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Abstract— Superpixels are a powerful device to characterize
the spatial-contextual information in remotely sensed hyper-
spectral image (HSI) interpretation. However, the exploitation
of superpixels in classification problems is not straightforward,
often leading to unbearable NP-hard discrete integer optimization
problems. In this paper, we attack this hurdle by leveraging on
a convex relaxation of the original integer optimization problem,
which opens the door to include oversegmented superpixel-based
regularizers. Specifically, we develop a new method for generating
oversegmented superpixels. Then, we introduce a family of convex
regularizers in the form of graph total variation, which promotes
the same labeling in each superpixel. Vectorial total variation
is also included in order to promote piecewise smoothness and
align discontinuities along the class boundaries. The solution of
the obtained convex optimization problem is computed with the
split-augmented Lagrangian shrinkage algorithm. Experiments
on HSIs yield classification maps with precise boundaries and
inner consistency inside oversegmented superpixels, leading to
the state-of-the-art classification accuracies.

Index Terms— Convex relaxation, graph total variation (GTV),
oversegmented superpixels, remote sensing image -classifica-
tion, split-augmented Lagrangian shrinkage algorithm (SALSA),
vectorial total variation (VTV).

NOMENCLATURE
AVIRIS Airborne Visible Infrared Imaging Spectrometer.
QB QuickBird.
ROSIS  Reflective optics system imaging spectrometer.
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Fig. 1. Examples of superpixels with multiscale sizes and their performance
in image contextual classification.

DPR Discontinuity preserving relaxation.

GTV Graph total variation.

MAP Maximum a posteriori.

MLR Multinomial logistic regression.

MRF Markov random field.

LP Linear program.

PDE Partial differential equations.

SALSA Split-augmented Lagrangian shrinkage
algorithm.

SuperSALSA  Superpixel-based SALSA.

SVD Singular value decomposition.

VTV Vectorial total variation.

I. INTRODUCTION

UPERVISED classification is an important task for hyper-

spectral remotely sensed data exploitation, which assigns a
set of class labels to each pixel in the scene, given an available
training reference [1]. In this context, spatial information has
been shown capable of greatly improving the classification
performance from the viewpoint of statistical accuracy and
mapping effectiveness [2]-[8]. For the example of Fig. 1,
the classification map can be remarkably improved with bet-
ter boundary recall and outliers removed after the inclusion
of spatial information that comes from the superpixels of
multisize scales. The inclusion of spatial information is often
tackled by means of image segmentation. As a discrete prob-
lem, segmentation aims to partition an image into multiple
segments, which consist of a set of pixels that share some com-
mon characteristics (i.e., they belong to the same object or may
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have the same surface orientation). As an important source
of spatial information, image segments or superpixels play a
significant role in remote sensing image analysis [1], machine
vision [9], medical imaging [10], and so on. The pixels
comprising the same superpixel (especially the oversegmented
ones) are generally believed to share highly similar charac-
teristics, such as class labels [11]. At the superpixel level,
hyperspectral image (HSI) classification can also be processed
much faster than pixelwise techniques [5], [11].

Many techniques and methods have been developed to deal
with the image segmentation problem in the spatial domain,
such as thresholding [9], clustering, compression/ histogram/
edge-based algorithms [12], [13], region growing [14], inte-
ger optimization by graph-cuts (GC) [15], [16], varia-
tional methods [17], [18], as well as Bayesian theory-based
algorithms such as MRFs [19], [20]. However, image seg-
mentation usually leads to an integer optimization problem
that is NP-hard, and thus hard to be solved exactly. This is
because the label image is naturally a discrete representation
of the original image. Actually, in the context of supervised
image segmentation, apart from a few examples, almost all
functions associated with a realistic model are nonconvex
and even NP-hard [21]. This means that they are hard to
solve, and hence, a direct minimization may lead to poor
local minima. A popular and well-established paradigm for
modeling these problems is function or energy minimization,
where the spatial information is tackled with the Potts model
in the MRF community or the minimal partition problem in
the PDE community. More interesting details regarding binary
labeling problems are experimentally surveyed in the work of
Klodt et al. [22], and the more general case of multilabel
problems is reported in the work of Nieuwenhuis et al. [21].

In the MRF community, it is often assumed that labels of
neighboring pixels follow a Gibbs distribution [19]. In this
context, GC algorithms have been developed to model the
resulting integer optimization problem. Boykov and Jolly [23]
first present the optimal solution of image binary segmentation
by GC algorithms that solve max-flow problems. Recent
efforts [23]-[26] attack this problem under a discrete optimiza-
tion framework, by introducing prior regularizers to promote
the spatial patterns of the label image and approximate the
solutions by GC algorithms. Kohli et al. [27] designed a
novel model for enforcing label consistency, which is able to
combine multiple image segmentations in a principled manner
based on the higher order conditional random fields (CRFs).
Following this line, an exact solution can be found for the
binary case and can only be approximated for the multil-
abel case. Other techniques also attack the labeling problem
through block coordinate descent [28] in a dual objective,
such as map LP-relaxation [29], max-sum duality [30], tree
reweighted schemes [16], and quadratic pseudo-Boolean opti-
mization [31], [32], among many others.

In the hyperspectral remote sensing image classification
literature, the concept of superpixel has been widely explored
and utilized. Superpixels, especially oversegmented ones, play
a significant role in promoting contextual consistency of hyper-
spectral classification, which is usually limited by the imbal-
ance between the high spectral dimensionality and limited
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training samples [5], [6]. The advantages of utilizing overseg-
mented superpixels include higher homogeneity of pixel char-
acteristics, better definition of trivial (but relevant targets), and
sensitive recall of boundaries, as well as lower risks and object
function values in convex optimization problems [5], [6], [33].
Using oversegmented image segments, Tarabalka et al. [3],
[34], [35] developed several postprocessing techniques for
improving HSI classification. Fang et al. [6] addressed this
problem under a sparse model with superpixels. Among these
techniques, a straightforward utilization of spatial information
usually leads to convergence (optimal or suboptimal solu-
tions), since both the classifier and the spatial information
are simultaneously considered. In a more straightforward way,
Li et al. [4] embedded the GC algorithm associated with
spatial information into a novel active learning scheme that
iteratively updates the data term to remarkably improve the
labeling process. The work by Zhang et al. [5] tackled
this problem by following a Bayesian framework also called
the superpixel-based graphical model. In the work [7], the
discontinuity information provided by boundaries has been
formulated to reinforce the label consistency for HSI classifi-
cation. In polarimetric synthetic aperture radar image analysis,
Xu et al. [33] combine the statistical information with the
spatial-contextual information using the stochastic expectation
maximization algorithm. However, in spite of its great success,
the NP-hardness of the integer optimization problems renders
a little flexibility with respect to including superpixels as a
spatial prior, mainly due to its discrete nature. In addition, it is
generally very difficult to decide which is the best available
image superpixelization considering both the variety of image
segmentation techniques and the parametric adjustments. Thus,
it remains very challenging to naturally exploit superpixels
in supervised labeling scenarios for HSI classification. This
problem becomes even more complicated when we consider
multiple superpixelizations.

A. Contributions

As mentioned before, the Bayesian framework is widely
used in order to exploit the spatial-contextual information.
Under the Bayesian perspective, spatial or contextual infor-
mation can both be viewed as priors to the conditional
probabilities. However, the MAP segmentation leads to inte-
ger optimization problems that are hard to solve due to
their discrete nature [36]. In order to deal with this issue,
the LP [30], [37] or convex relaxation has been used to relax
the discrete labeling problem into a compact domain. It is then
much easier to convexly model the prior regularizers over the
compact set, which opens the door to the inclusion of different
priors resulting from real-world knowledge. The solution of
the original problem is then approximated (or even obtained)
under a primal-dual scheme [28]-[30], [32] using a linearly
relaxed approach in polynomial time.

Based on the convex relaxation program, and in the spirit
of [36], [38], [39], this paper introduces a new image labeling
mechanism that is extremely flexible with respect to the
inclusion of spatial information coming from superpixels,
in the form of a spatial regularizer. In this regularizer, each
superpixel is formulated as a constraint of GTV that reinforces
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the pairwise label consistency in between its comprising
pixels. In addition to the GTV associated with superpixels, this
paper also utilizes a second spatial regularizer and the VTV,
which promotes piecewise smoothness and aligns discontinu-
ities along the edges in the image domain [36], thus improving
the boundary recall of the resulting classification. Besides,
a new framework based on SVD is designed for the purpose of
adapting the superpixelization or superpixel generation method
to HSIs, considering their high spectral dimensionality. Here,
we specifically generate oversegmented superpixels with the
fast simple linear iterative clustering (SLIC) algorithm [40]
considering that the oversegmented ones are more likely to be
homogeneous.

The main contributions of this paper can be summarized
as follows: 1) development of a new strategy to relax the
NP-hard integer optimization problem related to image label-
ing into a compact domain and characterization of overseg-
mented superpixels as a GTV regularizer under a Bayesian
image segmentation perspective; 2) introduction of a VTV as
a second spatial regularizer for boundary recalling purposes
and development of a new algorithm based on the SALSA [41]
method to solve the resulting problem; 3) adaptation of the
SLIC algorithm [40] to HSI superpixelization; and 4) provision
of experimental evidences, illustrating the potential of the
proposed methodology in the context of hyperspectral remote
sensing image classification.

B. Related Work

In order to tackle the aforementioned integer optimization
problem associated with image segmentation, the work by
Marroquin et al. [42] extended the Bayesian segmentation
framework with a hidden MRF paradigm, which transforms
the NP-hard optimization problem into a continuous domain.
Under this paradigm, one can include additional information
as a prior to the maximum likelihood function, such as
MRF [42] or a wavelet-based prior [43]. In the context of
convex optimization, some NP-hard problems associated with
integer optimization problems, like the shortest path, max-flow,
and so on, are often first relaxed and then solved or approx-
imated as LP or semidefinite programming problems. The
hidden fields’ paradigm can actually be viewed as a statis-
tical interpretation of the relaxation technique, and the linear
relaxation program is generally a very close approximation to
the unobserved hidden fields, given no prior information over a
specific physical process [39]. Condessa et al. [38] sidestep the
discrete nature of image segmentation by formulating the prob-
lem in a Bayesian framework with a hidden set of real-valued
random fields. Then, the segmentation via the constrained
split-augmented Lagrangian shrinkage algorithm (SegSALSA)
is introduced to infer the hidden fields. In turn, the labels
can be obtained by marginalized MAP. By this means, prior
information, such as structure tensor regularization [44] and
VTV [45], [46], is incorporated under a convex scheme.

This paper also has strong connections with the work of
Bioucas-Dias er al. [36] and Condessa et al. [38]. There is,
however, a major difference. The methodologies presented
in [36] and [38] compute the probabilities of labelings to use
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elsewhere, namely, in statistical inference problems. Specifi-
cally, in [36] and [38], hidden layers play a relevant role in
describing the assumed unobserved variables that are asso-
ciated with discrete class labels but belong to a continuous
domain. The authors thus formulate spatial priors or reg-
ularizers based on these hidden fields in order to sidestep
the NP-hard discrete optimization problems. Our objective,
more in line with [39] and [47], is to use convex relaxation
to approximate the original discrete problem into a compact
domain in a linear manner. Similar to the work [38], [48], our
resulting algorithm is also convex, time-efficient, and highly
parallelizable. The remainder of this paper is organized as
follows: Section II introduces the problem and the objective
function associated with the VTV and GTV regularizers under
the MAP framework. Section III describes our newly devel-
oped algorithm, which is an instance of the SALSA, to solve
the resulted problem in Section II. Section IV presents the
experimental evidence of the performance of our proposed
method in the context of hyperspectral remote sensing clas-
sification. Section V concludes this paper with some remarks
and hints at plausible future lines.

II. PROBLEM FORMULATION
The mathematical terms of the image segmentation prob-
lem are formulated with the following notations. Let S =
{1,2,...,n} be a set of integers indexing the n pixels of
an image and X = [xX1,...,X,] € R a matrix of

n vectors across d dimensions. Let y = (y1,...,y,) €
L' = {l,...,K}" be an image of class labels, termed
segmentation or labeling, such that y; = k if and only if

the label of pixel i belongs to class k. Given x, supervised
image segmentation aims to find a partition P = {Ry, ..., Rx}
of S, such that the features indexed by a given set R;, fori €
{1,..., K}, are similar in some sense. Similarly, unsupervised
image segmentation may be represented by another partition
N =V, V,,...,Vr} of S, where the set of pixels V; C S,
fort =1,...,T, termed superpixels, comprises n; pixels, and
thus > n; = n. We remark that a main goal of this paper is to
straightforwardly enforce the spatial coherence provided by the
superpixels into the supervised image classification problem.

A. Maximum A-Posteriori Segmentation

We adopt a Bayesian perspective to the segmentation prob-
lem as a popular perspective to include prior information
regularization information into the image labeling problem.
Given the posterior probability pyx(y|x), the observation
model pxy(x|y), and the prior probability py(y) (often an
MREF), the MAP segmentation is given by

YMAP € arg max pyx(y|x) = arg max pxy(x|y)py(y). (1)
yeLn yeLn

Under the conditional independence assumption, we have

n K
pxiy&ly) = [[ rxv,xily) =[] [[ px) @

i=1 k=1ieRy
where p(x;) = px,|v; X;ly; = k). In a supervised scenario,
the class probabilities px; |y, (-|y; = k) for k € L are already
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known or learned from a training set. Considering (2), we may
write

YMAp € arg yﬂelgl —log (px;vx1y) py (¥))

n
= arg mip > Di(yi) + AU (y) 3)

i=1
where D; (y;) = —log px; v, (X;|y;) denotes the log-likelihood
probability density (often called a data term in the Bayesian
image segmentation scenario), AU(y) = —log py(y) cor-
responds to the prior function, and 4 > 0 is a tunable
regularization parameter controlling the power of the spatial
prior that is often an MRF. The minimization of (3) is an
integer optimization problem over the discrete domain L”.
In the case of Potts [20] prior and K = 2, the problem
has an exact solution obtained by mapping the problem into
of min-cut computation on a suitable graph [49]. However,
for K > 2, the optimization (3) is proved NP-hard [16],
and therefore, usually only approximations may be computed.
To further complicate the use of integer formulations, the class
of regularizers U that may be used in (3) is quite narrow; for
example, it is not a simple task to include the prior coming
from superpixels into U.

B. Convex Relaxation

In order to formulate the convex relaxation of (3), first,
we replace the domain £" in (3) by a more common inte-
ger constraint in convex optimization problems. Let z; =
(210, .5 zkil’ € {0, 11X be a “1-of-K” representation of y;,
that is, (y; = k) < [zi7 = 0 for [ # k and z;x = 1]. Using this
representation, optimization (3) may be equivalently written
as

n
Z € arg mzianiTzi + Ap(z)
i=1
st 1kz =17
2] € {0, 1}57"

“)

where q; = [D(y; = 1),...,D(y; = K)]7, fori e {1,...,n}
indexing the samples, ¢ (z) = U(y), and 1, is a p-dimensional
column vector of 1s.

As proposed in [39] and [47] and also related to [36]
and [38], we relax the optimization (4) by replacing the dis-
crete set {0, 1} to the interval [0, 1], obtaining the optimization

z=1|z,...

min
ZERKX”

st:1kz =17

z>0

Z € arg

> qlzi + ¢ (@),
i=1

5)

where 4 > 0 is a tunable regularization parameter. Although
optimization (5) is not equivalent to (4), it has been shown to
provide very close approximations [39], [47]. The solution z
of (5) can be used to gain information about the solution to the
original integer program. Although the solutions Zy; yielded
by (5) are mostly discrete [21], a few elements, mostly in
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the boundary of the classes, may not be in {0, 1}. In order to
recover a complete discrete solution, we compute

i :argm]flx ki, 1 €S, kel.

The formulation (5) yields excellent results when compared
with the original integer formulation, as extensively illustrated
in [21]. In addition, a proper tailoring to the function ¢(-)
allows to embrace a much larger group of prior information
sources that comes from the real-world knowledge of the
scene, besides the Gibbs distributions, namely MRFs or CRFs.
This is exactly the possibility that we explore in this paper.

C. Spatial Regularizers

In this paper, as already mentioned, we use two spatial
regularizers: the VIV and the GTV. Below we provide the
details of both.

We adopt the following form of VTV [46]:

dvrv(z) = 41 Z ”li\/||[ZDh](:,i)||2 + I[zDy 1, I> (6)
ieS
where Dy, D, € R™*" are the matrices acting on the bands of
z and computing horizontal and vertical first-order backward
vector differences, respectively, [zDy](.,;) and [zD,]. ;) denote
the vectors of K horizontal differences (one per latent image)
computed at pixel i, #; is a weight computed beforehand and
affecting the magnitude of the discrete gradient at pixel i (this
is more sensitive to different directions than only considering
horizontal and vertical gradients), ||| is the standard Euclidean
norm, and A; > 0 is the regularizer parameter controlling
the strength of the spatial VTV prior. The regularizer (6)
is used in order to promote the piecewise smoothness of z
and also to preserve aligned edges across z in the image
domain. The VTV regularizer is convex, although not strictly,
allowing optimization by proximal methods relying on Moreau
proximity operators (MPOs) [38], [50].
Given the latent multiband image z € RX*" the GTV
induced by an image segmentation " = {V,,t = 1,...,T},
where V; denotes the rth superpixel, is defined as

T
porv@ =Y Y El -2l

t=1 (m,l)eVy
where w;,;; > 0 denotes a pairwise weight between nodes
m and [. We remark that w,; = 0 if m,[ are not in the
same superpixel. Therefore, minimizing ¢ty promotes small
variations of the latent vectors z; inside the superpixels, and
thus label consistency [51], [52].

In this paper, we set w,; = (1/n;) if m,l € V,;. Since

wm = 0 for m and [ in different superpixels, then we may
write

T
T2
perv(@ = _II(A = D(zp)" |17
=1
where || || r is the Frobenious norm, A; is the adjacency matrix
associated with the superpixel V; normalized by n; = |V;|, and
zpy, is the subset of columns of z with indexes in V;.
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The GTV regularizer may encompass multiple segmenta-
tions of which we have different degrees of confidence. Let
Ni = Vit = 1,...,T;}, for i = 1,...,C, represent
C segmentations, where V;, denotes the rth superpixel of
segmentation i. By summing C GTV terms ¢6TV, one per seg-
mentation, we obtain

C
> wigGrv(@) @

i=1

dcrv(z) =

where w; > 0 expresses the confidence degree in the ith
segmentation and

Ti
Porv@ = _ 1A — Dy, ) I} ®)
=1
where A;; is the adjacency matrix associated with the super-
pixel V;; normalized by n;; = |V; | [52].

By taking the Frobenius norm, we can decouple (8) pix-
elwisely and superpixelwisely, thus opening the possibility to
flexibly weight specific superpixelizations, objects, or classes
for more practical purposes. On the other side, note that
here we are allowed to combine multiple superpixeliza-
tions/segmentations at the same time, which avoids the
dilemma of selecting “the best” segmentation.

In this paper, we use the fast superpixel clustering algorithm
SLIC [40] to obtain multiple oversegmented spatial partitions.

III. OPTIMIZATION ALGORITHM

Having in mind the data term —(log pl-T)zi or qiTzi (p is
the probability of vectors that are often known or learned by
supervised classifiers), and the VIV and GTV regularizers,
the resulting optimization problem turns out to be

Z € arg min Z q/ zi + Aipvrv(2) + Jadarv(2)

zeRKxn £
i=

st.z>0, liz = 1; )

where the constraint z € [0, 1]X*" is removed, as it is implied
by z > 0 and 1IT(z = 1,{, and A1, A2 > 0 are The regularization
parameters weighting ¢vTtv and ¢gTv, respectively.

Optimization (9) is convex as the data term and the reg-
ularizers are convex and the constraint set is also convex.
In addition, it has a solution, as it is a convex problem defined
on a compact set.

At this point, we remark that the ability to compute classifi-
cation maps in a convex optimization framework, compatible
with unsupervised segmentations obtained beforehand, was
exactly what we originally targeted in this paper.

To solve the optimization (9), we use the SALSA [41], in
way similar to that of SegSALSA [36], [38]. A major differ-
ence concerns the data term and the use of GTV regularization.
In addition, we modify the original SALSA to use matrices as
optimization variables instead of vectors.

We start by writing the optimization (9) in the equivalent
form

min

J
min > g;(zH)) (10)
j=1
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where g;, for j = 1,...,J, are convex, proper, and closed
functions and H; are matrices defined as follows:

n
g1: REX" LR H =1 & qufgi
i=1

n

g: RS R Hp=1 & > yn(gé)
i=1

g3t RV R Hy=1 & > 1pca(®)

g R R H4— [D; D, ]
(&" E)r—MlZm/ & H +H$

fori=1,...,C

gari: RE" SR Hyyy =1
T;
£ oy A —DE, )" 17

t=1

where the symbols 7(1y in function g> and IRk xn in function g3
represent, respectively, the indicator function in the sets {1}
and Rf *"_ Function g; is the data term, g is an equivalent
form of representing the sum-to-one constraint, g3 is an
equivalent form of representing the nonnegativity constraint,
g4 is the VTV regularizer, and gs to gsyc are the GTV
regulalizers. Note that 4 + C = J.

The next step consists in replacing (10) with the equivalent
optimization

J
rgilangj(uj) st: zG=u (11)
j=1
where u; = zH;, for j =1,...,J, and
G = [H), Hp, ..., H/]
u=[u;,u,...,uy] (12)

with u; € REX" for j # 4 and uy € RK*2,

By writing the augmented Lagrangian for (11) as proposed
in [41], and iteratively optimizing with respect to z and u
and then updating the scaled Lagrange multipliers, we obtain
Algorithm 1, termed SuperSALSA.

Algorithm 1 SuperSALSA

initialization:

choose (u)), d}) € RKX;’J', j=1...J
define K = GG™ =Y 75_, H/(H/)T

set u €]0, +oo[

for k=0,1,... do
Zjt) = (Ejj'zl (ul]c +d1{)(Hj)T>K1
for j =1 to J do
u,ﬁH = Prox, (zg+ 1 HY - d,i)
A/, =d{ — (@B —ul )

return z;4 |
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TABLE I

COMPUTATIONAL COMPLEXITY FOR THE MPO OF EACH
RELEVANT TERM IN ALGORITHM 1: SUPERSALSA

Index Term Computational
J complexity
j=1 Data fit O(Kn)
j=2 Sum-to-one constraint O(Kn)
j =3 | Nonnegativity constraint O(Kn)
j=4 VIV O(Kn)
j>4 GTV O(CKn)
Total b O(JKn)

In Algorithm 1, the linear operators G represent a cyclic
convolution. Therefore, the computation of z;1 can be imple-
mented through cyclic convolution operations, thus diago-
nalizable in the frequency domain and consequently easily
performed using the fast Fourier transform with O(KnlInn)
complexity. The computation of u,i 41, for jo=1,...,J,
is carried by the proximity operator (MPO) [50] of g;/u given
by

prox,, ,, (¥) = argmin g;(x) + (u/2)ly — x|

Specifically, in this paper, prox, ., for j =1,2,3,4, corre-
spond to, respectively, to the data fit, the sum-to-one constraint,
the nonnegativity constraint, and the VTV. The terms for
J > 4 correspond to the GTVs. The optimizations underlying
the prox operators are given in Appendix B. In addition,
we also present the computational complexity for each prox, .
in Table L.

Regarding the stopping criterion, we impose that the primal
and dual residuals be smaller than a given threshold, as sug-
gested in [53, Ch. 3.3.2]. We have observed, however, that a
fixed number of iterations in the order of 200 provide excellent
results.

IV. EXPERIMENTS

In this section, we evaluate the proposed method with
remote sensing data sets acquired by different types of sensors,
namely, HSIs and multispectral images (MSIs). Before report-
ing our experimental results, we introduce our newly designed
framework in Fig. 2.

The data term, the VTV regularizers, and the GTV reg-
ularizers are parameterized, respectively, by the probabili-
ties q,, n € S, the weights g,, n€ S, and the overseg-
mented superpixelizations A;, for i = 1,..., C. First of all,
classifier MLR in our case, whose regressors are learned by
the logistic regression via the variable splitting and the aug-
mented Lagrangian (LORSAL) algorithm [54], [55], is used
to estimate the class probabilities of the image, in preparation
for the data term. Before obtaining the remaining two terms
(VTV and GTV), the spectral vectors are projected on a low-
dimensional subspace using SVD, for dealing with the high
spectral dimensionality of the HSIs. Then, in order to weaken
the trivial textural details and emphasize on the edges of
the image, anisotropic edge-preserving filtering [56] is then
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Fig. 2. Experimental framework for our proposed method with respect to
hyperspectral and multispectral remote sensing image data sets.

utilized to the main transformed components and to the MSI.
Finally, we extract the gradient map with the Sobel operator
and generate multiple oversegmented superpixelizations with
the fast spatial clustering algorithm SLIC [40], available in the
VLFeat toolbox,! with varying parameters.

A. Experiments With Hyperspectral Images

In this section, we evaluate our proposed algorithm with
the ROSIS Pavia University data set as well as the AVIRIS
Salinas data set. The first HSI used in our experiments [see
Fig. 3(a)] was collected by ROSIS over the University of Pavia,
Italy. The data set consists of 115 spectral bands, covering
the wavelength range from 0.43 to 0.86 um, with the size
of 610 x 340 pixels. The noisy bands had been removed,
yielding 103 spectral bands that are actually used in this
paper. The ground-truth (GT) image contains nine GT classes,
including 42776 labeled samples. The second HSI used in
our experiment is the well-known AVIRIS Salinas? data set,
collected by the AVIRIS sensor of 224 bands in the wave-
length range from 0.38 to 2.50 um over the Salinas Valley,
California. As displayed in Fig. 3(f), it comprises 512 lines
by 217 samples across 204 spectral bands after discarding
20 water absorption bands. For the reference collection, a total
of 54129 pixels are available in the labeled GT, including
16 mutually exclusive classes. For both hyperspectral data
sets, we also prepared the gradient map [Fig. 3(c) and (h)]
and three oversegmented superpixelizations [Fig. 3(d) and (i)],
respectively.

Before displaying the experimental results, we first intro-
duce our experimental setup for the analysis of HSIs. The

1 http://www.vlfeat.org/doc/api/slic.html
2http://Www.ehu.eus/ccwintco/index.php?title=HyperspectraLRemote,
Sensing_Scenes#Salinas_scene
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Experiments with hyperspectral data. First row: ROSIS Pavia University data set. Second row: Results of the AVIRIS Salinas data set.

(a) and (f) HSI RGB composite. (b) and (g) GT reference. (c) and (h) Gratitude map. (d) and (i) Multiple oversegmented superpixelizations.
(e) and (j) Class legends. The parameter values used for the SLIC algorithm are superpixel size = {10, 13, 16} and shape regularizer Agyjc = 0.04 for
the ROSIS Pavia University data and size = {11, 15, 19} and Agpjc = 0.01 for the AVIRIS Salinas data.

class probabilities are estimated by an MLR, where the logistic
regressors (assumed to be independent Laplacian random
vectors) are learned using the LORSAL algorithm [54], [55].
The MLR classifiers are learned with 15 training samples
per class for both the ROSIS Pavia University data and
the AVIRIS Salinas data. For simplicity, we use three over-
segmented superpixelization representations (with the SLIC
algorithm) to construct the GTV. The maximum number of
SuperSALSA iterations is set to 200 iterations, since we
have systematically observed the convergence from a prac-
tical point of view. As for the SVD decomposition step
in Fig. 2, we used five and six major components, respec-
tively, for the ROSIS and AVIRIS data sets. Meanwhile,
some recently developed state-of-the-art methods, namely,
the majority voting (MV) approaches [35], GC [23] algorithm,
and discontinuity-preserving relation scheme [7], are also con-
sidered in this paper for evaluation and comparison purposes.
Also, for statistical purposes of all the relevant methods,
20 and 70 Monte Carlo runs are, respectively, performed for
the ROSIS Pavia University data and the AVIRIS Salinas data.

The obtained results are displayed in Tables II and III.
Several observations can be made from these results. First,
all the segmentation results obtain remarkable improvements
compared with the fundamental MLR classifier, particularly
after the inclusion of spatial information. Meanwhile, the pro-
posed algorithm also outperforms the compared methods with
respect to the overall accuracy for both the HSI data sets.
For illustrative purposes, Fig. 4 also displays the correspond-
ing classification maps that are obtained from one of the
Monte Carlo runs. Remarkably, our obtained segmentation
maps show stronger pixel consistency while keeping more

precise contours for the land objects, which are exactly what
this paper explores by formulating the VTV and superpixel-
related GTV regularizers. Specifically, when compared with
MV and GC methods, our proposed method (with VTV)
preserves better the edge/boundary information, since MV
does not consider the boundary discontinuity and the GC does
not consider the oblique (only the vertical and horizontal)
discontinuities. After analyzing the results obtained for both
the ROSIS and AVIRIS data sets, we can observe that the
boundary recall of SuperSALSA generally surpasses that of
the MV and GC methods and achieves the same or higher
accuracy levels than those achieved by the DPR method. Also,
it can be seen that large values of 4 for VTV lead to higher
accuracies for boundary recall, according to Fig. 4, while very
large values result in lower boundary recall accuracies due to
the loss of trivial details. On the other hand, the map acquired
by the DPR method misses some small-scale details due to
the fact that the DPR method relies greatly on the quality of
edge extraction, which is a challenging task in HSI processing.
Bearing these observations in mind, our proposed method turns
out to be the state of the art. Besides, according to (8) and the
experimental results in Figs. 3(d) and (i) and 4 (third and sixth
rows), we can infer that the spatially regularized classification
results will almost rigidly follow the edges of superpixels if
higher values of A, are used. Therefore, we conclude that the
edge-preserving filter on the main transformed components is
necessary and significant in the task of improving the segmen-
tation results (before the application of the SLIC algorithm)
and also the final classification results. Regarding the proposed
SuperSALSA algorithm itself, highly discrete classification
results are also obtained, as expected by (5) and indicated
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TABLE II
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ACCURACY STATISTICS [ %] OF THE ROSIS PAVIA UNIVERSITY DATA SET OBTAINED BY THE PRESENTED CLASSIFICATION FRAMEWORK IMPLEMENTED
USING THE MLR CLASSIFIER IN COMPARISON WITH THE STATE-OF-THE-ART METHODS, MV, GC, AND DPR. IN PARTICULAR, WE SET THE
PARAMETER OF THE PROPOSED METHOD A = 5, Ap X ¢; = 2, FOR i = {l,...,3}. THE AVERAGES AND CORRESPONDING STANDARD
DEVIATIONS ARE CALCULATED UNDER 20 MONTE CARLO RUNS. IN ALL CASES, ONLY 15 RANDOMLY SELECTED TRAINING

SAMPLES PER CLASS HAVE BEEN USED. CORRESPONDING TIME CONSUMPTION STATISTICS ARE ALSO
LISTED IN THE FINAL LINE FOR EACH SPECTRAL—SPATIAL CLASSIFICATION METHOD

Class MLR MVs Graphcut DPR SuperSALSA  (discrete rate /%)
Alfalfa 76.85 £ 3.75 | 87.31 £2.92 | 91.12 £ 3.46 | 92.33 +2.90 92.48 + 4.99 93.95 £ 4.56
Meadows 88.16 + 3.47 | 96.51 £ 2.84 | 9648 £+ 2.54 | 96.42 £ 2.37 97.74 £+ 2.42 97.74 £ 0.74
Gravel 72.58 £ 6.56 | 84.59 £9.70 | 85.39 £ 7.37 | 84.16 + 7.78 92.27 £+ 9.16 70.84 £ 7.48
Trees 8475 £ 520 | 79.63 £ 6.67 | 87.41 £+ 4.27 | 86.80 £+ 4.13 81.96 £ 7.67 72.98 £ 3.16
Metal sheets 99.80 £ 0.16 | 98.46 £ 1.32 | 99.95 + 0.05 | 100.00 £ 0.00 | 99.93 £ 0.02 99.85 £ 0.02
Bare soil 72.64 £599 | 86.71 £ 7.54 | 86.68 + 6.49 | 88.32 £+ 6.78 93.84 £+ 6.20 89.96 + 1.49
Bitumen 84.14 £ 573 | 98.07 £ 2.82 | 9546 £ 544 | 97.24 £ 452 98.56 + 2.26 91.88 £ 0.44
Bricks 76.04 £5.03 | 8642 £ 6.68 | 85.20 = 5.88 | 90.39 + 4.11 | 87.85 £+ 10.22 63.01 £ 3.91
Shadows 99.50 £ 0.40 | 99.63 £ 0.51 | 99.59 £+ 0.44 | 99.89 + 0.04 99.11 £ 0.36 84.37 + 0.47
Overall accuracy | 83.02 & 1.54 | 91.45 £ 143 | 9248 £ 148 | 93.24 £ 1.14 94.34 + 1.77 (overall discrete
Average accuracy | 83.83 £ 1.24 | 90.82 + 1.55 | 91.92 + 148 | 92.84 + 1.40 93.75 £ 2.06 rate)

K statistic 77.80 + 1.88 | 88.63 & 1.88 | 90.02 £ 1.94 | 91.03 £+ 1.51 92.48 £ 2.35 92.15 £ 452

Time/s * 4.18 £ 0.21 8.44 + 1.25 2530 £ 047 | 17698 £ 8.74
TABLE III

ACCURACY STATISTICS [%] OF THE AVIRIS SALINAS DATA SET OBTAINED BY THE PRESENTED CLASSIFICATION FRAMEWORK IMPLEMENTED
USING THE MLR CLASSIFIER IN COMPARISON WITH THE STATE-OF-THE-ART METHODS, MV, GC, AND DPR. IN PARTICULAR, WE SET THE
PARAMETER OF THE PROPOSED METHOD 4] = 5, 42 X ¢; = 5, FOR j = {1,...,3}. THE AVERAGES AND CORRESPONDING STANDARD
DEVIATIONS ARE CALCULATED UNDER 70 MONTE CARLO RUNS. IN ALL CASES, ONLY 15 RANDOMLY SELECTED TRAINING

SAMPLES PER CLASS HAVE BEEN USED. CORRESPONDING TIME CONSUMPTION STATISTICS ARE ALSO
LISTED IN THE FINAL LINE FOR EACH SPECTRAL-SPATIAL CLASSIFICATION METHOD

Class MLR MVs Graphcut DPR SuperSALSA  (discrete rate /%)
Cl 99.12 £+ 0.49 100 £ 0.00 99.97 £ 0.12 100 £ 0.00 100 £ 0.00 98.86 £ 0.33
C2 99.86 £ 041 | 99.92 + 0.02 100 £ 0.00 100 £ 0.00 100 £ 0.00 99.92 £ 0.22
C3 9333 £442 | 9528 + 897 99.96 + 0.10 | 99.27 £ 2.08 99.84 £ 0.15 78.85 £ 0.23
C4 99.66 £ 0.15 | 98.98 + 0.00 99.75 £ 0.09 100 £ 0.00 99.85 £ 0.00 95.55 £ 0.73
C5 97.41 £ 0.81 | 86.34 £ 5.49 98.68 £ 0.32 | 98.80 + 0.34 94.18 £ 4.73 80.88 + 2.89
C6 99.22 £ 0.23 | 99.92 £ 0.00 99.73 £ 0.17 99.97 £+ 0.01 99.92 £ 0.00 99.32 £ 0.63
C7 99.88 £ 0.06 | 99.29 + 0.08 99.91 £ 0.03 100 £ 0.00 99.92 £ 0.01 99.53 £ 1.07
C8 67.57 = 9.79 | 81.02 £+ 13.41 | 78.88 £ 13.12 | 78.70 £ 11.84 | 82.51 + 18.94 73.57 £ 9.15
C9 98.45 £ 0.73 | 98.66 £ 1.02 98.93 £ 0.82 | 99.55 £ 0.55 99.44 £ 0.58 95.65 + 0.61
C10 85.74 £ 443 | 90.51 £ 4.58 91.45 £ 3.57 93.20 + 3.15 93.62 £ 2.03 86.08 £+ 2.30
Cl1 91.68 £ 2.89 | 96.81 £ 0.07 96.42 £+ 2.77 98.74 £ 0.72 96.23 £+ 1.32 91.85 £ 1.12
C12 99.61 £ 0.57 100 £ 0.00 100 + 0.00 100 £ 0.00 100 £+ 0.00 100.00 £ 0.51
C13 89.14 + 4.81 | 71.20 £+ 10.64 | 95.16 £ 4.00 | 93.31 £ 4.37 90.58 + 8.34 64.08 + 3.08
Cl4 9229 £ 0.92 | 90.60 £ 6.34 97.95 £ 1.49 99.70 £ 0.15 97.27 £ 0.52 82.52 + 0.29
CI15 66.14 + 8.10 | 78.94 £ 16.07 | 79.12 £ 13.37 | 78.52 £ 11.13 | 84.34 £+ 15.33 64.93 £ 19.89
Cl16 96.11 £2.62 | 98.12 £0.04 | 99.32 £ 0.74 | 98.90 £ 0.91 98.43 £ 0.84 97.12 £+ 0.90
Overall accuracy | 86.50 £ 1.43 | 90.75 £ 2.17 91.82 + 1.96 91.93 &+ 1.65 93.14 + 3.19 (overall discrete
Average accuracy | 92.20 £ 0.48 | 92.85 £ 0.83 95.95 + 0.65 96.17 £+ 0.54 96.01 + 1.03 rate)

K statistic 85.02 £ 1.56 | 89.72 £+ 2.41 90.92 £ 2.16 91.03 £ 1.81 92.39 + 3.50 85.27 £ 2.42

Time/s * 1.15 £ 1.55 6.03 £ 1.55 24.89 + 0.56 | 159.26 + 7.25

by [21]. It should be noted that the discrete rate varies a lot
by class. Possible reasons for this are: 1) the presence of rich
spatial textures in some of the classes leads to higher hardness
of label consistency reinforcement and boundary realignment

and 2) it is generally difficult to classify certain classes whose
most likely probabilistic estimations are not prominent enough,
and thus are hard to become discrete using the SuperSALSA
algorithm.
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Fig. 4. Classification maps of two HSI data sets. First row: ROSIS Pavia University data set. Fourth row: AVIRIS Salinas data set. The results of the
ROSIS data set by the proposed SuperSALSA algorithm are displayed in the second and third rows along with different values of parameter 11, 12 X ¢;, for
i ={l,...,3}, followed by the overall accuracy and overall accuracy of edges with a radius of 5 pixels. In the fourth to sixth rows are the corresponding
results of the AVIRIS Salinas data set. (a) and (f) GT. (b) and (g) MLR classification. (c) and (h) MV. (d) and (i) GC. (e) and (j) DPR.

The regularization parameters play a significant role in additional segmentation maps obtained by using different
adjusting the performance of the whole machinery. In order to  values of the regularizer parameters A; and Ay X ¢;, for
illustrate the effect of the two spatial regularizers, we display i = {l1,...,3}. For simplicity, we set the same parametric
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Fig. 5. Obtained OA lines for the two hyperspectral data of scenes. (a) ROSIS Pavia University. (b) AVIRIS Salinas. Solid lines: average of 20 and 70 Monte
Carlo runs for the ROSIS Pavia University data and the AVIRIS Salinas data, respectively. Colored area around the lines: standard deviation around the mean.
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MSI data sets. First row: QB Zurich3 data set. Second row: QB Zurich6 data set. (a) and (f) MSI RGB composite. (b) and (g) GT reference.

(c) and (h) Gratitude map. (d) and (i) Multiple oversegmented superpixelizations. (e) Class legends. Parameter values used for the SLIC algorithm are
superpixel size = {15, 19,23} and shape regularizer Agpjc = 0.04 for the Zurich3 data, and size = {15, 19,23} and Agpjc = 0.05 for the Zurich6 data.

values for three oversegmented superpixelizations. The
obtained results of both the HSI data sets are shown in Fig. 4,
displaying a clue also on how to tune the values of the
parameters by hand. Specifically, this means that only the
superpixel-based regularizer (GTV) is utilized when setting
A1 = 0. And, likewise, when 1, x ¢; = 0, only the VTV
regularizer is considered. It is obviously observed that different
scales of contours of the land objects can be controlled by
tuning the parameters. For both the regularizers, small values
of the parameters lead to more details of the land objects,
especially the small ones while greater values tend to keep
the main contours of the objects. As for the VTV and GTV
regularizers, when both of them are considered, the perfor-
mance improves greatly in comparison with the individual
use of one regularizer, which is consistent with what we have
anticipated, i.e., involving the VTV to both promote piecewise
smoothness and align the discontinuities along the boundaries
while incorporating GTV to reinforce the label consistency

over the oversegmented superpixels. Besides, the processing
times listed in Tables II and III show that the SuperSALSA
algorithm is computationally more expensive than its state-
of-the-art competitors, a situation that can be improved using
high-performance computing architectures [57], [58].

In addition, the overall accuracies have also been obtained
regarding different sizes of training samples for both the
ROSIS Pavia University data and the AVIRIS Salinas
Scene data. As shown in Fig. 5, similar observations to
Tables II and III can also be made. First of all, the involvement
of spatial information achieves remarkable promotes from
the MLR by roughly 10% and 7% of the overall accuracy,
respectively, for the ROSIS Pavia University and the AVIRIS
Salinas data. Also, it can be observed that the proposed
SuperSALSA algorithm advances the other state of the arts
with respect to different sizes of training samples.

In addition, there are differences between the ROSIS
and AVIRIS data sets. Note that a different number of
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TABLE IV

ACCURACY STATISTICS [%] OF THE ZURICH3 DATA SET OBTAINED BY THE PRESENTED CLASSIFICATION FRAMEWORK IMPLEMENTED USING THE
MLR CLASSIFIER IN COMPARISON WITH THE STATE-OF-THE-ART METHODS, MV, GC, AND DPR. IN PARTICULAR, WE SET THE PARAMETER
OF THE PROPOSED METHOD A1 =4, 1 X ¢; = 2, FORi = {1, ...,3}. THE AVERAGES AND CORRESPONDING STANDARD DEVIATIONS ARE
CALCULATED UNDER 20 MONTE CARLO RUNS. IN ALL CASES, 200 RANDOMLY SELECTED TRAINING SAMPLES PER CLASS HAVE
BEEN USED. CORRESPONDING TIME CONSUMPTION STATISTICS ARE ALSO LISTED IN THE

FINAL LINE FOR EACH SPECTRAL—SPATIAL CLASSIFICATION METHOD

Class MLR MVs Graphcut DPR SuperSALSA (discrete rate /%)
Roads 77.54 £ 1.36 | 8443 + 1.24 | 83.11 = 1.29 | 79.01 £+ 1.36 70.59 £ 4.78 38.97 £ 551
Buildings 52.54 £3.51 | 50.03 £ 5.69 | 57.15 £ 4.75 | 60.39 £ 4.17 72.50 + 5.46 4341 £ 6.85
Trees 84.96 £ 0.90 | 91.20 £ 0.81 | 88.83 & 1.09 | 90.51 £ 1.10 94.75 £+ 1.02 50.59 £ 0.50
Grass 91.06 £ 1.19 | 94.67 £ 0.62 | 93.03 &+ 1.17 | 93.09 £+ 1.14 9543 + 1.12 21.00 £ 1.41
Bare-Soil 95.02 £ 0.76 | 95.22 & 0.96 | 95.70 = 0.57 | 95.80 £ 0.80 92.87 £ 0.75 49.93 £ 0.80
Water 99.56 £ 0.08 | 99.77 £ 0.01 | 99.61 = 0.08 | 99.84 £ 0.06 99.78 £ 0.03 15.87 £ 0.30
Railways 56.60 £ 1.91 | 69.77 £ 2.29 | 73.31 £ 2.65 | 78.79 £+ 1.89 94.32 £+ 1.28 65.31 £ 0.77
Overall accuracy | 87.87 & 0.19 | 90.39 4+ 0.48 | 90.62 £+ 0.36 | 91.16 + 0.34 92.98 + 0.50 (overall discrete
Average accuracy | 79.61 £ 0.23 | 83.58 £ 0.78 | 84.39 £ 0.60 | 85.35 £+ 0.55 88.61 + 0.80 rate)

K statistic 81.99 + 0.27 | 85.71 £ 0.71 | 86.08 £ 0.53 | 86.87 + 0.50 89.58 + 0.74 40.73 £+ 2.27
Time/s * 20.86 £ 0.59 | 13.81 £ 5.84 | 136.02 £+ 6.96 | 1568.59 + 37.70

TABLE V

ACCURACY STATISTICS [%] OF THE QB ZURICH6 DATA SET OBTAINED BY THE PRESENTED CLASSIFICATION FRAMEWORK IMPLEMENTED USING THE
MLR CLASSIFIER IN COMPARISON WITH THE STATE-OF-THE-ART METHODS, MV, GC, AND DPR. IN PARTICULAR, WE SET THE PARAMETER
OF THE PROPOSED METHOD 1| = 4, Ap X ¢; = 2, FORi = {l,...,3}. THE AVERAGES AND CORRESPONDING STANDARD DEVIATIONS
ARE CALCULATED UNDER 20 MONTE CARLO RUNS. IN ALL CASES, 200 RANDOMLY SELECTED TRAINING SAMPLES PER CLASS
HAVE BEEN USED. CORRESPONDING TIME CONSUMPTION STATISTICS ARE ALSO LISTED IN THE

FINAL LINE FOR EACH SPECTRAL—SPATIAL CLASSIFICATION METHOD

Class MLR MVs Graphcut DPR SuperSALSA (discrete rate /%)
Roads 73.28 £2.01 | 82.03 £ 1.28 | 82.03 £ 1.89 | 83.12 £+ 1.43 84.20 + 1.77 2991 + 2.07
Buildings 64.92 + 2.61 | 63.10 491 | 65.19 £ 4.10 | 66.99 + 2.96 67.44 £ 4.15 48.93 £+ 1.83
Trees 76.60 £ 1.67 | 84.87 +2.23 | 83.53 + 1.31 | 86.17 + 1.52 93.03 £+ 1.91 66.10 £ 1.44
Grass 88.14 + 1.22 | 92.10 + 1.01 | 90.47 + 1.18 | 90.66 £ 1.37 91.38 £+ 2.24 60.50 + 2.87
Bare-Soil 7249 £ 2.08 | 93.89 + 3.68 | 83.42 + 1.04 | 83.85 £ 1.96 94.61 + 3.68 35.20 + 4.18
Water 84.61 = 1.28 | 100 + 0.00 | 98.10 £ 2.02 | 93.49 + 1.80 99.95 £ 0.15 2497 £ 0.23
Swimming-Pools | 92.78 £ 0.83 | 97.55 £ 0.29 | 93.39 £ 0.75 | 94.91 £ 0.92 96.22 + 3.40 70.93 + 3.36
Overall accuracy | 74.01 4+ 0.54 | 78.98 £ 1.25 | 7893 + 0.89 | 80.36 £ 0.71 82.36 + 0.91 (overall discrete
Average accuracy | 78.97 £ 0.31 | 87.65 & 0.93 | 85.16 £ 0.51 85.60 £+ 0.46 89.55 £ 0.63 rate)

K statistic 6591 £ 0.62 | 72.10 £ 1.63 | 72.05 + 1.18 | 73.82 £ 0.92 76.32 + 1.21 40.16 £ 2.09
Time/s * 17.78 £ 0.70 | 12.74 £ 2.17 | 122.12 + 5.83 | 1318.21 £ 15.67

Monte Carlo runs are chosen for the ROSIS Pavia University
data set (20 runs) and the AVIRIS Salinas data set (70 runs).
The standard deviation of the OA around its mean is larger for
AVIRIS Salinas than for ROSIS Pavia (whatever the number
of training samples per class). Its value naturally decreases
with the use of a larger number of training samples per class.
Overall, this shows a larger variability in the results obtained
(Fig. 5), depending on the data set considered (and thus the
data content).

B. Experiments With High Spatial Resolution Images (VHR)

In this section, we evaluate our proposed framework with
two remotely sensed MSIs. The “Zurich Summer v1.0” data
set? is a collection of 20 chips (crops), taken from a QB acqui-

3https://sites. google.com/site/michelevolpiresearch/data/zurich-dataset

sition of the city of Ziirich (Switzerland) in August 2002. The
QB images are composed by four channels (NIR-R-G-B) and
were pansharpened to the PAN resolution of 0.62 meters/pixel.
In this collection, eight different urban and periurban classes
were manually annotated: Roads, Buildings, Trees, Grass,
Bare Soil, Water, Railways, and Swimming pools [59]. The
cumulative number of class samples is highly unbalanced to
reflect real-world situations. And the purpose of distribut-
ing data sets is to encourage reproducibility of experiments.
In this paper, we employ the third (926 x 943 pixels) and
sixth (812 x 984 pixels) images, as an example to test
our proposed method. As illustrated in the framework (see
Fig. 2), the QB MSI images and their corresponding prepared
ingredients are shown in Fig. 6. We extracted the gradient
maps for both used image and transformed the images into
three oversegmented superpixel representations by the SLIC



LIU et al.: CONVEX FORMULATION FOR MULTIBAND IMAGE CLASSIFICATION

)

¢

) (4, 2), (93.28%, 95.22%)

)

(0, 2), (80.88%, 87.96%) (1. 2), (81.48%, 88.49%)

(4, 0), (80.51%, 87.25%) (4, 1), (82.64%, 89.36%)

(3, 2), (93.29%, 95.16%)

(h) MVs (78.40%, 85.86%

(3. 2), (82.74%, 89.20%)

@, 2), (82.76%, 89.20%)

2715

) ) (e) DR (91.14%, 93.65%)

(d) GC (92.03%, 94.19%

(Y
(7, 2), (92.34%, 94.84%)

(5, 2), (93.12%, 95.19%)

e

(4, 3), (92.47%, 94.82%) (4, 4), (91.84%, 94.43%)

) (@) GC (81.55%, 87.69% (j) DPR (80.07%, 86.80%)

(5, 2), (82.56%, 89.00%) (7.2), (82.31%, 88.79%)

(@, 3), (81.96%, 88.56%) (@, 4), (81.00%, 87.80%)

Fig. 7. Classification maps of two QB Zurich v1.0 MSI data sets. First row: Zurich3 data set. Fourth row: Zurich6 data set. The results of the Zurich3 data
set by the proposed SuperSALSA algorithm are displayed in the second and third rows along with different values of parameter 11, 1> x ¢;, fori = {1,...,3},
followed by the overall accuracy and overall accuracy of edges with a radius of 5 pixels. In the fourth to sixth rows are the corresponding results of the
Zurich6 data set. (a) and (f) GT. (b) and (g) MLR classification. (c) and (h) MV. (d) and (i) GC. (e) and (j) DPR.

method (by the VLFeat toolbox).* The result of our proposed
method is obtained after 200 iterations with convergence,
while 20 Monte Carlo runs are employed for all the considered
methods.

To start with, the accuracy statistics of 20 Monte Carlo runs
are shown in Tables IV and V with the mean plus/minus the

4http://www.vlfeat.org/doc/api/slic.html

standard deviation reported in the tables. From both the tables,
we can see that the accuracies are remarkably increased after
the spatial information is incorporated by different methods.
In comparison with the state-of-the-art methods, namely, MV,
GC, and DPR, our proposed method achieves the highest
values in terms of overall accuracy, x statistic, and average
accuracy, which is consistent with our results with HSIs.
For illustrative purposes, we also display the classification
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Obtained OA lines for the two hyperspectral data of (a) QB Zurich 3 and (b) Zurich 6 Salinas data. Solid lines: average of 20 Monte Carlo runs for

both the data sets. Colored area around the lines: standard deviation around the mean.

maps that are obtained with the methods in Fig. 7. First
of all, it is remarkable that our proposed method obtains
classification maps in which both the label consistency and
boundary discontinuity are well refined, in comparison with
the state-of-the-art methods. Also, the hand-tuned parameters
of the VTV and GTV spatial regularizers provide an intuitive
description of their effects on the classification performance of
our proposed machinery (i.e., small values of the parameters
preserve more trivial details of the land objects, while greater
values keep the basic contours or strong boundaries of large-
scale land objects). This is quite consistent with what have
been observed with the experiments on HSIs in Section IV-A
and, meanwhile, is what we originally explore in this paper. In
turn, the discrete-rate variations for specific classes (possibly
induced by the different characteristics of certain classes,
such as their spatial textures) are more significant than in the
experiments with HSIs. In fact, the discrete rates of the QB
Zurich data sets are relatively low as compared with those
of the ROSIS Pavia University and AVIRIS Salinas data sets.
This is possibly due to the presence of rich spatial details in
the QB data sets that introduce additional difficulties in order
to converge to discrete results while making consistency and
realigning the pixel labels using the SuperSALSA algorithm.
Apart from its general performance on the whole image,
the proposed SuperSALSA algorithm generally outperforms
the state-of-the-art competitors in terms of boundary recall
accuracies. This indicates that, spatially, the boundary defin-
ition of our proposed method outperforms its competitors in
this paper by considering both the VTV and GTV regularizers.
Specifically, the increase in A1 values for the VTV regularizer
leads to a higher boundary accuracy, while very large values
result in lower accuracies. These observations are consistent
with the experimental results of the hyperspectral data sets
(see Fig. 4). Finally, similar to the case of using HSIs, our
proposed SuperSALSA algorithm consumes more time with
the QB Zurich data sets. This can be addressed by resorting to
high-performance computing architectures, since our method
is amenable to parallelization.

Fig. 8 also displays the classification overall accuracies
regarding different sizes of training samples in order to
further assess the proposed SuperSALSA algorithm. It can

be observed that involving spatial information, especially
the regularization by superpixels, is capable of dramatically
improving the classification accuracy performances. On the
other hand, the overall accuracies have been more promoted
by proportion in this case when compared with the case
of hyperspectral data sets (see Fig. 5). This is reasonable
in the sense that the classification tasks for images of very
high spatial resolution are often obstructed by the imbalance
between the limited spectral bands and rich spatial variations
of land objects. Furthermore, a comparison of Fig. 5 with
Fig. 8 indicates that the standard deviation decreases as the
training size increases, and different variations can also be
observed with different data sets, but these are less apparent
when using multispectral data sets.

V. CONCLUSION AND FUTURE LINES

This paper proposed a new method, SuperSALSA, which
provides convex formulation to exploit the spatial information
coming from multiple oversegmented superpixelizations into
supervised HSI segmentation. With this method, we sidestep
the NP-hardness of the original discrete integer optimization
problem by using a relaxation technique based on linear
programming, and successfully express the oversegmented
superpixels in the form of a graphical spatial regularizer
across the relaxed hidden field. In addition, we formulate a
convex optimization problem and approximate the solution
for the original NP-hard image labeling problem. Specifically,
we design a framework to substantiate and validate the method.
The experimental results, obtained with remotely sensed HSI
and MSIs, demonstrate that our proposed method achieves
the state-of-the-art performance when compared with other
methods, such as MV, GC, and DPR techniques. Our proposed
approach can also be viewed as a general framework for
solving a range of similar problems, such as change detection,
regression, and so on. Also the proposed approach is highly
parallel and pixelwise-decoupled, and thus it can be straight-
forwardly implemented in parallel using high-performance
computing architectures. Our future perspectives will focus
on exploring and evaluating the potential of the proposed
approach when dealing with remote sensing data coming from
multiple sources.
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APPENDIX

We recall that the convex functions g;, for j = 1,...,4,
correspond to the data term, the sum-to-one constraint,
the nonnegativity constraints, and the VTV regularizer, respec-
tively, and for j = 4,..., J, correspond to a set of closed,
proper, and convex functions g;(zH;) associated with the
GTV. Since C is the number of graphs/superpixelizations,
the number J = C + 4 denotes the total number of terms
in the objective function (10).

We define the convex functions g;, for j = 1,2,3,
as follows:
1) =) q¢
ieS
22(8) = 14(%)
g3() =11(%) (13)

where q; = — log(p;) € RX*! is to be understood componen-
twise, and ¢; and &; are dummy variables whose dimensions
depend on functions g; for j = 1,...,3.1,(:) is the indicator
function defined on the set ¢ € Rf " with: 14(¢) = 0 if
¢ € RE*" and 1, (¢) = 400, otherwise. Likewise, 11(¢) is
the indicator in set {1,}, with 7; = 0 if and only if ¢ € {1,},
and 400 otherwise.

A. SALSA Formulation

Adapting the formulations (11) and (12), we apply the C-
SALSA methodology [41]. We denote the scaled Lagrange
multipliers associated with the constraints Gz = u as d =
[d',...,d’] and thus have the following C-SALSA-based
formulation for (11):

(14)

Zy+1 = argmin ||zG —u — d||%
z

u,{H = argmi_ngj(uj) + %szHHj —u/ - d,ﬁ”i (15)
u/

d,, =d} -z B —uf,, (16)

where x4 > 0 is the weight of the augmented Lagrangian
term. We remark that if the optimization 10 has a solution,
the sequence {z;} converges to it; otherwise, at least one of
the sequences {uy} or {d;} diverges [41].

B. Moreau Proximity Operators

The optimization subproblems associated with (15) can be
solved through proximal methods, by computing the associated
MPOs [50] of each of the convex functions. We first present
the closed-form expressions of these operators for the data-fit
term, and sum-to-one and nonnegativity constraints.

1) Moreau Proximity Operator for g;: The MPO for the
data-fit term g is

, Iz

Ve1/u(v) = argmin (Zq?ci> + 51 =il
ieS

where v = [v1,...,v,] € RE*" and ¢ = [¢y,...,¢,] €

RX>" This optimization is decoupled (pixelwise) with respect
to ¢; for i € S, meaning that

ng/,u(v) = (V’gl/,u 1), ..., ng/,u(vn))
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with
N — : T M 2
Ve /uWi) = argmin ¢; &; + S 1€ = villE
whose solution is given by

We/u Vi) =vi +q;/u.

This operator has a complexity of O(Kn), the number of
classes across the number of pixels.

2) Moreau Proximity Operator for g;: The MPO for the
sum-to-one constraint g, is

. u
Vea/u(v) = argmin11(¢) + 711§ - vlE
1x1% 117
=|I-— — 17
( ral A (17)

where v,¢ € RX*" This operator has a complexity of

O(Kn), the number of classes x the number of pixels.
3) Moreau Proximity Operator for gz: The MPO for the
nonnegativity constraint f3 is

. u
Vey/u(v) = argmint, (&) + 51 — v||% = max{0, v}

where v,¢ € RX>" This operator has a complexity of
O(Kn), the number of classes x the number of pixels.

4) Moreau Proximity Operator for g4: The inclusion of the
VTV prior in (9) introduces the term

20 Y iV IEDRIC, DI + 1D, 1G, 1)z);12.
ieS
We define the linear operator Hy : RK>*" — R2Kxn a5
Hy =[D;D,] (18)

where D;, and D, correspond to the circular horizontal and
vertical difference operators previously defined. The corre-
sponding convex function g4 is defined as

ga@) =2 >/ [[gh |+ g

ieS

19)

where ¢ = [¢" ¢"] € R*6>*" and ¢ and ¢” belong to
the range of the horizontal and vertical difference operators
D;, and D,, respectively.

The MPO for the VTV prior is thus

pv) =i (S e P+ o1 ) 16—t

ieS

where v, ¢ € RKX?" and ¢ ¢ € RE*". This optimization
is pixelwise-decoupled and the solution of each subproblem is
the vector soft thresholding operator [50]

Vi

l[vill

Wey/u (i) = max{0, ||v;|| — A1n;/u} (20)

which has complexity O(Kn).
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5) Optimization of Graph Total Variation: As introduced
in (10), the GTV constraints correspond to g;, for
Jj =5,6,...,J, associated with C superpixelizations. Also
having (8) in mind, the MPO of the GTV (superpixelization)
is

T;

Ve /u(v) = argmin doo; S IA =D&, ) IF

=1
K 2
+ EH@'MJ — vy, llE
- U
= argmin 220; | (A; = DE" 17 + 5118 —vIiF
@1)

where v,¢ € RXX" with j, for j € {I,...,C}, as the
Jjth segmentation and ¢, for t+ € {l,...,T;}, as the tth
superpixel. The MPO is thus

—1
_nT(A. _ H
((A, D7 (A; I)+2/12wj1) v
(22)

Wei/ (v) = £
ir# 2Ar0j

Note that the solution of (21) can be obtained in a superpix-
elwise manner with decoupling (21) by each superpixel V; ;.
Hence, we represent the coefficient matrix with F and there
comes

-1
- H T U
F! = A —-D'A; -1 I
J 2l0w; <( / ) (4, )+ 2/00; >
F;{ 0 - 0
—1
B 0 F, 0
0 0 0 Fj,

whereby FjTl is a diagonal block matrix comprised of F;},

for i € V;, with

-1
-1 H T H
Tl = Ai,—D'"(A; ;-1 | .
It 2l0w;j <( It ) (A )+ 2l0w; )
Then, trivially,
(A, —1]
1 ! 1 1 7
ny ln[ ny
_ - 1 _
= n ny n;
1 1 1
_ _ . =
L N ng ny J
[(Aj: =D (A —D]
Tn, — 1 1 1 7
n n n
" a1 I
= ny ny ny
1 1 -1
L ng ng ng
1
=——E+1L
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where A;; are actually the diagonal blocks of A;, which
corresponds to a fully connected subgraph of the partition
graph with n, nodes (n; = nj, to keep notation light)
corresponding to a partition element with n; pixels, and E =
denotes an n, x n, matrix of 1s. Note that A;; is normalized
by the pixel number of its corresponding superpixel and that
E = vv!, with v being a column vector of 1s. Defining
0; = (1/2220)), we have

F 1 =0;(A,-D" A, —D+0,D"
1 —1
=0; ((——E+I) +9,-I)
ny
= —0n;((—=1 = 0))n I+ wi) L.

Using the matrix inversion lemma and noting that

_ 0;
14+vi (=1 =0)n D) v = ; +]e,

we may write

Fj, = <1 f_jg.l\vj,t + ﬁEw)
J j)nl‘
2lwi
<ﬂ + gizwj Tt (u+ 2izc]0j)nt
Hence, the MPO of the GTV is

EV_N> . (23)

u 2/00; >
u(w) = I E)v 24
Vey/n(®) (ﬂ +2ho; (4 +2ho)n @9
which can be pixelwise-decoupled as
u 2/00; &
ga(wi) = V; v 25
V/g_//#( i) U+ 2hnw; (i 2w — k (25)

where i,k € S = {1,...,n} index the pixels that belong
to the same rth partition as the ith, kth pixel. To be spe-
cific, the first term of (25) corresponds to the value on the
ith node itself, the value of the ith pixel, and the second term
corresponds to the mean of v on the fully connected subgraph
that the ith node belongs to, such that this operator has a
complexity of O(Kn). Thus, the computational complexity of
all the C GTVs is O(CKn). To summarize, the computational
complexity in total of the proposed SuperSALSA algorithm is
O(J Kn) per iteration.
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