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Abstract— Hyperspectral imaging is a widely used technique
in remote sensing in which an imaging spectrometer collects
hundreds of images (at different wavelength channels) for the
same area on the surface of the earth. In the last two decades,
several methods (unsupervised, supervised, and semisupervised)
have been proposed to deal with the hyperspectral image clas-
sification problem. Supervised techniques have been generally
more popular, despite the fact that it is difficult to collect
labeled samples in real scenarios. In particular, deep neural
networks, such as convolutional neural networks (CNNs), have
recently shown a great potential to yield high performance in
the hyperspectral image classification. However, these techniques
require sufficient labeled samples in order to perform properly
and generalize well. Obtaining labeled data is expensive and
time consuming, and the high dimensionality of hyperspectral
data makes it difficult to design classifiers based on limited
samples (for instance, CNNs overfit quickly with small training
sets). Active learning (AL) can deal with this problem by
training the model with a small set of labeled samples that is
reinforced by the acquisition of new unlabeled samples. In this
paper, we develop a new AL-guided classification model that
exploits both the spectral information and the spatial–contextual
information in the hyperspectral data. The proposed model
makes use of recently developed Bayesian CNNs. Our newly
developed technique provides robust classification results when
compared with other state-of-the-art techniques for hyperspectral
image classification.
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NOMENCLATURE

AE Autoencoder.
AL Active learning.
ANN Artificial neural network.
AVIRIS Airborne Visible InfraRed

Imaging Spectrometer.
BALD Bayesian active learning

by disagreement.
B-CNN Bayesian-convolutional neural

network.
BNN Bayesian neural network.
CASI Compact Airborne Spectrographic

Imager.
CNN Convolutional neural network.
CONV layer Convolution layer.
CRNN Convolutional recurrent neural

network.
DBN Deep belief network.
DL Deep learning.
DNN Deep neural network.
Dpool Pool set.
Dtrain Trainning set.
EnMAP Environmental Mapping and

Analysis Program.
EO-1 Earth Observing-1.
FTHSI Fourier Transform HyperSpectral

Imager.
GPU Graphics processing unit.
HSI Hyperspectral imaging.
HyperCam HSI for ubiquitous computing

applications.
Hymap Hyperspectral Mapper.
HyspIRI Hyperspectral Infrared Imager.
MAXPOOL layer Pooling layer.
MC-dropout Monte Carlo dropout.
ML Machine learning.
MLP Multilayer perceptron.
MLR Multinomial logistic regression.
PCA Principal component analysis.
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PRISMA Precursore IperSpettrale della
Missione Applicativa.

ReLU Rectified linear unit.
RELU layer Nonlinearity layer with ReLU.
SAE Stacked autoencoder.
SSAE Stacked sparse autoencoder.
SVM Support vector machine.
RF Random forest.
ROSIS Reflective Optics System

Imaging Spectrometer.
RNN Recurrent neural network.
SNR Signal-to-noise ratio.

I. INTRODUCTION

HSI (or imaging spectroscopy) [1] is based on the acquisi-
tion, measurement, analysis, and interpretation of spectra

captured at different wavelength channels (throughout the
visible and solar-reflected infrared spectrum) over an extensive
observation area on the surface of the earth. A variety of imag-
ing spectrometers are currently available, including airborne
[e.g., the AVIRIS, the CASI, the ROSIS, and the Hymap or
the new hyperspectral missions based on HyperCAM technol-
ogy [2]–[9]) and spaceborne (e.g., the EO-1 Hyperion or the
FTHSI on MightySat II [10]–[12]). Imaging spectrometers
are also available on ground-based (stationary or handheld)
platforms. These instruments allow for the acquisition of the
solar-reflected spectrum in a large number of narrow and
contiguous spectral bands (normally several hundreds) [13],
creating data cubes in which each pixel contains a detailed
contiguous spectral signature that can be used to characterize
the objects in the scene with great precision and detail.

Several imaging spectrometers are currently operational,
providing a large volume of hyperspectral data that can be used
for a wide variety of applications, such as forestry, geology,
precision agriculture, hydrology, ecological monitoring, scene
recognition, military applications, and disaster monitoring
[14]–[17]. For instance, we highlight the following spectrome-
ters: AVIRIS [4], which measures the solar-reflected spectrum
from 0.4 to 2.5 µm at the intervals of 0.01 µm creating
hyperspectral images with 224 bands, EO-1 Hyperion, which
also collects 242 bands in the range of 0.4–2.5 µm [16], [18],
and ROSIS, which collects images with a spectral range
from 0.43 to 0.96 µm [7], among others. Also, several
new satellite missions will be soon operative and ready to
collect data in a very similar spectral range. For instance,
the imaging spectrometer included in the NASA HyspIRI [19]
is expected to measure the visible-to-shortwave infrared in the
range 0.38–2.5 µm or the German EnMAP [20] that is
expected to collect data in the range 0.42–2.45 µm, as well
as the Italian PRISMA Program [21].

The great amount of information that these spectrom-
eters collect is very useful in pattern recognition, which
has led to the development of multiple methods for the
advanced classification of hyperspectral images [22], [23].
This includes unsupervised techniques (often called clustering

methods) [24]–[28]. However, supervised classifiers are often
preferred due to their capacity to provide high classification

accuracy by considering class-specific information provided
by labeled training samples [14].

In this sense, since their successful application in the field
of pattern recognition in the 1990s [29], [30], ANNs have
attracted the attention of a large number of researchers in
the area of hyperspectral image classification [31], [32]. Their
ability to learn by examples and to generalize, together with
the following properties: 1) ANNs are nonparametric (i.e., they
do not need prior knowledge of the statistical distribution of
the classes) and 2) they offer multiple training techniques to
deal with linearly nonseparable data [33], has made ANNs
widely attractive for supervised classification of hyperspectral
images compared with probabilistic methods.

In particular, DNNs [34], [35] have recently shown a great
potential to yield high performance in image classification
tasks [36]–[38]. DNNs are deep architectures (multilayer stack
of simple modules) that have the capacity to learn more
complex models than shallow ones [39], learning features
at various levels of abstraction, i.e., the multilayer nonlinear
transformations applied over DNNs architecture can adaptively
extract more meaningful and discriminative features [40].
To date, four DNN models have been the mainstream DL
architectures for the analysis of hyperspectral remote sensing
images: DBNs, AEs, RNNs, and CNNs.

DL has emerged in part with DBN models [41], [42].
In [43], three DBNs to extract high-level features from
hyperspectral data using spectral, spatial, and spectral–spatial
information are introduced. In a similar way, [44] implements
a DBN for feature extraction and classification, stacking
spectral–spatial characteristics, while [45] investigates the
hyperparameters used by the spectral and spectral–spatial
DBNs in [43]. Another example is [46] in which a DBN
is implemented introducing diversity promoting priors into
the pretraining and fine-tuning phases in order to avoid the
coadaptation of latent factors.

On the other hand, the AE has been traditionally used as an
unsupervised pixel-based method to learn useful features from
data and perform dimensionality reduction. In the literature,
we can find deep AE architectures, also called SAEs, for
hyperspectral image classification, such as the SAE proposed
in [47] that performs a two-step training strategy based on
pixel spectrum, with an unsupervised representation learning
and a supervised fine-tuning, before a final supervised classi-
fication step conducted by a logistic regression layer. In [48],
an SAE is pretrained in unsupervised fashion with spectral
data, and the features are extracted by a PCA+3D Gabor
wavelet filter. In [49], three SAEs are introduced to generate
high-level features from hyperspectral data using spectral, spa-
tial, and spectral–spatial information with a logistic regression
method performing the final classification. Following [49],
in [50], two SSAEs are proposed to extract spectral and
spatial features that are stacked and embed into an SVM for
classification.

SAEs and DBNs are successful DL methods for hyper-
spectral classification, improving their performance with the
incorporation of spatial information in addition to the spec-
trum. However, both SAE and DBN models need to flatten the
spectral–spatial features in 1-D vectors to satisfy their input
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requirements, losing to a certain point the effectiveness of the
spatial information [51] for characterization purposes.

Regarding RNN, it is a kind of network with loops in
connections where node activations at each step depend on
those of the previous step [52]. With the traditional pixel-
based approach, the RNN exploits each hyperspectral pixel
in the band-to-band fashion [52]. On the other hand, several
CNN-based approaches (called CRNN [53]) have been imple-
mented for hyperspectral classification. In [54], a 1-D CRNN
is implemented, where spatial constraints are integrated by
linear opinion pools. A similar model is used in [55], where
a 1-D CRNN is trained in the semisupervised fashion with the
labeled and unlabeled data (pixels) using pseudolabels. Again,
RNNs and CRNNs can present the same problem as SAEs and
DBNs: they need to adapt the spatial information in order to
exploit it.

In this sense, we highlight CNNs [35] as a powerful tool for
hyperspectral image classification [14] able to exploit both the
spectral and the spatial information in an easy and natural way.
CNNs successively apply convolution filters and pooling oper-
ations to the raw input data (which can be 1-D, 2-D, or 3-D),
creating a hierarchy of layers whose outputs are increasingly
complex feature vectors from the input data. In the literature,
we can find multiple adaptations of these networks to hyper-
spectral analysis. Following a 1-D approach, [56] presents
a five-layer 1-D CNN that receives n × 1 input vectors,
where n is the number of spectral bands, to classify hyperspec-
tral images directly in the spectral domain. On the other hand,
2-D CNNs exploit the information from neighboring pixels
in order to extract spatial features, whose input data are a
patch of d×d neighboring pixels [57], normally after applying
PCA to extract the spectral features [58], [59]. Also, several
approaches mix both 1-D and 2-D CNNs to extract spectral–
space information, respectively [60], [61]. In contrast to these
methods, several 3-D CNN models have been proposed that
can learn both spatial and spectral features, taking as input data
3-D patches from the original hyperspectral data, processing
each pixel by means of a 3-D convolution kernel in association
with its spatial neighborhood and the corresponding spectral
information [37], [62]–[64]. However, the application of CNNs
to hyperspectral classification presents some issues, as they
require a great amount of labeled data for fine-tuning the large
number of training parameters that affect their generalization
power, such as the number of hidden layers and their kernel
size (which involves the number of weights, their biases, and
the obtained feature maps), the pooling, padding, and stride
sizes, the selected optimizer and its learning rate, and the batch
size. These aspects make this kind of networks quickly overfit
with small training sets which may lead to poor classification
accuracy in the testing phase.

In general, the quality of ANN-based classification methods
is strongly related to the quality and number of training
samples available in advance [65]. In order to effectively learn
the parameters of the classifier and to create a more robust
and generalist model, a sufficient number of labeled samples
are often required. However, in order to make the model as
efficient as possible, the training set should be kept small
and focused on the pixel samples that really help to improve

the performance of the model. Moreover, the labeled samples
are very difficult, expensive, and time consuming to collect
in practice [66] and often only a few labeled samples are
available in advance. This issue is particularly problematic in
the hyperspectral image classification, since there is often an
unbalance between the high dimensionality of the data and
the limited number of training samples available [67], known
as the curse of dimensionality or the Hughes effect [68].
As result, the ANN model may overfit the training data,
which reduces its generalization capacity [69]. Some methods
address this problem by using data augmentation techniques
to generate additional training samples, performing basic
transformations in the initial data set. Lu et al. [17] provide
a method that offers robustness and flexibility in modeling
scene images and report the improvements of the accuracy in
scene recognition, constructing multiresolution features and
modeling sparse features’ selection-based manifold regular-
ization. In contrast, AL [70] has been used to facilitate the
classification of hyperspectral image data sets, by including
intelligently selected unlabeled samples from the original data
set, i.e., the most informative samples, to the training set. This
reduces the cost of acquiring large labeled training sets and
the number of needed training samples [71]–[75].

However, the combination of AL with deep architectures,
such CNNs, has been more difficult. This is because the
goal of AL is to create a model composed by a predictor
trained on a small set of well-chosen examples that can
perform as efficiently as a predictor trained on a larger number
of examples randomly chosen, while being computationally
tractable, but CNNs often require large amounts of training
data for training and are highly prone to overfitting when
they are trained with small data sets. Also, similar to MLR,
AL techniques rely on probabilistic functions, which indicate
the probability of a sample to belong to the different existing
categories, in order to create a model uncertainty but deep
architectures normally do not represent model uncertainty,
obtaining as final output the predicted class label instead the
probability of each class. Moreover, conventional ANNs in
general (and CNNs in particular) are based on the minimiza-
tion of an error function [76], typically the least squared-
error function between the desired class label and the obtained
one in classification, and they cannot determine the level of
uncertainty of their output results. In fact, the proposed model
must be able to extract an output probability matrix from input
data in order to apply the AL probabilistic function (called
ranking function) and to extract those samples with more
uncertainty, which will provide more information to the model.

To address this issue, in this paper, we consider
BNNs [77], [78], a special kind of ANN that is robust to
overfitting and is able to offer uncertainty estimates and a prob-
abilistic interpretation of DL models by inferring distributions
over the models’ weights, being able to learn from small data
sets [79] and avoiding the tendency of conventional ANNs to
make overconfident predictions in sparse data regions. In fact,
we can consider BNNs as an extension of standard ANNs
with posterior inference, adding a probability distribution on
its weights [78], [80]. Recent works have showed that the
Bayesian approach to CNNs (called hereinafter B-CNNs) can
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Fig. 1. Comparison between a conventional DNN (a multilayer perceptron or MLP) with three hidden fully connected layers and a CNN with three hidden
CONV layers or kernels. The neurons in the CNN create 3-D blocks with sparse connectivity.

offer robustness to overfitting on small data sets and improve
their generalization capacity adding dropout at every weight
layer (also called convolutional layer) of the CNNs, as a
Bayesian approximation of the probabilistic model defined
by the Gaussian process [81]–[83], which allows to represent
the model uncertainty without introducing major changes to
the network architecture. By taking advantage of BNNs (that
offer good uncertainty estimates and are robust to overfitting)
and following the methodology of [83], we propose, for the
first time in the literature, an AL model with B-CNNs for
spectral–spatial classification of hyperspectral remotely sensed
data. The main innovative contributions of this paper can be
summarized as follows:

1) the development (for the first time in the litera-
ture) of a dropout-based method (called B-CNN) to
extract probabilistic information from 1-D, 2-D, and
3-D CNN models with the aim of performing accurate
spectral–spatial feature-based classification of hyper-
spectral images using limited training data with different
CNN architectures;

2) the development of a three-step-based training phase to
perform AL over the proposed B-CNN for the first time
in the hyperspectral image classification literature;

3) the exhaustive analysis and comparison of different
acquisition functions to perform AL over the imple-
mented B-CNN model, and a detailed comparison
between the implemented B-CNNs and the standard
1-D, 2-D, and 3-D CNN classifiers for hyperspectral
data in addition to other traditional hyperspectral data
classifiers, such as RF, MLP, SVM, and MLR.

The remainder of this paper is organized as follows.
Section II provides an overview of related works and presents
the newly developed classifier model. Section III validates
the proposed approach using three well-known hyperspectral
data sets, highlighting the advantages of the newly proposed
classifier. Finally, Section IV concludes this paper with some
remarks and hints at plausible future research lines.

II. METHODOLOGY

A. Active Learning

AL has been adopted in remote sensing as an effective
strategy to reduce the cost of acquiring large labeled train-
ing sets [75], and it is based on tree main aspects: 1) the

Algorithm 1 AL (General Algorithm)

1: procedure AL(D�
train, D�

pool, N) F

D�
train = {xi , yi }

l
i=1 ∈ R

d , � = 1 → initial training set,
D�

pool = {xi}
l+u
i=l+1 ∈ R

d , � = 1 → pool of candidates
(pool set), N → number of pixel samples to add at each
iteration (until reaching a final batch of selected pixels,
Dselected )

2: repeat

3: Train the model with the current training set D�
train

4: for xi ∈ D�
pool do

5: Evaluate a user-defined heuristic
6: end for

7: Rank the candidates xi in D
�
pool according to the

heuristic score
8: D�

selected = {xk}
N
k=1 → select the N pixels with

higher score
9: D�

selected = {xk, yk}
N
k=1 → assign label to the N

selected pixels.
10: D

�+1
train = D

�
train

⋃
D

�
selected → add the batch

11: D
�+1
pool = D�

pool − D�
selected → remove batch from

pool
12: � = � + 1 → update index iteration
13: until Classification result is acceptable
14: end procedure

availability of an initial training set; 2) the availability of a
pool set; and 3) the use of an acquisition function. Let us
denote by Dtrain = [X, Y ] = {xi , yi }

l
i=1 a training set made

up of l labeled samples (where xi ∈ R
d= [xi,1, xi,2, . . . , xi,3]

is the input data, in our case a hyperspectral pixel vector,
and yi = {1, 2, . . . , C} is the corresponding label, with C the
number of different categories or classes) and Dpool = [X] =

{xi}
l+u
i=l+1 ∈ R

d the pool of candidates, i.e., a set of u unlabeled
samples (u � l). The AL model is generally composed by
a learner (trained with a few labeled samples, Dtrain) that
iteratively selects new training examples from the pool of
candidates (Dpool) that provide maximal information about the
unlabeled data set and improve the model performance [74].
Algorithm 1 provides a general approximation of how AL
works. As a result of the process illustrated in Algorithm 1,
the classification accuracy given by the final selected training
set is expected to be higher than the one obtained by using
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randomly selected labeled samples. The acquisition function,
in particular the user-defined heuristic, is a crucial point
in AL. Tuia et al. [74] make a compilation of several heuristic
methods, proposing a taxonomy of AL techniques. Here,
we rely on posterior probability-based AL methods. These
methods use the estimation of posterior probabilities of class
membership, p(y|x), to rank the candidates in Dpool. This
kind of probability gives us an idea of the confidence of the
class assignment, i.e., how good the classification is. However,
DNNs, in general, and CNNs, in particular, normally do not
calculate an uncertainty model that is needed for these AL
methods. In Section II-B, we summarize how this problem is
solved in [83].

B. Bayesian-Convolutional Neural Networks

In contrast to conventional ANNs, the blocks or layers of
neurons in CNNs operate such as kernels which are connected
and applied over one region of the input image (also referred
to as input volume hereinafter), i.e., layers are not fully
connected to all neurons of the previous layer as in the
standard multilayer perceptron or MLP (see Fig. 1). Each layer
actually composes a feature extraction stage that can be of
three kinds [64], [84].

1) CONV Layer: A layer where each node is in charge of
computing the dot product (·) between its own weights
and a predefined region of the provided input volume
to which it is connected. Actually, these layers work as
kernels or filters where nodes share the same weights
and bias, connecting the input volume to the output
volume. Let us suppose a CONV layer that receives
as input volume the data cube X ∈ R

d×d×n , where d

represents the height and width and n represents the deep
of the cube (also spectral bands). Each neuron in one
filter that composes the CONV layer (k is the number
of filters) will operate with a chunk of X , in particular,
with a l × l × q chunk (called filter bank, W c). We can
calculate the output of the neuron (i, j, t) in the kth filter
of the CONV layer as

zi, j,t = (X · W c)i, j,t

=

l−1∑

î=0

l−1∑

ĵ=0

q−1∑

t̂=0

x
(i·s+î),( j ·s+ ĵ),(t ·s+t̂)

· w
î, ĵ ,t̂

+ b

(1)

where zi, j,t is the element (i, j, t) in the kth feature map,
xi, j,t is an element of input data X , w

î, ĵ ,t̂
is a weight of

the cube of weights W , b is the bias, and s is the stride
of the CONV layer. In fact, we can observe each filter
as a window that moves itself on X in chunks of size
l × l × q with a displacement dictated by s. As a result,
an output volume Z is obtained, which will be an array
composed by k 1-, 2-, or 3-D feature maps depending
on the kernel’s dimension.

2) Nonlinearity Layer: This layer is used to implement a
nonlinear function (such as the sigmoid function or the
ReLU [85]–[87]), which is then applied to each

component of the obtained feature map to learn non-
linear representations: A = f (Z).

3) Pooling Layer: Pooling layers are used to resume the
output Z of several nodes in CONV layers using a
pooling function. In addition, they also provide location
invariant features. Normally, this layer executes a max
operation (MAXPOOL layer) within a small region R

defined by a kernel l × l × q over the resulting volume
A after the nonlinearity layer, i.e., A is divided into sev-
eral nonoverlapping maps, whose maximum values are
mapped into the final output volume P = maxi∈R Ai .

Two characteristics make CNNs an ideal model for processing
and classifying hyperspectral images: the sparse connectivity
and shared weights. These features allow us to reduce the
number of parameters to be learned by the network ensuring
some degree of shift, scale, and distortion invariance. However,
CNNs require huge amounts of data for regularization due
to their model’s complexity and to the fact that they quickly
overfit with small training sets. Such an overfitting problem
makes that CNNs exhibit poor predictive performance in the
testing phase. To avoid this problem, we adopt BNNs due to
their robustness to overfitting and to their capacity to learn
from small training sets.

Specifically, we use B-CNNs that combine the features
of BNNs with the classification potential of CNNs. Another
advantage of B-CNNs in our context is that they provide
the uncertainty model that we need to apply AL techniques.
Given a training data set Dtrain = [X, Y ] composed by inputs
X = {x1, . . . , xl} (where each xi ∈ R

n = [xi,1, xi,2, . . . , xi,n ])
and their corresponding outputs Y = {y1, . . . , yl} (where each
yi = {1, 2, . . . , c}), the model posterior’ goal is to estimate a
function yi = f (xi ) as close as possible to the original func-
tion that has generated the outputs Y . The Bayesian approach
proposes to put some prior distribution over the space of
functions p( f ), so we can define a probability or likelihood on
the output Y given the input X and a function f , p(Y |X, f ).
Therefore, the posterior distribution will be p( f |X, Y ) =

p( f |Dtrain) that captures the most likely functions given the
observed data. In this way, the output y∗ of a new input x∗

can be predicted as the marginal likelihood

p(y∗|x∗,Dtrain) =

∫
p(y∗| f ∗)p( f ∗|x∗,Dtrain)d f ∗. (2)

As (2) is normally intractable, we can approximate it adding
a finite set of random variables ω as follows:

p(y∗|x∗,Dtrain)

=

∫
p(y∗| f ∗)p( f ∗|x∗, ω)p(ω|Dtrain)d f ∗dω. (3)

In a BNN with weights Wi of size Ki × Ki−1 for each layer i ,
the set of finite variables or parameters will be ω = {Wi }

L
i=1

(where L is the number of layers), and the posterior over ω

given X and Y will be p(ω|Dtrain). However, the probability
distribution p(ω|Dtrain) is not tractable for a BNN. To infer
the model posterior in a simple way, [83] proposes the use
of variational inference as an approach based on Bernoulli
approximation variational distributions (and relating this to
dropout training) with the aim of not increasing the number of
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parameters to be trained, as in other types of approaches such
as the variational inference with Gaussian [88]. The first step
is to define the approximating variational distribution q(Wi )

for each BNN’s layer i (i = 1, . . . , L) as

Wi = Mi · diag
(
[zi, j ]

Ki
j=1

)

i = 1, . . . , L,

j = 1, . . . , K ,i−1

where diag is the diagonal matrix with elements zi, j that are
Bernoulli distributed random variables with probabilities pi

and Mi are variational parameters to be optimized. Predictions
follow (3). The change resides in replacing the intractable
probability distribution p(ω|Dtrain) by the approximate distrib-
ution q(ω) that belongs to a tractable family, which minimizes
the Kullback–Leibler divergence, DK L(q(ω)||p(ω|Dtrain))=0,
a measure that returns the similarity between both the
distributions

q(y∗|x∗) =

∫
p(y∗| f ∗)p( f ∗|x∗, ω)q(ω)d f ∗d. (4)

Using Monte Carlo integration, we can approximate the inte-
gral so that we can predict the probability that the output y∗

corresponds to label c as follows:

p(y∗ = c|x∗,Dtrain) =

∫
p(y∗ = c|x∗, ω)p(ω|Dtrain)dω

≈

∫
p(y∗ = c|x∗, ω)q(ω)dω

≈
1

T

T∑

t=1

p(y∗ = c|x∗, ω̂t )

being ω̂t ∼ q(ω) called MC-dropout, while T are the stochas-
tic forward passes. This Bernoulli approximation variational
inference in BNNs can be implemented by adding dropout
layers after certain weight layers in a network [83]. In the
B-CNN model, this is the same than adding dropout to all
CONV layers as well as inner-product layers.

C. AL Acquisition Function

The AL acquisition function a(x,M) of a model M with
pool data Dpool and inputs x ∈ Dpool∈ R

d decides which data
points x will be queried by an external oracle, which could
be a human expert that performs the work of classifying the
unlabeled data to be added to the training set Dtrain

S = arg maxx∈Dpool
a(x,M).

Gal et al. [89] make a review and a comparison between
different acquisition functions. This paper performs a com-
parison with six different acquisition methods that have been
adapted to AL methodology, taking into account different
measurements, such as the entropy value and distances of the
samples, among the random selection of samples.

1) Random Acquisition or Baseline: It chooses a point
xi following a uniformly random distribution from
Dpool ⇒ a(xi) = uni f (), where uni f () returns a draw
from a uniform distribution over the interval [0, 1].

2) Mean STD [90]: For each xi , it calculates σ(xi ) =

(1/C)
∑

c σc, where C is the number of classes, c are
the classes that xi can take, and

σc =

√
Eq(ω)[p(yi =c|xi , ω)2]−Eq(ω)[p(yi =c|xi , ω)]2.

3) Maximum Entropy [91]: It chooses xi ∈ Dpool with the
highest classification uncertainty, i.e., xi that maximizes
the predictive entropy

H[yi |xi ,Dtrain] :=

−
∑

c

p(yi = c|xi ,Dtrain) log p(yi = c|xi ,Dtrain).

4) BALD [92]: This method chooses xi ∈ Dpool that are
expected to maximize the mutual information between
the predictions and the model posterior

I[yi , ω|xi ,Dtrain]

:= H[yi |xi ,Dtrain] − Ep(ω|Dtrain)[H[yi |xi , ω]]

where H[yi |xi ,Dtrain] is the entropy [91]. The selected
points exhibit high variance in the input to the softmax
layer.

5) Breaking Ties Criterion (BT-Criterion) [93], [94]: This
method focuses on the boundary region between two
classes with the aim of obtaining more diversity in the
composition of the training set Dtrain. Sample xBT is
selected from Dpool by

xBT = arg min
xi∈Dpool{

max
c∈C

p(yi = c|xi , ω)− max
c∈C\{c+}

p(yi =c|xi ,ω)

}

where c+ = arg maxc∈C p(yi = c|xi , ω) is the most
probable label class for sample xi

6) Mutual Information Criterion [70], [94]: It measures
the mutual dependence between samples. In fact, this
function selects the sample xMI maximizing the MI
between the obtained results and the class labels

xMI = arg max
xi∈Dpool

I (ω; yi |xi)

where I(ω; yi |xi ) = (1/2) log(|H MI|/H ) represents the
MI between the obtained results and the class label yi ,
with H the posterior precision matrix and H MI the pos-
terior precision matrix after including the new sample xi .

In order to compare these acquisition functions, they have
been adapted to be executed with AL methodology. For
example, the BALD method has been approximated with q(ω),
as described by [89]

I[yi , ω|xi ,Dtrain]

:= H[yi |xi ,Dtrain] − Ep(ω|Dtrain)[H[yi |xi , ω]]

= −
∑

c

p(yi = c|xi ,Dtrain) log p(yi = c|xi ,Dtrain)

+ Ep(ω|Dtrain)

[
∑

c

p(yi = c|xi , ω) log p(yi = c|xi , ω)

]
.



6446 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 11, NOVEMBER 2018

If we consider the BALD equation the identity p(yi =

c|xi ,Dtrain) =
∫

p(yi = c|xi , ω)p(ω|Dtrain)dω, we have

I[yi , ω|xi ,Dtrain]

:= −
∑

c

∫
p(yi = c|xi , ω)p(ω|Dtrain)dω

· log

∫
p(yi = c|xi , ω)p(ω|Dtrain)dω

+ Ep(ω|Dtrain)

[
∑

c

p(yi = c|xi , ω) log p(yi = c|xi , ω)

]
.

Now, we can apply Monte Carlo integration as follows:

I[yi , ω|xi ,Dtrain]

:= −
∑

c

∫
p(yi = c|xi , ω)q(ω)dω

· log

∫
p(yi = c|xi , ω)q(ω)dω

+ Eq(ω)

[
∑

c

p(yi = c|xi , ω) log p(yi = c|xi , ω)

]

≈ −
∑

c

(
1

T

T∑

t=1

p̂t
c

)
log

(
1

T

T∑

t=1

p̂t
c

)

+
1

T

∑

c,t

p̂t
c log p̂t

c.

D. Proposed B-CNN Architecture for Active Learning

Finally, we present the new B-CNN architecture developed
in this paper. It should be noted that the literature on CNNs
applied to hyperspectral image classification shows different
points of view on how the spatial and the spectral information
in the original hyperspectral image can be used:

1) extracting only spectral information implementing
a 1-D CNN architecture [14], [37], [56];

2) extracting only spatial information implementing
a 2-D CNN architecture [57], [95]–[97];

3) extracting spectral–spatial information implementing
a 3-D CNN architecture [37], [63].

In this regard, we emphasize that our B-CNN approach can be
applied to 1-D, 2-D, and 3-D CNN architectures. This paper
investigates the effects of applying the proposed Bayesian
network to CNN models with the aim of performing hyper-
spectral classification based on spectral, spatial, and spectral–
spatial features. In this sense, three B-CNN models have been
implemented: 1-D, 2-D B-CNN, and 3-D B-CNN.

1) Spectral B-CNN Architecture: This model takes advan-
tage of only the spectral information contained in the input
hyperspectral image by developing a 1-D CNN architecture
and performing a traditional pixelwise-based learning. Given
the hyperspectral image X ∈ R

h×w×n , where h and w are
the height and width, respectively, and n is the number of
spectral bands, the 1-D B-CNN model will take as input
data pixel vectors of the hyperspectral scene X , xi ∈ R

n =

[xi,1, xi,2, . . . , xi,n ], where i = 1, 2, . . . , (h · w). In this case,
each input pixel vector xi is transformed through the net

Fig. 2. Proposed spectral B-CNN (1-D B-CNN) architecture.

into feature maps, capturing the spectral information contained
in xi . Equation (1) can be rewritten as

zt = (x · W c)t =

q−1∑

t̂=0

x(t ·s+t̂) · wt̂ + b (5)

where q is the depth of the kernel, zt is the tth neuron’s output
in the kth filter, xt is one spectral band of the CONV layer’s
input x, W c is the filter bank of the layer, characterized by
k kernels of size 1 × q , wt̂ is a weight of vector W , b is the
bias of the layer, and s is the stride.

In order to compare the implemented 1-D B-CNN model
with the 1-D CNN baseline, the model’s architecture has been
inspired by [56]. As we can see in Fig. 2, the proposed
1-D B-CNN model is composed by one input layer that
receives the pixel vector with all its spectral bands. This input
feeds one CONV layer, c1, with kc1 kernels of size 1 × qc1,
followed by the ReLU activation function and one maxpool
layer, mp1, whose kernel size is lmp1. The output of mp1 is
reshaped into a vector in order to feed two fully connected
layers at the end of the network. After the maxpool and first
fully connected layers, dropout is implemented in order to
perform the MC-dropout. Table I shows the details of the
1-D B-CNN implementation.

2) Spatial B-CNN Architecture: This model takes advan-
tage of only the spatial information contained in the input
image, reducing the number of spectral bands n to 1 by
applying PCA over original hyperspectral data sets. As result,
a 2-D CNN architecture has been implemented, whose input
is composed by patches of size d × d × 1 extracted from the
hyperspectral scene. Normally, CNNs in general (and B-CNNs
in particular) receive a completely normalized image prior to
classification, i.e., a 3-D input array. However, in hyperspectral
images, the classes are often mixed, so we feed the pixel
(vectors of 1 × n) one by one to the B-CNN. This allows
us to exploit the rich spectral information contained in the
hyperspectral data in the case of the 1-D B-CNN, but we also
need an additional mechanism in order to include also the
spatial information in the 2-D model. In this case, we feed the
network with the pixels that belong into a neighborhood win-
dow centered around each pixel under consideration. In this
way, the input layer of the 2-D model accepts volumes of
d × d × 1 [64], after processing the original scene with PCA.
This requires a preprocessing stage in order to create patches
of d × d × 1 for each pixel, where the desired label to be
reached by the network will be the one owned by the central
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Fig. 3. Proposed spatial B-CNN (2-D B-CNN) architecture.

pixel of the patch [d/2 + 1, d/2 + 1, n]. In this case, (1) can
be rewritten as

zi, j = (X · W c)i, j =

l−1∑

î=0

l−1∑

ĵ=0

x
(i·s+î),( j ·s+ ĵ)

· w
î, ĵ

+ b (6)

where l is the height and width of the kernel, zi, j is the output
of the neuron (i, j) in the kth filter, xi, j is one pixel of the
input patch X ∈ R

d×d×1, W c is the filter bank of the layer,
characterized by k kernels of size l × l, w

î, ĵ
is a weight of

matrix W , and b is the bias of the layer and s the stride.
Fig. 3 shows the implemented 2-D B-CNN model. In this

case, a deeper architecture has been selected. As we can
observe, the input layer receives the hyperspectral patches of
size d × d × 1, which feeds the first CONV layer c1. After
that, three pairs of CONV+maxpool layers are implemented,
c2 and mp1, c3 and mp2, and finally c4 and mp3. The network
ends with two fully connected layers fc1 and fc2, where the
last one performs the final classification. Dropout has been
added at the end of certain layers in order to model the
uncertainty of the network. Table I shows the details of the
2-D B-CNN implementation.

3) Spectral–Spatial B-CNN Architecture: This model takes
advantage of both the spectral and the spatial information in
the input hyperspectral image by developing a 3-D architecture
that receives as input data patches of size d × d × n, where
n is the number of spectral bands. As in the 2-D B-CNN
model, a preprocessing stage is required in order to create the
input patches for each pixel [64], where the desired label to
be reached by the network will be the central pixel of the
patch [d/2 + 1, d/2 + 1, n]. In this case, each CONV layer
performs (1).

As we can see in Fig. 4, the proposed spectral–spatial
B-CNN consists of an input layer that receives the input
patches, two CONV layers, c1 and c2 (with ReLU as a
nonlinear activation function), two maxpool layers at the end
of each CONV layer, mp1 and mp2, and two fully connected
layers, fc1 and fc2. The last one is the output layer, which
obtains the desired label for the input data. After each maxpool
layer, a dropout layer is inserted in order to model the
probability of the proposed network that will allow to obtain

TABLE I

CONFIGURATION OF OUR THREE B-CNN ARCHITECTURES.
C INDICATES THE NUMBER OF CLASSES CONTAINED

IN THE HYPERSPECTRAL DATA SET

the uncertainty estimation. Table I provides additional details
about the considered spectral–spatial B-CNN architecture.

The parameters of the considered 1-D, 2-D, and 3-D archi-
tectures, including the number and type of layers or kernel
sizes, are one of the design choices of the proposed spectral,
spatial, and spectral–spatial B-CNN models. In this sense,
the architectures have been selected and defined in a way
that is as general as possible to adapt them to different
hyperspectral images [64]. In addition, our decision to use
the same architectures for different data sets further illustrates
that the proposed method can achieve good classification
results on very different images, extracting the samples that
maximize the information gained about the model, improving
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Fig. 4. Proposed spectral–spatial B-CNN (3-D B-CNN) architecture.

the training, and showing its robustness, regardless of the fact
that nonoptimal or customized topologies are adopted.

Also, we must remark that the proposed 1-D, 2-D, and
3-D B-CNN models have been developed as a computation
graph using the library for machine intelligence Keras with
TensorFlow back end over CUDA toolkit and the library
of primitives for DNNs cuDNN. This computation graph is
composed by connected nodes that represents operations (also
called units of computation), while connections (or edges)
represent the data consumed (input connections) and produced
(output connections) in the unit. These connections allow
us to represent the existing dependences between different
operations, making it possible to identify those operations that
can be executed in parallel in an easy way.

The process of our 1-D, 2-D, and 3-D B-CNNs follows
two main steps. In a first step, the hyperspectral image is first
loaded and a band-mean normalized version is calculated so
that the values of the image are in the range [0, 1]. Then,
the hyperspectral image’s ground truth is divided into two
data sets: two randomly selected samples per class, 2 · C ,
will compose the initial training set, D0

train, and the remaining
samples will compose the working set. From the working set,
50% of random selected pixels will compose the initial pool

set, D0
pool, and the remaining 50% will be divided into testing

samples (testing set with the 95% of samples) and validation
samples (validation test with 5% of samples).

The next step is given by Algorithm 1. At this point, and
with the aim of reducing the use of storage by the algorithm,
the hyperspectral data are preprocessed in order to create the
input samples that will feed the model (i.e., pixels vectors
1 × n, or patches d × d × 1 or d × d × n). In this sense,
Algorithm 1 has been adapted to perform, for the first time in
the literature, AL over the new B-CNN models for spectral,
spatial, and spectral–spatial classification of hyperspectral data
in an efficient way, both computationally and in terms of
memory management. In � = 0, the training set D0

train and
the pool set D0

pool are created as sets of 1 × n pixel arrays.

Then, the B-CNN models are trained by a three-step
process.

1) If we are working with 2-D or 3-D models, for each
pixel xi ∈ D0

train, we create a patch of size d ×d × 1 or
d ×d ×n, depending on the model’s dimension, centered
on the pixel xi , and assign the pixel’s label, yi , to the
patch. Once we have created the patches, these are sent
to the network and the model is trained with MC-dropout
in order to extract the labels y 0

i , optimizing the cross-
entropy function

Hy(y0) =
∑

i

yi log
(

y 0
i

)

where yi is the original label of the i th sample and y 0
i

is the predicted label obtained by the model.
2) Once a certain number of epochs have been executed

and the weights and biases of the model have been
adjusted, D0

pool is sent as the test data to the network.
MC-dropout is used to capture the confidence of the
model in its predictions, calculating the probability of
the output y 0

i for each xi in D0
pool, p(y0

i |xi ,Dtrain).

From an implementation point of view, D0
pool passes

through the network T times, where T is the number
of stochastic forward passes. As a result, T different
outputs y 0

i have been obtained for each xi in D0
pool.

To obtain the final probability, the average between
all the outputs is calculated y0

i = (1/T )
∑T

t=1 y
0(t)
i ,

where y
0(t)
i is the output of the model for xi in the tth

stochastic forward pass [81].
3) The uncertainty over the model predictions, represented

by the T predicted probabilities, is used in the AL acqui-
sition function in order to rank the unlabeled samples
in D0

pool according to their uncertainty. Then, those sam-

ples with higher score are selected, creating the D0
selected

set. With this process, those samples that provide more
information and diversity to the network are consid-
ered to improve the final performance. To assign the
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TABLE II

NUMBER OF SAMPLES OF THE IP, SV, AND KSC HSI DATA SETS

corresponding labels, each xi ∈ D0
selected is paired with

its corresponding label yi . Finally, the selected pixels
in D0

selected are inserted into the training set as patches,
each one with 1 ×n, d ×d ×1, or d ×d ×n, depending
on the model’s dimension, creating the next D1

train. Also,
the selected pixels in D0

selected are deleted from the pool
set, creating D1

pool.

After validating the model, the training process is repeated
successively with each D�

train until a satisfactory result is
achieved. We note that the aforementioned procedure allows
us to avoid the calculation of the corresponding patch for all
the pixels of the image, reducing the computation time and
memory requirements of the algorithm.

III. EXPERIMENTS AND RESULTS

A. Experimental Configuration

In order to evaluate the performance of our newly developed
approach, we use a hardware environment composed by a

6th Generation Intel Core i7-6700K processor with 8M of
Cache and up to 4.20 GHz (four cores/eight-way multitask
processing), 40 GB of DDR4 RAM with a serial speed
of 2400 MHz, a GPU NVIDIA GeForce GTX 1080 with
8-GB GDDR5X of video memory and 10 Gb/s of memory
frequency, a Toshiba DT01ACA HDD with 7200 r/min and
2 TB of capacity, and an ASUS Z170 pro-gaming mother-
board. On the other hand, the used software environment is
composed by Ubuntu 16.04.4 ×64 as an operating system,
CUDA 8 and cuDNN 5.1.5, and Python 2.7 as programming
languages.

B. Hyperspectral Data Sets

In our experiments, three hyperspectral data sets have been
used.

1) The first one is the well-known Indian Pines (IP) data
set (Table II). This data set was gathered by AVIRIS [4]



6450 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 11, NOVEMBER 2018

Fig. 5. AL-based performance obtained by the MLR for different acquisition functions with different sizes of Dtrain. First column: results for the IP data set.
Second column: results for the SV data set. Third column: results for the KSC data set.

in 1992 over a set of agricultural fields with regu-
lar geometry and with a multiple crops and irregular
patches of forest in Northwest Indiana. The IP scene has
145 × 145 pixels with 224 spectral bands in the range
from 400 to 2500 nm, with 10-nm spectral resolution,
20-m spatial resolution, and 16-bit radiometric resolu-
tion. After an initial analysis, 4 zero bands and another
20 bands with lower SNR because of atmospheric
absorption have been removed, retaining only 200 spec-
tral channels. Moreover, about half of the pixels in the
hyperspectral image (10 249 of 21 025) contain ground-
truth information, which comes in the form of a sin-
gle label assignment having a total of 16 ground-truth
classes.

2) The second hyperspectral data set used in experiments
was also collected by the AVIRIS instrument, in this
case over Salinas Valley (SV), California (Table II). The
covered area has 512 × 217 samples and the spatial
resolution is 3.7 m/pixel; 204 out of the 224 bands
are kept after 20 water absorption bands are removed.
The ground truth is composed of 54 129 pixels and
16 land-cover classes, including vegetables, bare soils,
and vineyard fields.

3) The third data set used in experiments is the Kennedy
Space Center (KSC) (Table II), also collected by the
AVIRIS instrument over Florida in 1996. Once noisy
bands have been removed, the resulting image con-
tains 176 bands with a 512 × 614 size, ranging from
400 to 2500 nm, and with 20-m spatial resolution.
A total of 5122 pixels labeled in 13 classes, representing
different land cover types, are considered for classifica-
tion purposes.

C. Performance Evaluation

In order to test the proposed method, five different exper-
iments have been carried out. In the first, second, third, and
fourth experiments, the AL acquisition functions presented in
Section II-C are tested considering an MLR classifier and the
proposed 1-D, 2-D, and 3-D B-CNN models, respectively, with
the aim of comparing the performance of each function over
different classifiers, based on statistical or neural models, and
using spectral, spatial, and spectral–spatial information. The
fifth experiment makes a comparison between the AL methods
(MLR: 1-D, 2-D, and 3-D B-CNN models adapted to AL) and
the original ones (baseline MLR: 1-D, 2-D, and 3-D CNN
models) with the aim of studying the impact of Dtrain on the
performance of both AL and traditional methods.

Also, we remark that each experiment uses the three con-
sidered hyperspectral data sets, running each model (with each
acquisition function) over each scene 5 times, creating batches
of 100 pixels, and working with the limited-memory Broyden–
Fletcher–Goldfarb–Shanno optimizer [98], [99] in the case
of the MLR, with L2 as penalty and tolerance value fixed
to 1e-18, being 1000 the number of maximum iterations,
and with the Adam optimizer [100] for the 1-D, 2-D, and
3-D B-CNN models, with a learning rate of 0.001 and
100 epochs. Spatial and spectral–spatial patches have been
created using a size of d = 23 for spatial patches and d = 19
for spectral–spatial patches with the aim of extracting enough
spatial information from neighboring pixels. We have empir-
ically observed that the value of d should be large enough
to characterize the spatial–contextual information around each
pixel [64]. In this regard, d = 23 and d = 19 provide
an appropriate compromise for the considered images (the
selection of other close values of d did not have a significant
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TABLE III

AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE MLR FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS

AND 10 ACQUISITIONS PER ITERATION

impact on the final classification results). Finally, for each �,
10 unlabeled pixels have been chosen.

1) Experiment 1 (Performance of Different Acquisition

Functions With the MLR): This experiment implements an
AL-based MLR classifier. The output of the classifier directly
gives the probability of each sample xi that belongs to the
class c, i.e., p (yi = c|xi ,Dtrain). This means that, to obtain
the probabilities of Dpool, only one forward pass is needed,
T = 1. Before running each implementation of AL-MLR,
the testing set and the validation set are created. In this sense,
D0

train starts with 2 · C labeled samples. This means that IP
and SV start with 32 labeled pixels and KSC starts with 26,
while 50% of the remaining ground-truth samples is used to
initialize the pool set D0

pool, i.e., IP’s D0
pool starts with 5109

unlabeled pixels and SV with 27 049. With the KSC data set,
the percentage has been changed in order to reserve more data
for the pool set, so that 85% of the remaining ground-truth
samples have been selected to form D0

pool with 4407 samples,

instead of 2592. After D0
train and D0

pool are created, 5% of
the remaining ground-truth data is used for validation and the
remaining 95% for testing.

TABLE IV

AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 1-D B-CNN
FOR DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS

AND 10 ACQUISITIONS PER ITERATION

Table III shows the accuracy results of each acquisition
function after 80 iterations, i.e., � = 80, with 10 acquisitions at
each iteration. Focusing on the IP data set, the AL-MLR clas-
sifier with BT-criterion obtains the best overall accuracy (OA)
when compared with the other functions, reaching 78.79%
with only 8.12% of the ground truth, while the lowest OA
is reached by the mean standard deviation (mean STD)
with 73.90%. We can observe this behavior at different Dtrain

sizes in Fig. 5, which shows the evolution of the AL-MLR
accuracy and execution times for each acquisition function.
On the one hand, when more samples are added to Dtrain,
higher accuracies are obtained until reaching a point in which
adding more samples does not improve the classification
acuracy, i.e., adding more samples does not add more infor-
mation to the model. On the other hand, as more samples
are added to Dtrain, higher execution times are needed by
the model. Focusing on IP, BT-criterion’s accuracy stands out
with 200 training samples, reaching the best classification
results in less time than MI, BALD, and max-entropy. It is
interesting to focus on the classification of Oats class (class 8)
with only 20 pixels. We can observe how entropy-based
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TABLE V

AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 2-D B-CNN
FOR DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS

AND 10 ACQUISITIONS PER ITERATION

methods, i.e., BALD and max-entropy, are able to reach better
classification results for this particular class than distance-
based methods, BT-criterion and MI, while in classes with
more samples (e.g., class 10, Soybeans-min), these methods
reach very similar results. Also, MI, BALD, and max-entropy
present very similar results in terms of both computation time
and accuracy, being the random and mean STD the fastest
methods but with the lowest accuracy results. In particular,
we can observe that, although the random function reaches
better OA than the mean STD, its average accuracy (AA)
is slightly worse, i.e., the mean STD generalizes better than
the random function, as it can be observed with Oats and
Alfalfa (class 0 with 46 pixels), where the mean STD reaches
better accuracy than the random function when less pixels are
available.

A similar behavior can be observed for the SV data set,
where distance-based methods reach better OA than ran-
dom and entropy-based ones. In particular, the BT-criterion
is able to reach 91.80% accuracy with only 1.53% of the
SV ground truth, being max-entropy the function with the
lowest OA, 86.25%. In general, entropy-based methods reach
poorer OAs with the SV data set than the random function due
to the spectral characteristics of the image and the number
of pixels per class, which is quite balanced, being Lettuce-
romaine-6wk, class 12 the one with less pixels, 916, where

TABLE VI

AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 3-D B-CNN FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS

AND 10 ACQUISITIONS PER ITERATION

max-entropy and BALD reach the best OA with lower standard
deviation than MI. Moreover, although BALD reaches a lower
OA than the random function, it obtains better AA, so it can
generalize better. Looking at Fig. 5, the second column shows
the OAs and execution times of SV at different Dtrain sizes.
BT-criterion and MI stand out with 100 training samples, being
the slowest methods, where random and max-entropy are the
fastest acquisition functions.

Finally, in KSC scene, the BT-criterion reaches the best
OA with good generalization power, achieving 95.56%
and 93.20% with 15.85% of the ground truth as training pixels
and standing out with less than 100 training samples. On the
other part, the slowest functions are those based on distances,
i.e., the BT-criterion and MI, while random and mean STD
are the fastest ones.

2) Experiment 2 (Performance of Different Acquisition

Functions With the 1-D B-CNN): Our second experiment
performs a comparison between all the acquisition functions
for the proposed 1-D B-CNN model, whose architecture is
described in Table I. In this case, 300 Monte Carlo iterations
(T = 300) have been implemented, while D0

train and D0
pool fol-

low the same initialization described in the MLR experiment.
Table IV shows the obtained results in the 80th iteration

of the model (� = 80) with 10 acquisitions at each iter-
ation. Focusing on the IP scene, we can observe that the
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Fig. 6. AL-based performance obtained by the 1-D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for
the IP data set. Second column: results for the SV data set. Third column: results for the KSC data set.

distance-based BT-criterion reaches the highest OA value,
86.14% with 8.12% of the ground truth (i.e., 832 training
samples), followed by the MI function, while the random
function achieves the lower results with 81.83% of accuracy.
As in the AL-MLR case, BALD and max-entropy reach very
similar results with BALD exhibiting better generalization per-
formance than the other tested acquisition functions. In Fig. 6,
we can observe the performance of the proposed model. In the
IP plot, the acquisition functions are very close one to each
other at different Dtrain sizes in terms of both OA values and
execution times. In this case, the mean STD is the slowest
method and the random function is the fastest one, while
BT-criterion, MI, BALD, and max-entropy provide a very
similar performance.

For the SV data set, the MI method reaches the best
accuracy result, 97.27% with 1.54% of the ground truth (i.e.,
832 training samples), demonstrating a high generalization
power, which is overcome only by the BALD function.
Observing Fig. 6, we can see that the BT-criterion has good
OA between 100 and 300 training samples, being outper-
formed by MI with some variability. Again, the execution
times are very similar for different functions, being mean STD
the slowest one and random the fastest one, while BT-criterion,
MI, BALD, and max-entropy are quite similar.

The results for the KSC are similar to those with the SV
scene, with distance-based methods reaching the highest OA
values, being the MI the best one: 93.57% OA with 15.85%
of the ground truth. Also, the execution times are very similar
with regard to those obtained for the SV data set.

With these data sets, we can also observe how
1-D B-CNN is able to scale logarithmically, rather than
linearly, as in the case of the MLR. Also, we can see how the

max-entropy and BALD functions suffer when a few samples
are used. In this case, the model is not able to obtain good
uncertainty values for these acquisition functions due to a poor
dropout. To address this issue, we can add more uncertainty
and variability to the model increasing the dropout values at
the CONV and fully connected layers.

3) Experiment 3 (Performance of Different Acquisition

Functions With the 2-D B-CNN): The third experiment per-
forms a comparison of different acquisition function with the
proposed 2-D B-CNN model, whose architecture is described
in Table I. The parameter T has been set to 300, and the
initialization of Dtrain, Dpool, test and validation sets are the
same as in our experiments with the 1-D B-CNN and MLR.

Table V shows the obtained results over the three considered
hyperspectral data sets at iteration � = 80. Focusing on the
IP data set, we can observe that distance-based methods are
able to reach classification results over 99% accuracy, followed
by entropy-based methods, with an OA around 98%. Fig. 7
shows the performance of the proposed spatial model with
different sizes of Dtrain. MI and BT-criterion provide similar
OA values from 600 to 800 training samples, while BALD
remains close to max-entropy. On the other hand, although
the random function is the fastest one, it reaches the lowest
OA value, being BALD the slowest one, while BT-criterion,
MI, and max-entropy exhibit similar execution times.

The SV data set provides very similar results, being the
BT-criterion and MI the acquisition functions with better OA,
followed quite closely by max-entropy. Again, in Fig. 7,
we can observe how the BT-criterion and MI present very
similar results, while max-entropy and BALD stay close one to
each other, being mean STD and random the methods with the
lowest OA results. The execution times are rather similar to the
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TABLE VII

CLASSIFICATION RESULTS OBTAINED BY AL-BASED PRESENTED METHODOLOGIES IN COMPARISON WITH THOSE OBTAINED WITH

TRADITIONAL HYPERSPECTRAL DATA CLASSIFIERS AFTER 80 ITERATIONS AND 10 ACQUISITIONS PER ITERATION

IP data set, being the processing of SV slowest than IP. Again,
BALD is the slowest method and random is the the fastest one,
being BT-criterion, max-entropy, and MI very similar.

Finally, for the KSC data set, the best OA is reached with
the BT-criterion as an acquisition function with distance-based
methods and entropy-based functions providing the highest
overall values. Looking at Fig. 7, we can see in this case
how BALD performs even worst than the random function
until 600 training samples are reached. This is because the
network has not achieved a sufficiently adjusted accuracy
in the training phase, resulting from the great variability
in the dropout. On the other hand, the execution times are
very similar to those achieved in the experiments with the
SV data set.

4) Experiment 4 (Performance of Different Acquisition

Functions With the 3-D B-CNN): Our fourth experiment

implements the proposed spectral–spatial BCNN classifier
using the six considered acquisition functions. Table VI and
Fig. 8 show the obtained results.

With the IP data set, the best OA is reached by the
BALD acquisition function, while max-entropy exhibits the
best generalization power. Entropy-based methods are closely
followed by distance-based methods, being random and mean
STD the functions with the lowest OA. In Fig. 8, we can
observe how the BT-criterion stands out with 100 training
samples, achieving good results with a very few samples, while
BALD stands out with 600 training samples. However, BALD
is the slowest method, being the random function the fastest
one, while max-entropy, MI, and BT-criterion exhibit similar
execution times.

Focusing on SV, the best OA is reached by max-entropy,
followed by MI and BALD. As we can see in Fig. 8,
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Fig. 7. AL-based performance obtained by the 2-D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for
the IP data set. Second column: results for the SV data set. Third column: results for the KSC data set.

Fig. 8. AL-based performance obtained by the 3-D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for
the IP data set. Second column: results for the SV data set. Third column: results for the KSC data set.

BALD stands out with 100 training samples, until it is reached
by MI and max-entropy. Again, BALD is the slowest method
and random the fastest, while MI, max-entropy, and mean STD
share the same computation time.

In the case of the KSC scene, all acquisition func-
tions provide excellent classification performance, being ran-
dom and mean STD the functions with the lowest OA
(98.99% and 98.56%, respectively). In Fig. 8, we can
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Fig. 9. Classification maps for the IP data set. (a) Ground-truth classification map. (b) RF (74.06%). (c) MLP (79.73%). (d) SVM (81.33%).
(e) MLR (74.16%). (f) 1-D CNN (81.83%). (g) 2-D CNN (95.58%). (h) 3-D CNN (98.14%). (i) AL-MLR (79.79%). (j) 1-D B-CNN (86.14%).
(k) 2-D B-CNN (99.68%). (l) 3-D B-CNN (99.78%). (b)–(l) Classification maps corresponding to Table VII. Note that the overall classification accuracies
are shown in brackets.

Fig. 10. Classification maps for the SV data set. (a) Ground-truth classification map. (b) RF (88.22%). (c) MLP (89.57%). (d) SVM (91.07%).
(e) MLR (89.2%). (f) 1-D CNN (90.85%). (g) 2-D CNN (94.95%). (h) 3-D CNN (97.25%). (i) AL-MLR (91.8%). (j) 1-D B-CNN (93.57%).
(k) B-2-D CNN (99.88%). (l) 3-D B-CNN (99.91%). (b)–(l) Classification maps corresponding to Table VII. Note that the overall classification accuracies
are shown in brackets.

observe that the BT-criterion is able to reach high OA
with a few training samples. Also, the BT-criterion, max-
entropy, and MI exhibit similar execution times, being BALD
and random the slowest and fastest acquisition functions,
respectively.

5) Experiment 5 (Comparison With Other Traditional

Classifiers): The fifth and final experiments perform a
comparison between the AL implementations described in
Sections III-C1–III-C4, with the best OA values for each
hyperspectral data set, with traditional classifiers. For the
IP data set, the AL-MLR and the 1-D B-CNN with the
BT-criterion, 2-D B-CNN with the MI criterion, and 3-D

B-CNN with the BALD criterion have been selected to be
compared with the traditional RF, MLP, SVM, and MLR
classifiers and also with the standard 1-D CNN, 2-D CNN,
and 3-D CNN baselines, which have been implemented with
the same parameters and architectures than the proposed AL
approaches. In order to train the RF, MLP, SVM, and MLR,
and 1-D CNN, 2-D CNN, and 3-D CNN baselines, only
two pixels per class have been selected, while the remaining
800 pixels (the selected maximum size of Dtrain) have been
randomly selected. This process has been repeated with the
SV data set, selecting the AL-MLR and 2-D B-CNN with
BT-criterion, 1-D B-CNN with MI, and 3-D B-CNN with max-
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Fig. 11. Classification maps for the KSC data set. The first image (a) represents the ground-truth classification map. (b) RF (89.99%). (c) MLP (93.14%).
(d) SVM (94.40%). (e) MLR (91.49%). (f) 1-D CNN (94.84%). (g) 2-D CNN (94.77%). (h) 3-D CNN (98.99%). (i) AL-MLR (95.56%).
(j) 1-D B-CNN (97.27%). (k) 2-D B-CNN (99.8%). (l) 3-D B-CNN (100.00%). (b)–(l) Classification maps corresponding to Table VII. Note that the
overall classification accuracies are shown in brackets.

Fig. 12. Comparison of the BT-criterion over spectral AL MLR and spectral, spatial, and spectral–spatial B-CNNs with the IP (first column),
SV (second column), and KSC (third column) hyperspectral data sets.

entropy, and with the KSC data set, selecting AL-MLR, 2-D
and 3-D B-CNN with BT-criterion and 1-D B-CNN with MI.

Focusing on the IP data set, we can observe the performance
of pixelwise classifiers, being RF and the baseline MLR
the classifiers that provide lower OA. We can observe how
AL-MLR is better than the baseline MLR, but worse than
SVM, while the spectral B-CNN model improves the classifi-
cation results over the baseline 1-D CNN and the other pixel-
wise methods. Looking at spatial classifiers, the 2-D B-CNN
is able to outperform the 2-D CNN results in 6.11 per-
centage points, improving also the generalization power.
We can also observe this behavior with spectral–spatial clas-
sifiers, where the proposed B-CNN model outperforms the

3-D CNN baseline. Moreover, we can observe that, after
adding spectral–spatial information, the classifier is able to
improve its accuracy results. Fig. 9 presents these results in a
graphical form, showing the classification maps obtained for
each classifier. In Fig. 12, we can observe the performance
of AL-MLR, 1-D B-CNN, 2-D B-CNN, and 3-D B-CNN
with BT-criterion for the IP data set. We can see that the
spectral–spatial B-CNN is able to reach a good classifica-
tion accuracy with fewer training samples than the other
AL-based classifiers, although it is the slowest method. More-
over, in Table VIII, we can observe the number of training
samples that each classifier needs to reach the accuracy
percentage, being spectral–spatial B-CNN the one that needs
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TABLE VIII

NUMBER OF SAMPLES THAT EACH MODEL IN FIG. 12 NEEDS

TO REACH A GIVEN % OF ACCURACY

less training data, only 402 samples (i.e., the 3.92% of the
ground truth) to reach 99% OA.

The results for the SV data set are similar. In Table VII,
we can see that the pixelwise classifiers based on AL out-
perform their baseline methods, being the AL-MLR better
than MLR, while the spectral B-CNN is also better than
the 1-D CNN baseline. Also, the spatial B-CNN outperforms
the 2-D CNN baseline, being around 4.93 perceptual points
better. Finally, the spectral–spatial B-CNN classifier is much
better than the 3-D CNN baseline with 2.66 perceptual
points better. Fig. 10 shows the classification maps obtained
by each classifier. Also, in Fig. 12, we can observe how
B-CNNs are able to outperform the results of AL-MLR, stand-
ing out 150 training samples in the case of the 2-D B-CNN.
In Table VIII, we can see that the spectral–spatial B-CNN
needs less training data than the other classifier in order to
reach 99% of accuracy.

The results obtained for the KSC data set are also quite sim-
ilar to those obtained for the SV data set. In Table VII, we can
see that the pixelwise classifiers based on AL outperform
their respective baseline methods, as well as the RF, SVM,
and MLP methods. Also, the spatial B-CNN model obtains
better results than the baseline 2-D CNN, while the spectral–
spatial B-CNN also outperforms the 3-D CNN baseline. These
classification results can be observed in the graphical form
in Fig. 11. In Fig. 12, we can observe in the third column the
implemented AL-based methods with the BT-criterion as an
acquisition function over the KSC data set. As we can see,
the spectral–spatial B-CNN is able to reach good values with
a few training samples, and in fact, this model can reach 99%
accuracy with only 276 samples (i.e., 5.30% of the KSC’s
ground truth), as shown in Table VIII.

IV. CONCLUSION

In this paper, we have developed a new AL model with
B-CNNs for hyperspectral image classification using spectral,

spatial, and spectral–spatial features. The proposed approach
offers robustness to overfitting on small labeled sets and
improves the generalization capacity by including intelligently
selected unlabeled training samples, integrating the spatial and
the spectral information contained in the original hyperspectral
image. To the best of our knowledge, this is the first time in
the literature that AL is combined with CNNs (via BNNs) to
perform robust hyperspectral image classification with very
limited training sets. In this paper, we report very high
classification accuracies using very limited labeled samples,
avoiding the curse of dimensionality and the overfitting prob-
lems introduced by these kinds of networks. Our results also
indicate that, by the proper selection of the acquisition func-
tion, AL offers a very good solution to avoid the aforemen-
tioned problems of overfitting with supervised deep networks.
Future work will focus on improving the results obtained
from the viewpoint of computational complexity, drawing
additional comparisons with other established methods for
spatial–spectral classification of remotely sensed hyperspectral
and also validating the proposed techniques using multispectral
data [101]. Finally, the inclusion of postprocessing methods,
such as conditional random field [102], will also be studied in
the future developments as a way to improve and smooth the
classification maps obtained by the different tested methods.
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