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Abstract— Hyperspectral unmixing is an important processing
step for many hyperspectral applications, mainly including:
1) estimation of pure spectral signatures (endmembers) and
2) estimation of the abundance of each endmember in each
pixel of the image. In recent years, nonnegative matrix factor-
ization (NMF) has been highly attractive for this purpose
due to the nonnegativity constraint that is often imposed
in the abundance estimation step. However, most of the
existing NMF-based methods only consider the information
in a single layer while neglecting the hierarchical features with
hidden information. To alleviate such limitation, in this paper,
we propose a new sparsity-constrained deep NMF with total
variation (SDNMF-TV) technique for hyperspectral unmixing.
First, by adopting the concept of deep learning, the NMF
algorithm is extended to deep NMF model. The proposed model
consists of pretraining stage and fine-tuning stage, where the
former pretrains all factors layer by layer and the latter is used to
reduce the total reconstruction error. Second, in order to exploit
adequately the spectral and spatial information included in the
original hyperspectral image, we enforce two constraints on the
abundance matrix. Specifically, the L1/2 constraint is adopted,
since the distribution of each endmember is sparse in the 2-D
space. The TV regularizer is further introduced to promote
piecewise smoothness in abundance maps. For the optimization of
the proposed model, multiplicative update rules are derived using
the gradient descent method. The effectiveness and superiority of
the SDNMF-TV algorithm are demonstrated by comparing with
other unmixing methods on both synthetic and real data sets.

Index Terms— Deep learning (DL), hyperspectral unmixing,
nonnegative matrix factorization (NMF), sparsity constraint, total
variation (TV).
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W. J. Emery is with the Department of Aerospace Engineering Sciences,
University of Colorado, Boulder, CO 80309 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2834567

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are acquired by
imaging spectrometers in hundreds of contiguous narrow

bands [1], [2]. Hence, HSIs exhibit a great potential
in acquiring spatial geographic information. A single hyper-
spectral pixel is inevitably constituted of different materials,
due to the low spatial resolution and complicated ground
covers, resulting in the concept of “mixed pixels” [3], [4].
The existence of mixed pixels greatly complicates the analysis
of HSIs in object detection [5], clustering [6], and classi-
fication [7]. Hyperspectral unmixing, whose objective is to
decompose a mixed pixel into a collection of constituent
materials (called endmembers) and their relative proportions
(called abundances), is one of the crucial steps to process
HSIs [8].

Mixing models can be divided into two categories: the
linear mixing model (LMM) and the nonlinear mixing
model (NLMM) [8]. The LMM assumes that the observed
pixel spectrum is a linear combination of endmember signa-
tures, weighted by their abundance proportions. Although
many studies have illustrated the fact that the NLMM is
more accurate on specific surfaces [9]–[11], the LMM is
still widely used due to its clear physical significance,
simplicity, and efficiency. Based on the LMM, many algo-
rithms have been proposed from geometrical [12], sparse
regression [13]–[17], and statistical [18]–[24] perspectives.
Specifically, the geometrical class of algorithms is applied to
linear unmixing based on the assumption that the vertices of a
simplex correspond to the endmembers. Thus, the accuracy
of the abundance estimation step is closely related to the
endmembers’ extraction step. The sparse regression-based
algorithms avoid the above dependence. However, they may
suffer from incoherent endmember signatures (not derived
from the image but often available in a library) and are
susceptible to noise and atmospheric interferers. The statistical
algorithms estimate simultaneously the endmember matrix and
its corresponding abundance matrix by utilizing the statis-
tical properties of the hyperspectral data. Concretely, iterated-
constrained endmembers (ICEs) [18], independent component
analysis (ICA) [19]–[21], and nonnegative matrix factoriza-
tion (NMF) [22]–[24] belong to classical statistical algorithms.
The ICE is computationally expensive, while the ICA may
degrade the unmixing performance due to the unreasonable
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hypothesis that the abundances are statistically indepen-
dent. On the contrary, NMF aims at decomposing the HSIs
into two nonnegative matrices simultaneously. In this paper,
we focus on the NMF-based methods for linear unmixing
purposes.

Due to the fact that nonnegative values in the image matrix
have clear physical meaning, NMF has been widely used
in spectral unmixing [25]. However, the cost function in this
case is nonconvex, which leads to unstable results. To this
end, numerous researchers have concentrated on adding some
appropriate constraints to improve the performance. The spar-
sity constraint minimizes the number of materials contained
in each mixed pixel. From a mathematical perspective, the
L0 regularizer is a straightforward method and produces the
sparsest results. However, since L0 often leads to an NP-hard
problem, it was approximated by the L1 regularizer in [26]
and [27]. Then, owing to the fact that the L1 regularizer
dissatisfies the full additivity constraint, L p(0 < p < 1) regu-
larizers were considered in [28]–[30] and achieved sparser
results. Xu et al. [31] illustrated that L1/2 was efficient and
could be taken as a representative of the L p(0 < p < 1)
regularizers. Qian et al. [1] also revealed that p = 1/2 was
an optimal choice and proposed L1/2-NMF by incorporating
the L1/2 sparsity constraint for unmixing. Many extensions
of L1/2-NMF have already been reported to alleviate unstable
unmixing results by introducing sparse noise [4], structural
information [32], and region-based structure [33].

In addition, researchers worked on improving unmixing
performance by exploiting the spatial-contextual information
contained in the hyperspectral data [34]–[36]. For example,
Lu et al. [34] introduced an intrinsic manifold structure to
sparsity-constrained NMF and proposed the graph-regularized
L1/2-NMF method. By integrating the geometric structure
in HSIs, Yang et al. [35] proposed the geometric NMF
method and obtained a more desirable result. In [36], a total
variation (TV) regularized reweighed sparse NMF method was
proposed by simultaneously considering the spatial informa-
tion and the sparsity constraint. The TV model, proposed by
Rudin et al. [37], was shown to effectively promote piecewise
smoothness in the estimation of abundance maps.

Despite the commendable success of the above methods
in spectral unmixing, there is still room to further improve the
unmixing performance. For instance, the NMF-based methods
with two factors only consider the information in a single
layer, ignoring the fact that the original data contain hierar-
chical features with hidden information. Recently, a neural
network (NN) is recognized an effective technique for hyper-
spectral unmixing [38]–[43]. However, the NN-based methods
are also restricted to a shallow structure, resulting in gradient
diffusion and failure to extract hidden features. To solve these
issues, Hinton et al. [44] proposed the deep leaning (DL)
strategy for extending the NN-based methods to deep structure,
which has been applied in HSIs’ processing and face recog-
nition [45]–[48]. Inspired by the success of DL, we adopt
its concept into the NMF-based methods and propose a
novel sparsity-constrained deep NMF with TV (SDNMF-TV)
algorithm, which simultaneously explores the spectral sparsity
as well as the spatial smoothness of fractional abundances.

The main contributions of this paper could be summarized as
follows.

1) Through adopting the idea of DL, we first extend the
NMF algorithm to deep NMF model for exploring
hierarchical features in spectral unmixing. The unmixing
process based on the deep NMF structure consists of two
stages, where the first stage pretrains all factors layer by
layer and the second stage fine-tunes all factors until a
stopping criterion is reached.

2) Since the number of endmembers associated with each
mixed pixel is generally much lower than the total
number of endmembers in a spectral library, the require-
ment of sparsity in an abundance matrix must be satis-
fied. Accordingly, the L1/2 regularizer is introduced into
the deep NMF model to propose sparsity-constrained
deep NMF (SDNMF) for hyperspectral unmixing.

3) We further integrate the TV regularizer into SDNMF
and propose the SDNMF-TV model for hyperspectral
unmixing, which could promote piecewise smoothness
and reduce the negative effects of noise in the abundance
maps.

4) For the estimation of endmember signatures and their
corresponding abundances, it is a crucial issue to
optimize effectively the proposed model. Specifically,
the multiplicative update rules are derived for these two
stages using the gradient descent (GD) method.

The remainder of this paper is organized as follows.
Section II introduces the related work. Section III describes
the proposed deep NMF framework in detail. The proposed
SDNMF and SDNMF-TV are presented in Section IV.
In Section V, experiments and related analysis using synthetic
and real hyperspectral data sets are provided. Finally,
Section VI concludes this paper with some remarks and hints
at plausible future research.

II. RELATED WORK

A. Linear Mixing Model

The LMM assumes that an observed pixel spectrum in an
HSI can be produced by a linear combination of endmember
signatures and their corresponding abundances. The matrix
formulation of the LMM can be described as

X = AS + N (1)

where X ∈ R
B×P refers to the observation matrix, with B

bands and P pixels, A ∈ R
B×M consists of the spectral

signatures with M endmembers, S ∈ R
M×P represents the

abundance matrix for all endmembers, and N ∈ R
B×P repre-

sents the noise matrix. In general, two constraints are imposed
on S, i.e., the abundance nonnegative constraint (ANC) and
the abundance sum-to-one constraint (ASC), which can be
formulated as

Si, j ≥ 0,
∑

i

Si, j = 1 (2)

where i = 1, 2, . . . , M and j = 1, 2, . . . , P . These two
constraints are supported by the physical meaning that all
proportions of the materials in a mixed pixel are nonnegative
and their sum is one.
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B. Nonnegative Matrix Factorization and Its Variants

In recent years, NMF and its variants have achieved the
state-of-the-art performance in spectral unmixing of HSIs.
The cost function of the NMF-based methods can be presented
as

CNMF = 1

2
�X − AS�2

F + λ�S�q (3)

where the operators �·�F and �·�q denote the Frobenius norm
and Lq regularizer, respectively, and λ is used to regulate
the effect of the sparsity constraint. Specifically, the different
unmixing methods depend on the values of λ and q . For
instance, the following holds.

1) The problem of (3) with λ = 0 is the classical NMF [49].
2) By setting λ �= 0 and q = 1, (3) is turned into

L1-NMF [26], [27], where �S�1 = ∑M,P
i, j=1 |si, j | is

utilized to achieve sparse results.
3) Similarly, we regard (3) with λ �= 0 and q = 1/2 as

L1/2-NMF [1], [31], which could be a representative of
the L p(0 < p < 1) regularizers.

Notice that the ANC constraint is certainly satisfied by
the NMF-based methods. Meanwhile, the ASC constraint is
enforced by redefining the observation and spectral signature
matrix as [32]

X̄ =
[

X
δ1

]
, Ā =

[
A
δ1

]
(4)

where δ controls the impact of the ASC constraint and 1 is
a row vector with all elements equal to one. Then, the multi-
plicative iterative rules can be summarized as [1], [49]

A = A. ∗ (XST )./(ASST ) (5a)

S = S. ∗ (ĀT X̄)./(ĀT ĀS + λqSq−1) (5b)

where .∗ and ./ stand for the elementwise multiplication and
division, respectively, (·)T denotes the transpose operation to
a matrix, and Sq−1 is calculated by

Sq−1 =
M,P∑

i, j=1

(si, j )
q−1. (6)

III. PROPOSED DEEP NONNEGATIVE MATRIX

FACTORIZATION MODEL

In this section, we first describe the newly proposed deep
NMF model. Then, effective multiplicative iterative algorithms
consisting of two stages are deduced in detail to estimate
simultaneously endmember signatures and abundances.

A. Formulation of Proposed Deep NMF Model

The basic NMF (and its variants) can be regarded as
a single-layer learning process, illustrated in Fig. 1(a),
which learns simultaneously the endmember signatures A
and the abundance matrix S from the observation matrix X.
By stacking one hidden layer on the bottom of each layer,
i.e., the abundance matrix S1 acquired over the single layer
could be factorized into A2 and S2. As such, we extend
the shallow NMF into a two-layer NMF structure, as shown
in Fig. 1(b).

Fig. 1. Schematic diagram for (a) one-layer and (b) two-layer learning.

Fig. 2. Schematic diagram of the proposed deep NMF model.

Fig. 2 shows the framework of the deep NMF model, which
factorizes the observation matrix X into L+1 factors, given by

X = A1A2 . . . ALSL (7)

where Al ∈ R
Ml−1×Ml , l = 1, 2, . . . , L, and M0 is used to

represent the number of bands B .
This means that the observation matrix could be decom-

posed in L different ways, where the abundance matrix S of
different layers is given by

SL−1 = ALSL

...

S2 = A3 . . . ALSL

S1 = A2 . . . ALSL . (8)

These hidden representations (S1, . . . , SL ) are further
restricted to be nonnegative as well. As shown in Fig. 2,
the deep NMF model is composed of two stages.

1) Pretraining Stage: This stage aims at pretraining each
layer by minimizing the cost function in (3) with λ = 0.
Specifically, in the first layer, the observation matrix X is
decomposed into A1 and S1. Then, in the second layer,
S1 is decomposed into A2 and S2. The same process is
continued until the maximum number of layers (L) is
reached.
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2) Fine-Tuning Stage: To decrease the total reconstruction
error, we fine-tune all factors acquired at the previous
stage according to the following cost function:

Cdeep = 1

2
�X − A1A2 . . . ALSL�2

F . (9)

Finally, once we obtain all optimal factors, A and S are,
respectively, calculated by

A = A1A2 . . . AL (10a)

S = SL . (10b)

B. Optimization of Deep NMF

1) Update Rules for Pretraining Stage: We approximate the
factors layerwise greedily using the classical NMF algorithm
for all layers [49], i.e.,

A = A. ∗ (XST )./(ASST ) (11a)

S = S. ∗ (ĀT X̄)./(ĀT ĀS). (11b)

2) Update Rules for Fine-Tuning Stage: On this stage, all
the factors obtained at the former stage are fine-tuned. To
determine the update rules, we rewrite the cost function given
in (9) as a detailed form

Cdeep = 1

2
�X − A1A2 . . . Al−1AlAl+1 . . . ALSL�2

F (12)

where we have defined �l−1 and S̃l as

�l−1 = A1A2 . . . Al−1 (13a)

S̃l = Al+1 . . . ALSL (13b)

with S̃l being the reconstruction of the lth layer’s abundance
matrix. It should be noted that �l−1 = I if and only if l = 1,
here I represents an identity matrix. Hence, the cost function
given in (12) becomes

Cdeep = 1

2
�X − �l−1Al S̃l�2

F . (14)

The local optimal Al and Sl can be obtained by minimizing
the above function. In this paper, to estimate the optimal
Al and Sl , the multiplicative update rules are calculated by
using the GD method. First, the gradients are solved by
differentiating (14) with respect to Al and Sl , respectively, as

∇AlCdeep = −�T
l−1XS̃T

l + �T
l−1�l−1Al S̃l S̃T

l (15a)

∇SlCdeep = −AT
l �T

l−1X + AT
l �T

l−1�l−1AlSl . (15b)

After selecting two appropriate step sizes, the update rules
for the lth layer on the fine-tuning stage are obtained as

Al = Al . ∗
(
�T

l−1XS̃T
l

)
.
/(

�T
l−1�l−1Al S̃l S̃T

l

)
(16a)

Sl = Sl . ∗ (�̄T
l X̄
)
.
/(

�̄T
l �̄lSl

)
(16b)

where the ASC is satisfied for Sl by augmenting the �l−1Al as

�̄l =
[
�l−1Al

δ1

]
. (17)

The proposed deep NMF algorithm is summarized
in Algorithm 1. Its implementation details are described
in Section IV-C.

Algorithm 1 Proposed Deep NMF Algorithm
Input: Observation matrix X;

Number of endmembers M;
Parameters L, δ, and Tmax.

Pretraining stage:
Repeat for l

Initialize: Al and Sl by the VCA and FCLS methods.
Repeat

Update Al by (11a);
Update Sl by (11b).

until stopping criterion is satisfied.
until L is reached.

Fine-tuning stage:
Repeat

for all layers do
Update Al by (16a);
Update Sl by (16b).

end for
until stopping criterion is satisfied.

Output: The endmember signature matrix A by (10a);
the abundance matrix S by (10b).

C. Computational Complexity Analysis

According to Algorithm 1, the main time cost is spent
on updating rules giving in (11a), (11b), (16a), and (16b).
The computational complexity for the pretraining stage
is O(

∑L
l=1 tl(P Ml−1 Ml + P M2

l + Ml−1 M2
l )), where tl

is the number of iterations; for the fine-tuning stage,
it is O(t f (B P M1 + B M2

1 + P M2
1 +∑L

l=2(B P Ml + B M2
l +

P M2
l + P Ml−1 Ml + M2

l−1 Ml + Ml−1 M2
l )), in which t f is the

number of iterations.

IV. PROPOSED SPARSITY-CONSTRAINED

DEEP NMF WITH TOTAL VARIATION

A. SDNMF-TV Model

The cost function of NMF is nonconvex, leading to unstable
results. Hence, applying appropriate constraints is an alterna-
tive scheme to improve unmixing performance.

In real images, the number of materials contained in each
mixed pixel is generally much lower than the total number
of materials in the spectral library. Therefore, it is reasonable
to add the sparsity constraint to the cost functions. For the
methods that use L p regularizer, Qian et al. [1] have already
demonstrated that the L1/2-NMF is better than the other
Lq -NMF algorithms by measuring sparsity and computational
complexity. To this end, the cost function of SDNMF with the
L1/2 regularizer is given by

C = 1

2
�X − AS�2

F + λ�S�1/2 (18a)

Cdeep = 1

2
�X − �l−1Al S̃l�2

F + λ�Sl�1/2 (18b)

where (18a) and (18b) are related to the pretraining stage and
fine-tuning stage, respectively.

In addition to spectral information, spatial information is
another important aspect of HSIs. The TV regularization is
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further integrated into the SDNMF model to enforce the
derivation of piecewise smoothness abundance maps. The TV
norm of an HSI is defined as [36]

�S�HTV =
M∑

j=1

�FS j�TV (19)

where S j denotes the j th row of the matrix S and F represents
the reshape operation from a vector with P pixels to a
matrix with m × n. Notice that the values of m and n
correspond to the geometric dimensions of an HSI cube.
The TV model proposed by Rudin et al. [37] can promote
piecewise smoothness effectively. For an image y with m × n
elements, the anisotropic TV norm is reformed as

�y�TV =
m−1∑
i=1

n−1∑
j=1

{|yi, j − yi+1, j | + |yi, j − yi, j+1|}

+
m−1∑
i=1

|yi,n − yi+1,n | +
n−1∑
j=1

|ym, j − ym, j+1|. (20)

Combining the sparsity constraint with spatial information,
we propose a new SDNMF-TV model, whose cost function
can be represented as

C = 1

2
�X − AS�2

F + λ�S�1/2 + α�S�HTV (21a)

Cdeep = 1

2
�X − �l−1Al S̃l�2

F + λ�Sl�1/2 + α�Sl�HTV (21b)

where α adjusts the strength of the piecewise smoothness.
The SDNMF-TV method becomes SDNMF when α is set
as 0, and it is the deep NMF model when λ is futher set as 0.
Analogously, (21a) and (21b) are given for the pretraining
stage and fine-tuning stage, respectively.

B. Optimization of the SDNMF-TV Model

Due to incorporation of the sparsity constraint and TV
regularizer, the optimization method of SDNMF-TV is slightly
different from that of the deep NMF model. More details about
the derivation procedure are described as follows.

1) Update Rules for Pretraining Stage: To effectively
deduce the multiplicative update rules, an auxiliary matrix L
is introduced to (21a) and the cost function is transformed as

C = 1

2
�X − AS�2

F + λ�S�1/2 + α�L�HTV s.t. L = S. (22)

The matrix S can be regarded as the combination of L with
noise. For convenience of calculation, the constraint L = S
can be absorbed into the cost function [36], i.e.,

C= 1

2
�X − AS�2

F +λ�S�1/2 + μ

2
�L−S�2

F +α�L�HTV (23)

where μ is a parameter to control the similarity between S
and L, and a larger value of μ enforces higher similarity of
the two matrices.

By taking into account the fact that the sparsity constraint
and the TV regularizer are applied to the abundance matrix S,

the update rule of A is the same as (11a). For the solution
of S, we first differentiate (23) with respect to S, i.e.,

∇SC = ATAS − ATX + λ

2
S−1/2 + μ(S − L). (24)

After selecting a reasonable step size, we can obtain the
update rule for S as

S = S. ∗ (ĀT X̄ + μL).

/(
ĀT ĀS + λ

2
S−1/2 + μS

)
. (25)

The method for deriving the update rule of L is distinct
from that of A and S. Specifically, the update rule of L is
obtained by minimizing the following function:

μ

2
�L − S�2

F + α�L�HTV. (26)

By combining (19) and (26), the following optimization
function is formulated as:

L = arg min
L

M∑
j=1

(μ

2
�FL j − FS j�2

F + α�FL j �TV

)
(27)

where the fast gradient projection algorithm [50] is applied to
solve (27) for each j .

2) Update Rules for Fine-Tuning Stage: Referring to the
fine-tuning process in the deep NMF model and the pretraining
one in the SDNMF-TV model, the update rules for the fine-
tuning stage are given as

Al = Al . ∗
(
�T

l−1XS̃T
l

)
.
/(

�T
l−1�l−1Al S̃l S̃T

l

)
(28a)

Sl = Sl . ∗ (�̄T
l X̄ + μLl

)
.

/(
�̄T

l �̄lSl + λ

2
S−1/2

l + μSl

)
(28b)

Ll = min
Ll

M∑
j=1

(μ

2

∥∥FL j
l − FS j

l

∥∥2
F + α

∥∥FL j
l

∥∥
TV

)
. (28c)

The newly proposed SDNMF-TV algorithm is summarized
in Algorithm 2.

C. Implementation Issues

Here, several issues will be discussed to implement the
proposed algorithm. The first issue is how to determine the
number of endmembers, for which the studies have reported
many effective methods such as virtual dimensionality [51]
and HySime [52]. However, it is another independent topic.
Thus, we set the number of endmembers manually. Specifi-
cally, on synthetic data, the number of endmembers is given
according to the generation process. On real data, it is provided
following several previous studies.

The second issue involves the initialization of Al and Sl .
In our implementation, the matrix Al is initialized by using
the vertex component analysis (VCA) algorithm [12], and the
matrix Sl is initialized by using the fully constrained least
squares (FCLS) algorithm [53].

For the L1/2 regularizer, not all the elements in S (or Sl ) are
updated following (25) [or (28b)]. As shown in [4], we set a
predefined threshold (1 × 10−4). For those elements less than
the threshold, we omit the additional term corresponding to
the L1/2 sparsity operator.
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Algorithm 2 SDNMF-TV for Spectral Unmixing
Input: Observation matrix X;

Number of endmembers M;
Parameters L, δ, Tmax, λ, α, and μ.

Pretraining stage:
Repeat for l

Initialize: Al and Sl by the VCA and FCLS methods.
Repeat

Update Al by (11a);
Update Sl by (25);
Update Ll by (27).

until stopping criterion is satisfied.
until L is reached.

Fine-tuning stage:
Repeat

for all layers do
Update Al by (28a);
Update Sl by (28b);
Update Ll by (28c).

end for
until stopping criterion is satisfied.

Output: The endmember signature matrix A by (10a);
the abundance matrix S by (10b).

The last issue is about the stopping criteria. First of all,
we define the reconstruction error J as

J = �Sl−1 − AlSl�2
F (29a)

J = �X − A1A2 . . . ALSL�2
F (29b)

where (29a) and (29b) are utilized for the pretraining stage
and fine-tuning stage, respectively. If the number of iterations
reaches a preset maximum number (Tmax) or the stopping
criterion (|J (t−1) − J (t)|/J (t−1) ≤ ε) is met, the proposed
algorithm will be stopped, in which t represents the number
of iterations. ε is the error threshold, which is set to be 1×10−3

in the experiments. It is worth mentioning that X is equivalent
to Sl−1 if and only if l = 1 in (29a).

V. EXPERIMENTAL RESULTS AND DISCUSSION

In order to demonstrate the effectiveness of our newly
proposed method, experiments on synthetic and real hyper-
spectral data have been implemented. Synthetic data are
utilized, because its true endmembers and corresponding abun-
dances are completely known. The real hyperspectral data sets
used in our experiments are the Samson and Cuprite data
sets, respectively. The results of MLNMF [54], L1/2-NMF [1],
and VCA-FCLS are used for comparative purposes. For the
proposed method, the maximum number of iterations Tmax
is selected as 500, the parameters δ and μ are fixed to 15
and 1 × 103, respectively, based on [36] and [32].

For quantitative assessments, the spectral angle distance
(SAD) is adopted to measure the difference between the
mth original endmember (Am) and its estimate (Âm), which is
defined as

SADm = arccos

(
AT

mÂm

�AT
m��Âm�

)
. (30)

Fig. 3. Spectral signatures of seven endmembers chosen from the USGS
library in our experiments.

Fig. 4. Synthetic image at band 1.

Similarly, the abundance angle distance (AAD) can be used
to measure the difference between the mth original (Sm) and
the estimated abundance (Ŝm), which is defined as

AADm = arccos

(
Sm ŜT

m

�Sm��ŜT
m�

)
. (31)

A. Synthetic Data Experiments

Synthetic data are generated using the U.S. Geolog-
ical Survey (USGS) spectral library, which contains
nearly 500 typical minerals and is available online at
http://speclab.cr.usgs.gov/spectral.lib06. It comprises spectral
signatures with reflectance values given in 224 spectral bands
and distributed uniformly over the interval 0.4–2.5 μm. In this
paper, the endmember matrix A is constructed by seven
spectral signatures chosen from the USGS randomly, as shown
in Fig. 3. Their abundances are generated following the
methodology provided in [55]: 1) a scene with a size of z2×z2

(z = 8) is divided into z×z regions and each region is filled up
by one of the above endmembers; 2) mixed pixels are produced
by a spatial low-pass filter ((z + 1) × (z + 1)); and 3) to
further remove pure pixels, the pixels with abundances being
larger than θ (θ = 0.8) are replaced by a mixture composed
of all endmembers with equal weights, and afterward, the
distributions of seven endmembers in the scene are obtained
and stored in S; and 4) the synthetic data, shown in Fig. 4,
is generated according to X = AS.

Experiment 1 (Parameter Analysis): For the proposed
method, parameters λ and α regulate the impact of sparsity
constraint and piecewise smoothness, respectively. In this
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TABLE I

COMPARISON OF THE SAD ON THE SYNTHETIC DATA FOR DIFFERENT METHODS IN TERMS OF NOISE. WE LABEL THE BEST RESULTS IN BOLD
TYPEFACE AT EACH DESIGNATED SNR VALUE, AND THE SECOND BEST RESULTS ARE UNDERLINED

TABLE II

COMPARISON OF THE AAD ON THE SYNTHETIC DATA FOR DIFFERENT METHODS IN TERMS OF NOISE. WE LABEL THE BEST RESULTS IN BOLD

TYPEFACE AT EACH DESIGNATED SNR VALUE, AND THE SECOND BEST RESULTS ARE UNDERLINED

Fig. 5. Performance of SDNMF (α = 0) and SDNMF-TV with respect to
parameters λ and α in terms of (a) SAD and (b) AAD.

experiment, we investigate the performance of our algorithm
in terms of λ and α when the signal-to-noise ratio (SNR) is set
to 20 dB. To reduce the computational burden, λ is defined in a
finite set {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3}, and α
is defined in a finite set {0, 0.001, 0.005, 0.01, 0.02}. Fig. 5(a)
shows the SAD achieved by SDNMF and SDNMF-TV when
these two parameters λ and α vary under L = 3, and
Fig. 5(b) gives the AAD results. As can be seen, when the
value of parameter λ is less than 0.2, both the SAD and
AAD values will increase gradually, while the value of λ
exceeds 0.2 and the values of SAD and AAD increase as
well. Similarly, the values of the two metrics will increase
slowly as α exceeds or is less than 0.005. Namely, we could
observe that the best values of λ and α are in the vicinity
of 0.2 and 0.005, respectively. The value of λ (i.e., 0.2) is
larger than that of α (i.e., 0.005), revealing that the sparsity
constraint has a predominant impact on the final result.

Experiment 2 (Analysis to the Number of Layers): Since
the core characteristics of a deep NMF method and its
extensions are to factorize the observation matrix into many
factors, the number of layers is a key parameter. In this
experiment, we assign the number of layers L from 1 to 6
with SNR = 20 dB.

Fig. 6. Comparison of (a) SAD and (b) AAD for SDNMF and SDNMF-TV
versus the number of layers L .

Fig. 6 presents a comparison of the obtained results in terms
of SAD and AAD. We can observe clearly that the curves
plotted by these two metrics for SDNMF and SDNMF-TV
exhibit a similar trend. Specifically, the values of the SAD and
AAD when L = 1 are larger than others, verifying that the
deep NMF model is better than the shallow one. The perfor-
mance of our proposed method is improved gradually with
the value of L being increased, while it is degraded when
L increases to a certain level. For the synthetic data, these
two metrics reach their minima at L = 3; in other words,
the optimal performances of SDNMF and SDNMF-TV are
achieved by using three-layer structure. Thus, we set L as 3 to
extract endmember signatures and retrieve the corresponding
abundances in the following experiments.

Experiment 3 (Robustness Analysis): In this experiment,
to verify the superiority and robustness of the proposed
algorithm when data are contaminated by noise, the synthetic
data are degraded by Gaussian noise and correlated noise.
Specifically, the Gaussian noise contains five levels of SNR,
i.e., 10, 15, 20, 25, and 30 dB. Meanwhile, the correlated
noise only has one level of SNR, i.e., SNR = 30 dB, which
is generated by low-pass filtering independent and identically
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Fig. 7. Comparison of the reference spectra (green solid line) with the endmember signatures estimated by SDNMF-TV (red dashed line) on the synthetic
data. (a) Carnallite NMNH98011. (b) Actinolite NMNHR16485. (c) Andradite WS487. (d) Diaspore HS416.3B. (e) Erionite+Merlinoit GDS144. (f) Halloysite
NMNH106236. (g) Hypersthene NMNHC2368.

Fig. 8. True fractional abundance maps for seven endmembers. (a) Carnallite NMNH98011. (b) Actinolite NMNHR16485. (c) Andradite WS487. (d) Diaspore
HS416.3B. (e) Erionite + Merlinoit GDS144. (f) Halloysite NMNH106236. (g) Hypersthene NMNHC2368.

Fig. 9. Fractional abundance maps estimated by SDNMF-TV for seven endmembers. (a) Carnallite NMNH98011. (b) Actinolite NMNHR16485. (c) Andradite
WS487. (d) Diaspore HS416.3B. (e) Erionite + Merlinoit GDS144. (f) Halloysite NMNH106236. (g) Hypersthene NMNHC2368.

Fig. 10. Fractional abundance maps estimated by SDNMF for seven endmembers. (a) Carnallite NMNH98011. (b) Actinolite NMNHR16485. (c) Andradite
WS487. (d) Diaspore HS416.3B. (e) Erionite + Merlinoit GDS144. (f) Halloysite NMNH106236. (g) Hypersthene NMNHC2368.

distributed Gaussian noise with a normalized cutoff frequency
of 5π/B .

Tables I and II list SAD and AAD generated by the five
methods in terms of Gaussian noise with different SNR levels
and correlated noise, respectively. In order to compare perfor-
mance conveniently, we label the best results in bold typeface
at each designated SNR value, and the second best results
are underlined. An identical operation is done for Tables III
and IV in the latter experiments on real data sets. We can
find that the performances of all methods are improved with
the decrease in Gaussian noise corruption. Most importantly,
the proposed method performs better and more stable than the
others, indicating that it not only achieves more desired results,
but also is more robust to noise contamination.

Furthermore, to intuitively illustrate the performance of
SDNMF-TV, we take the case of SNR = 20 dB and L = 3 as
an instance. Fig. 7 shows the USGS library spectral signatures

and the estimated ones by SDNMF-TV on the synthetic data.
From this figure, it is apparent that the estimated waveform and
the ground truth coincide very well for each material. Mean-
while, the true abundance maps and the estimated ones by
SDNMF-TV for seven endmembers are shown in Figs. 8 and 9,
respectively. We can find that the distribution of each minerals
is basically consistent with the true fractional abundance maps.
Besides, in order to further illustrate the importance of the
TV regularizer, we display the results achieved by SDNMF,
as shown in Fig. 10. It can be seen that the noise points
appeared in Fig. 9 are less than that in Fig. 10.

B. Real Data Experiments

1) Samson Data Set: The Samson data set is used as the
first real hyperspectral data set [56], as shown in Fig. 11(a).
It contains 952 × 952 pixels, and each pixel has 156 bands
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TABLE III

COMPARISON OF THE SAD ON THE SAMSON DATA SET FOR DIFFERENT METHODS. WE LABEL THE BEST RESULTS FOR EACH ENDMEMBER IN BOLD
TYPEFACE, AND THE SECOND-BEST RESULTS ARE UNDERLINED

TABLE IV

COMPARISON OF THE SAD ON THE AVIRIS CUPRITE DATA SET FOR DIFFERENT METHODS. WE LABEL THE BEST RESULTS FOR EACH ENDMEMBER IN

BOLD TYPEFACE, AND THE SECOND-BEST RESULTS ARE UNDERLINED

Fig. 11. (a) Subscene of Samson. (b) AVIRIS Cuprite image.

Fig. 12. Comparison of the USGS library spectra (green solid line) with
the endmember signatures estimated by SDNMF-TV (red dashed line) on the
Samson data set. (a) Soil. (b) Tree. (c) Water.

ranging from 0.401 to 0.889 μm. Due to the large size of the
original image, a region of 95 × 95 pixels [with the pixel at
spatial coordinates (252, 332) in the original image adopted
as the upper leftmost pixel in the subscene] is considered
to alleviate the computational burden. Based on the previous
works [24], [30], there are three endmembers in the subscene:
“#1 Soil”, “#2 Tree”, and “#3 Water”.

Fig. 13. Fractional abundance maps of three endmembers estimated by
SDNMF-TV on the Samson data set. (a) Soil. (b) Tree. (c) Water.

The comparison of the reference spectra with the estimated
signatures by SDNMF-TV on the Samson data set is shown
in Fig. 12. It is apparent that the estimated spectra of the three
materials are in accordance with the ground truth, revealing
the effectiveness of the proposed method. Since the true
abundances of the real data set are unavailable, Fig. 13 only
displays the estimated abundance maps by SDNMF-TV.

Table III lists the SAD values yielded by our proposed
method as well as three comparative methods for each mate-
rial. From Table III, it can be easily found that the signature of
water estimated by SDNMF-TV is better than that of others,
and the mean value about SAD of SDNMF-TV is the smallest.
This reveals that the proposed method outperforms other state-
of-the-art algorithms.

2) AVIRIS Cuprite Data Set: The AVIRIS Cuprite data
set acquired in 1995 is utilized as the second real HSI,
as shown in Fig. 11(b). It contains 250 × 191 pixels, and
each pixel has 224 bands ranging from 0.4 to 2.5 μm.
The noisy channels (1 and 2 and 221–224) and water
absorption channels (104–113 and 148–167) are removed,
and 188 channels are remained. In addition, there are
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Fig. 14. Comparison of the USGS library spectra (green solid line) with the endmember signatures estimated by SDNMF-TV (red dashed line) on the
AVIRIS Cuprite subscene. (a) Alunite GDS82 Na82. (b) Andradite WS487. (c) Buddingtonite GDS85 D-206. (d) Chalcedony CU91-6A. (e) Kaolin/Smect
H89-FR-5 30K. (f) Kaolin/Smect KLF508 85%K. (g) Kaolinite KGa-2. (h) Montmorillonite + Illi CM37. (i) Muscovite IL107. (j) Nontronite NG-1.a. (k)
Pyrope WS474. (l) Sphene HS189.3B.

Fig. 15. Fractional abundance maps estimated by SDNMF-TV on the AVIRIS Cuprite subscene. (a) Alunite GDS82 Na82. (b) Andradite WS487.
(c) Buddingtonite GDS85 D-206. (d) Chalcedony CU91-6A. (e) Kaolin/Smect H89-FR-5 30K. (f) Kaolin/Smect KLF508 85%K. (g) Kaolinite KGa-2.
(h) Montmorillonite + Illi CM37. (i) Muscovite IL107. (j) Nontronite NG-1.a. (k) Pyrope WS474. (l) Sphene HS189.3B.

mainly 12 minerals: “#1 Alunite GDS82 Na82”, “#2
Andradite WS487”, “#3 Buddingtonite GDS85 D-206”, “#4
Chalcedony CU91-6A”, “#5 Kaolin/Smect H89-FR-5 30K”,
“#6 Kaolin/Smect KLF508 85%K”, “#7 Kaolinite KGa-2”,
“#8 Montmorillonite + Illi CM37”, “#9 Muscovite IL107”,
“#10 Nontronite NG-1.a”, “#11 Pyrope WS474”, and
“#12 Sphene HS189.3B”.

In Fig. 14, we compare the reference signatures selected
from the library with the endmembers estimated by
SDNMF-TV on the AVIRIS Cuprite data set. Similarly, our
proposed method yields high spatial consistency of the dozen
considered minerals, indicating that the method is effective.
Besides, the abundance maps estimated by SDNMF-TV are
shown in Fig. 15, where the brighter pixel explains higher
abundance of the corresponding endmembers.

The corresponding SAD values for each mineral signature
are given in Table IV. Compared with other considered
methods, it can be observed that several minerals (e.g., Andra-
dite WS487, Kaolin/Smect H89-FR-5 30K, and Kaolin/Smect
KLF508 85%K) are estimated with the best performance for
SDNMF-TV. Most importantly, the mean value about SAD
of our proposed method is the smallest, which confirms the
superiority of our proposed approach in this context.

VI. CONCLUSION

In this paper, a new SDNMF-TV has been proposed for
linear spectral unmixing. First, we extend the NMF to a deep
NMF model by adopting the concept of DL. The proposed
model is able to learn hierarchical features with hidden infor-
mation, consisting of pretraining stage and fine-tuning stage.
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The former stage is performed to pretrain all factors layer
by layer, and the latter stage fine-tunes all factors to reduce
the total reconstruction error. On this basis, two constraints
are enforced to exploit the spectral and spatial informa-
tion contained in the original hyperspectral data. Specifi-
cally, we first introduce the L1/2 regularizer to enhance the
sparsity of the abundance matrix, and then, the TV model
is further incorporated by considering piecewise smoothness
of the abundances to build SDNMF-TV model. Besides,
the newly proposed unmixing method is solved by multiplica-
tive iterative algorithms. A detailed comparison with three
competing unmixing approaches (i.e., MLNMF, L1/2-NMF,
and VCA-FCLS) demonstrates that our proposed method
offers the best performance in the considered experiments.
Future work will be focused on the extension of the proposed
unmixing method to the hyperspectral data with the mixed
noise (i.e., sparse noise and Gaussian noise).
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