the RCSPP
+ OSP combination, mainly because the OSP algorithm can produce
more stable endmember results after several executions than other
tested methods. Table 5 shows the obtained SAD and RMSE values for
different parameter settings using the Fractal 1 synthetic scene. First of
all, we can observe that the SAD and RMSE results are very similar
when the number of partitions is greater than 25. These results suggest
that our method is not sensitive to the number of partitions. Con-
sidering that the larger the number of partitions, the heavier the com-
putational burden, we suggest to choose a relatively low number of
partitions in practice. Regarding the impact of different clustering cri-
teria, including the ED, SAD, SID, and SID-SAM (Du et al., 2004), we
have empirically found that the proposed method is not very sensitive
to these metrics. As a result, we suggest to choose one of the afore-
mentioned distance metrics in practice. Finally, We also analyze the
impact of the neighborhood size in the search strategy implemented by
the considered RCSPP, which is set to two, three, and four times the size
of the initial image partition [see Table 5]. As we can observe, for the
synthetic Fractal 1 scene, the SAD and RMSE results are very similar in
different scenarios. However, we emphasize that the computational
burden becomes heavier when the size of the spatial neighborhood

becomes larger. As a result, we recommend a neighborhood size that is
two times of the initial partition size in practice.

Table 6 shows the EMDtot between the obtained unmixing results
and the reference data with different parameter settings on the urban
HYDICE scene. We can see from Table 6 that, for numbers of partitions
and neighborhood sizes that are similar to those in the pervious ex-
periment, the proposed RCSPP is not sensitive to the parameter settings.
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(a) AEB+SUnSAL
(4.7917)

(b) RCSPP+SUnSAL
(3.9035)

(c) AEB+CLSUnSAL
(7.1098)
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Fig. 8. Error maps obtained after reconstructing the urban HYDICE scene using the AEB in Somers et al. (2012) and the proposed RCSPP. For the AEB method, 20 sub-blocks with a size
that is 10% of the size of the original image are randomly chosen, ending up with 180 candidate endmembers (each sub-block consists of 9 endmembers). For the RCSPP, 77 partitions are
derived and the percentage of candidates selected in each partition is 0.5%. Thus, a total of 513 candidate endmembers is used in experiments.

(a) Asphalt (b) Grass (c) Tree (d) Roof
Fig. 9. Endmember bundles constructed for the urban HYDICE scene using the AEB in Somers et al. (2012) (first row) and the proposed RCSPP (second row).

Table 4
Average(± standard deviation), minimum and maximum SAD (in radians) of the bundles
obtained by the AEB in Somers et al. (2012) and the proposed RCSPP.

AEB RCSPP

Asphalt Average(± stdev) 0.2202 ± 0.0951 0.162 ± 0.082
Min 0 0.0204
Max 0.4288 0.4148

Grass Average(± stdev) 0.218 ± 0.1264 0.103 ± 0.0464
Min 0 0.0179
Max 0.5085 0.2236

Tree Average(± stdev) 0.1584 ± 0.0991 0.1006 ± 0.053
Min 0 0.0108
Max 0.4287 0.3092

Roof Average(± stdev) 0.1764 ± 0.071 0.1982 ± 0.1773
Min 0 0.0289
Max 0.0161 0.6760
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Therefore, in order to reduce computational complexity, we suggest to
use a moderate number of partitions and neighborhood size. With re-
spect to the clustering criteria, it can be seen that the use of SID-SAM
obtained better results. This is expected, as it simultaneously considers
the variability and similarity of endmembers. Therefore, we suggest to
choose SID-SAM for the implementation of the adopted clustering cri-
teria.

4.6. Analysis on the computational complexity

In this section, we performed an analysis on the computational
complexity of our proposed RCSPP method. Our method includes two
main steps: 1) regional clustering, and 2) extraction of candidate end-
members. After obtaining the candidate endmembers, we can use them
as an image endmember library directly, or feed them to a spectral-
based endmember extraction method (such as OSP and N-FINDR.) for
further refinement. For the regional clustering step, the search scope is
localized in a neighborhood, so the complexity is O(N) with N being the
number of pixels in the image. This means the complexity of regional
clustering step is linear with the number of pixels, irrespective of the
number of partitions. For the extraction of candidate endmembers, the
algorithm performs a loop on all partitions. In each partition, the main
computational complexity is the PCT, which has an upper bound of
O n( )i

3 complexity with ni being the number of pixels in the ith partition.
If we assume that the number of partitions is c, and ni ≈ N/c, the
computational complexity of the endmember candidates extraction step

is × ≈O c n O N c( ( )) ( / )i
3 3 2 . Here, we also present the computational

times (in the considered computing environment) measured for dif-
ferent methods when processing the urban HYDICE scene. The obtained
results are reported on Table 7. As shown by this table, the RCSPP (in
combination with endmember extraction methods) significantly re-
duces the processing time as compared with the endmember extraction
methods alone. This is because the number of candidate pixels to be
considered by the spectral-based endmember extraction methods is
significantly reduced (in our experiments, only 0.5% of the original
image pixels are selected). This indicates that the newly proposed
RCSPP offers a relevant strategy to improve the endmember extraction
process from the viewpoint of both the quality of the extracted end-
members (achieved by the integration of spatial information into the
process) and the computational performance (achieved by intelligently
selecting suitable candidate pixels).

5. Conclusions and future research

In this paper, we have developed a new spatial preprocessing
method for remotely sensed hyperspectral unmixing. The proposed
technique is derived from the SLIC method and naturally integrates the
spatial and the spectral information. It comprises two main steps. First,
a regional clustering process is applied to obtain partitions with high
spectral similarity and spatial correlation. Second, candidate pixels are
intelligently extracted from each partition. The proposed method can be
run as an independent module, and the output candidate pixels are fed
to an existing spectral-based endmember extraction method. Our ex-
perimental results, conducted using both synthetic and real hyper-
spectral images, indicate that the proposed method exhibits the po-
tential to improve the accuracy of spectral-based endmember
identification methods, regardless of the presence of pure signatures in
the original image data. Moreover, since the set of candidate end-
members is much smaller than the set of pixels in the original image,
the proposed method exhibits stable and fast results as compared with
other traditional spectral-based endmember extraction methods.

Table 5
Experimental results obtained by the proposed method using different parameter settings with the Fractal 1 scene, including the number of partitions, the clustering criteria and the size of
the spatial neighborhood used to implement the search strategy. Here, the SAD (in radians) is measured between the USGS library signatures and the extracted endmember spectra by the
RCSPP + OSP algorithm. RMSE is measured between the original and the reconstructed version of the Fractal 1 image using the RCSPP + OSP algorithm and their corresponding
fractional abundances, estimated by the FCLS method. When one parameter is tested, the other parameters are fixed and set to the same values reported in Section 4.3.1.

Parameter type Parameter setting SNR = 30:1 SNR = 50:1 SNR = 70:1 SNR = 90:1

SAD RMSE SAD RMSE SAD RMSE SAD RMSE
Number of partitions 16 0.044 0.247 0.0202 0.0444 0.0206 0.0031 0.0206 0.0031

25 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052
50 0.04 0.237 0.0169 0.0270 0.0157 0.0090 0.0159 0.0077
100 0.0407 0.238 0.0136 0.0258 0.0131 0.0074 0.0131 0.0064
400 0.037 0.233 0.0143 0.0250 0.0129 0.0050 0.0131 0.0036

Cluster criteria ED 0.04 0.235 0.0155 0.0257 0.0147 0.0063 0.0147 0.0051
SAD 0.0391 0.239 0.0157 0.0284 0.0143 0.01 0.0145 0.0089
SID 0.0375 0.238 0.015 0.0268 0.0136 0.0079 0.0136 0.0069
SID-SAM 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052

Times of initial partition 2 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052
3 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052
4 0.0367 0.231 0.0142 0.0262 0.0133 0.0065 0.0132 0.0052

Table 6
EMDtot values (×104) between the obtained unmixing results and the reference data,
obtained by considering different parameter settings with the urban HYDICE scene. We
consider different number of partitions, clustering criteria and sizes of the spatial
neighborhood used to implement the search strategy. The obtained values are calculated
by using Eq. (9). Here, the four reference spectral signatures are acquired using the
procedure described in Section 4.1.2. When one parameter is tested, the other parameters
are fixed and set to the same values reported in Section 4.3.2.

Para. type Para.
setting

OSP N-FINDR RCSPP
+ OSP

RCSPP + N-
FINDR

Number of
partitions

100 4.391 4.251 3.1571 2.8782
200 4.2079 2.9693
300 4.8628 2.8377
400 4.1731 4.5604

Cluster criteria ED 4.391 4.251 4.9004 2.4896
SAD 3.6485 2.5699
SID 3.7310 3.3660
SID-SAM 3.1571 2.8782

Times of initial
partition

2 4.391 4.251 3.1571 2.8782
3 4.3534 2.2611
4 2.8160 3.2273

Table 7
Processing times (in seconds) measured for different methods when processing the urban
HYDICE data. Here, the Preprocessing time includes the regional clustering step and the
candidate endmembers extraction step. The number of partitions is 77, and the number of
candidate endmembers is 513.

Algorithm Preprocessing Endmember extraction Total

OSP – 105.391 105.391
N-FINDR – 86.172 86.172
RCSPP + OSP 9.250 8.594 17.844
RCSPP + N-FINDR 9.250 8.312 17.562
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As with any new approach, there are some unresolved issues that
may present challenges over time. In this sense, future research includes
a more detailed investigation of the fact that combined spectral-based
endmember extraction techniques generally result in fixed endmember
spectra, and it is difficult to represent endmember variability in real
hyperspectral scenes with these techniques. How to combine these
methods with multiple endmember-based methods such as MESMA
(Roberts et al., 1998) or other endmember bundles methods (Bateson
et al., 2000; Xu et al., 2015) (and the effect of this kind of combination)
also deserves further research. Another issue is related to the applica-
tion of RCSPP on urban scenes, in which the determination of end-
member classes is very subjective and perhaps not accurate in some
cases. For instance, different buildings' roofs are made up of different
materials, which may result in different endmember features. Different
varieties of trees may also result in different endmember features. How
to represent such classes more accurately requires further investigation.
Moreover, in our RCSPP method, the number of partitions is de-
termined by a rough estimation that depends on the spatial resolution
of the hyperspectral image. In turn, the investigation of whether there is
an optimal partition size and how to obtain this value need further
research. In addition, our regional clustering strategy may produce
some unsuccessfully clustered pixels, and these pixels represent outliers
or heterogeneous pixels. Whether these pixels are suitable to be used as
candidate endmembers or not also need further analysis. A more de-
tailed investigation on the impact of the segmentation results (from
coarse to fine), and the weighting value of λ in Eq. (1) is also a topic
deserving attention in future research. Finally, in future developments
we will also provide additional experiments with other real hyper-
spectral data sets, and attempt to apply our method for spatial pre-
processing in the context of hyperspectral image classification pro-
blems.
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