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Abstract— In this paper, a novel local covariance matrix (CM)
representation method is proposed to fully characterize the corre-
lation among different spectral bands and the spatial–contextual
information in the scene when conducting feature extraction (FE)
from hyperspectral images (HSIs). Specifically, our method first
projects the HSI into a subspace, using the maximum noise
fraction method. Then, for each test pixel in the subspace, its
most similar neighboring pixels (within a local spatial window)
are clustered using the cosine distance measurement. The test
pixel and its neighbors are used to calculate a local CM for FE
purposes. Each nondiagonal entry in the matrix characterizes
the correlation between different spectral bands. Finally, these
matrices are used as spatial–spectral features and fed to a support
vector machine for classification purposes. The proposed method
offers a new strategy to characterize the spatial–spectral informa-
tion in the HSI prior to classification. Experimental results have
been conducted using three publicly available hyperspectral data
sets for classification, indicating that the proposed method can
outperform several state-of-the-art techniques, especially when
the training samples available are limited.

Index Terms— Covariance matrix representation (CMR), fea-
ture extraction (FE), hyperspectral image (HSI) classification,
manifold space (MS).

I. INTRODUCTION

DUE to the advancement in the hyperspectral imaging
technology, hyperspectral images (HSIs) comprise hun-

dreds of narrow spectral bands. Each pixel in the HSI is
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a high-dimensional vector (or spectral signature) that pro-
vides discriminative spectral information that can be used
to distinguish between materials of interest [1]–[3]. With
such rich spectral information, HSIs have been widely used
in many different applications, such as target detection [4],
change detection [5], and classification [6]–[8]. Among these
problems, the classification of HSIs has been the focus of
many recent research efforts, since it plays an important role
in precision agriculture [9], urban mapping [10], and envi-
ronmental monitoring [11]. Given a set of training samples,
the classification of HSIs aims to assign a unique label for
each test pixel in the scene. To achieve this, various classifiers
have been adopted by the hyperspectral imaging community,
including the support vector machine (SVM) [12], neural
networks [13], random forests [14], and sparse representation
techniques [15]. However, when the training samples available
a priori are limited, the classification accuracy achieved by
these methods [12]–[14] can significantly degrade due to the
so-called Hughes effect or the curse of dimensionality.

To tackle this problem, many feature extraction (FE)
methods have been developed in recent years. They aim at
finding a new subspace in which the separability among the
transformed samples can be enlarged as much as possible.
Typical FE methods include unsupervised approaches (e.g.,
the principal component analysis (PCA) [16], independent
component analysis (ICA) [17], the maximum noise fraction
(MNF) [18]), and supervised approaches (e.g., linear dis-
criminant analysis [19]). The PCA maximizes the variance
of the projected samples with an orthogonal set of vectors.
However, since only a small number of PCs are preserved,
the PCA cannot ensure that the most informative spectral
signatures are retained. Different from the PCA, the MNF
aims at maximizing the signal-to-noise ratio (SNR) instead
of the variance. This can remove the noise of the HSI more
effectively in the process of dimensionality reduction.

In order to incorporate the spatial information in the classi-
fication of HSIs, many spatial–spectral FE techniques have
been proposed in recent decades. Benediktsson et al. [20]
introduced the extended morphological profile (EMP) to adap-
tively extract the spatial information based on the structure
of HSIs using morphological opening and closing operations.
In [21], based on the concept of morphological attribute
filters, the spatial information of HSIs was characterized
with a multilevel multiattribute approach termed as extended
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Fig. 1. Illustration of the construction of the CMR for a “Tree” region. b1 . . . b5 are five row feature bands. cov denotes the covariance operator and
cov(x, y)(1/(n − 1))

∑n
i=1 zi − (1/(n − 1)

∑n
i=1 xi ) × (1/(n − 1)

∑n
i=1 yi ) for two given vectors x = [x1, x2, · · · , xn ], y = [y1, y2, . . . , yn ] ∈ R

n and
zi = xi yi . The CR is the extracted CM.

morphological attribute profiles (EMAPs). By using the extinc-
tion filter [22], a more effective and automatic extinction
profile method has been proposed. Subsequently, a series
of related works have been introduced in [23] and [24].
Meanwhile, Kang et al. [25], [26] use edge-preserving filtering
(EPF) to combine the spatial and the spectral information in
the HSI based on the assumption that there is usually a strong
correlation among neighboring pixels. Li et al. [27] exploit the
contextual information using conventional feature descriptors,
i.e., local binary patterns (LBPs), to enhance classification
performance. To further accelerate the speed of processing and
reduce the storage space for the HSI classification, a series
of parallel and distributed-based approaches are proposed
in [28] and [29].

In addition, deep learning techniques have also been used
for HSI classification [30]–[33] motivated by their success in
the computer vision community. In [30], the pixels of the HSI
are regarded as sequential data, and a recurrent neural network
is used to exploit the discriminative information provided by
the spectral domain for the HSI classification. In [31]–[33],
convolutional neural networks (CNNs) are adopted to exploit
both spatial and spectral information to enhance the HSI clas-
sification performance. Specifically, Zhao and Du [31] used a
local discriminant embedding algorithm and a CNN model to
combine the spatial as well as the spectral information in HSI
data exploitation. In [32], a pixel-pair model is developed to
increase the amount of training samples which can be used
to train the CNN model more effectively. In [33], the CNN
is used to extract high-level spatial–spectral features followed
by a logistic regression technique for the HSI classification.
However, it is worthwhile to note that, in order to build the
EMP, EMAP, or LBP features, a dimensionality reduction
method (e.g., the PCA and ICA) is first applied to the HSI.
The resulting bands after such dimensionality reduction are
processed in completely separate fashion by the corresponding
filters (e.g., morphological) or feature descriptors (e.g., LBP).
As a result, the spectral correlation (which can offer important
discriminative information) is not fully exploited by these
methods.

Recently, the covariance matrix representation (CMR)
method has been successfully applied on a variety of computer
vision tasks, including fields such as image segmentation [34],
texture classification [35], image set classification [36], and
face recognition [37]. With the CMR, the region of interest
is characterized by a CM and each nondiagonal entry in the
CM stands for the correlation between two different features,
which introduces a natural way of fusing multiple features that
might be correlated. Fig. 1 shows an illustration of the CMR

concept for the characterization of a tree object in a color
image. As can be observed, the correlation among multiple
features can be fully characterized by the CR extracted from
the tree region, which is the main advantage of the CMR [38].
Note that the feature space in Fig. 1 can be built by an FE
method (e.g., Gabor features) or simply using the features in
the RGB color space.

In this paper, in order to fully exploit the spectral correlation
among different bands in addition to the spatial correlation
in the original HSI, a novel local CMR (LCMR) method
is proposed inspired by the advantages of the CMR in
other fields. Using the concept of CMR, the newly proposed
method can simultaneously exploit the correlation among
different spectral bands and the spatial information in the
HSI, allowing for a more discriminative FE process. In our
method, the MNF-based dimensionality reduction method is
first applied to the original HSI to reduce the dimensionality
and discard noise. Then, for each test pixel of the dimension-
ally reduced HSI, the cosine distance measurement is used
to find its K − 1 most similar neighboring pixels within the
window. Next, using the CMR method, the CM is calculated
among the set of K pixels including the test pixel and its
neighbors. Each nondiagonal entry in the CM characterizes the
correlation of two different spectral bands. Thus, the correla-
tion among different spectral bands and the spatial information
are fully integrated in the obtained CM. Finally, the extracted
covariance matrices are used as spatial–spectral features and
fed to an SVM with the Log-Euclidean-based kernel for label
assignment, since the covariance matrices do not lie on the
Euclidean space but on the manifold space (MS).

The remainder of this paper is organized as follows.
In Section II, the MNF-based dimensionality reduction and
CMR are briefly reviewed. Section III describes the proposed
LCMR method for the HSI classification. Section IV provides
experimental results using three real HSIs and presents an
exhaustive comparison with the other state-of-the-art FE meth-
ods prior to classification. Section V concludes this paper with
some remarks at plausible future research.

II. RELATED WORKS

A. Maximum Noise Fraction-Based Dimensionality Reduction

Given a data matrix X ∈ R
M×N , where M is the number of

variables and N is the number of the observations. The MNF
aims to find a linear transformation matrix W to maximize
the SNR of transformed data. Assuming X = S + N, where
S and N are the uncorrelated signal and noise matrix. Thus,
cov(X) = �X = �S + �N , where �S and �N are CM
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Fig. 2. Flowchart of the proposed LCMR classification method. Generally, the proposed LCMR method consists of three main steps, i.e., maximum noise
fraction-based dimensionality reduction, KNN-based neighboring pixels refining, and LED kernel-based SVM for label assignment.

of S and N, respectively. W can be obtained by solving the
following problem:

argmax
W

WT �SW

WT �N W
= argmax

W

WT �X W

WT �N W
− 1. (1)

W is the eigenvectors associated with the L largest eigen-
values of �−1

N �X . L is the number of MNF PCs, and the
dimensionality reduced data Y is obtained as

Y = WT X. (2)

Note that �X is estimated using the sample CM of X, and
�N is estimated by the minimum/maximum autocorrelation
factors method [18].

B. Covariance Matrix Representation

The CMR was first introduced as an object descriptor by
Tuzel et al. [38] and [39]. Let us assume that I denotes a color
image. For a given region R ⊆ I with N pixels, let xi denote
the d-dimensional feature (e.g., the color feature or the Gabor
feature) extracted from the ith pixel within R, and let μ denote
the mean vector of the set of feature vectors xi , i = 1 . . . N .
The CMR of region R can be then calculated as follows:

CR = 1

N − 1

N∑

i=1

(xi − μ)(xi − μ)T . (3)

The diagonal entries of the CM represent the variance of each
feature, and the nondiagonal entries represent the covariance
among different features. Note that, to make the CM strictly
positive definite, regularization is often applied to the original
CM as: C∗

R = CR + λE, where E is the identity matrix and
λ is set to 10−3 × trace(CR) [36], [40], [41]. In the proposed
method, regularization is also adopted.

As a common symmetric positive definite (SPD) matrix,
the covariance matrices do not lie on a Euclidean space
but on a Riemannian manifold [36] space, and the com-
mon Euclidean-based distance metric is not suitable for
them. In [42], a manifold-based distance metric, termed Log-
Euclidean distance (LED) metric, is proposed to address this
problem. Given two SPD matrices C1 and C2, the LED
between the two SPD matrices is defined as follows:

dLED(C1, C2) = �logm(C1) − logm(C2)�F (4)

where logm denotes the ordinary matrix logarithm operator
and � · �F denotes the Frobenius norm. Let C = U�UT be
the eigen-decomposition of the SPD matrix C, then its logm
operator can be computed by

logm(C) = Ulog(�)UT . (5)

C. Log-Euclidean-Based Kernel Function

Since the CM lies on an MS, it cannot serve as a direct
input for classical learning algorithms, such as the SVM.
Fortunately, the logm operator can project a point C on the
Riemannian MS to the Euclidean space. In [36], by computing
the inner product on the Euclidean space with the logm oper-
ator, the corresponding Log-Euclidean-based kernel function
on the MS can also be implicitly derived as follows:

klogm(C1, C2) = trace[logm(C1) · logm(C2)]. (6)

It is easy to notice that (6) satisfies the conditions of Mercer’s
theorem, which allows us to utilize any standard vector space
learning algorithm [36].

III. LCMR METHOD FOR CLASSIFICATION OF HSIS

Fig. 2 shows the flowchart of the proposed method for the
classification of HSIs, which consists of the following three
steps. First, for each pixel, the local neighboring pixels on the
subspace (e.g., the MNF-based dimensionality reduced sub-
space) are obtained using the cosine distance. Then, the CMR
is applied on each pixel and its local neighboring pixels on the
subspace. Finally, the obtained covariance matrices are used
as spatial–spectral features and fed into an SVM with Log-
Euclidean-based kernel for label assignment.

A. Spectral Dimensionality Reduction

In order to reduce the computational complexity and discard
noise, the MNF [18] is first applied to the original HSI.
Specifically, given an HSI Z ∈ R

I×J×K , the dimensionally
reduced HSI F ∈ R

I×J×L can be obtained with (2), where
I and J denote the size of two spatial dimensions, K is
the size of the spectral dimension, and L represents the
number of MNF components. Note that, Z is vectorized to
a matrix along the spectral dimension at first and the inverse
procedure of vectorization is conducted to obtain F. Compared
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TABLE I

NORMALIZED DISTANCE AMONG FOUR REPRESENTATIVE PIXELS (BELONGING TO DIFFERENT CLASSES OF THE
AVIRIS INDIAN PINES SCENE) SHOWN IN FIG. 3 ON BOTH THE OSS AND THE MS OBTAINED BY CMR

with other transform-based dimensionality reduction methods
(e.g., PCA [16] and ICA [17]), the main advantage of the MNF
is that noise can be effectively removed on the MNF trans-
formed space, since the MNF aims at maximizing the SNR.

B. Identification of Local Neighboring Pixels

Using a square window of fixed size is a common way
to explore the spatial information [43], [44] for the HSI
classification. However, it should be noted that there may
still be some pixels with low spectral correlation within the
window, especially around the object edges. To address this
issue, we introduce a local neighboring pixels construction
method to discard the dissimilar neighboring pixels in the
reduced subspace.

First, a large window with size T × T is used to extract
the neighbors with regard to a central pixel denoted by f j

1,
where the neighboring pixels are denoted by {f j

i }i=2,...,T 2 ,
j = 1, . . . , N . N is the total number of pixels in the image.
Then, the K-NN method with the cosine distance is applied
on these pixels, i.e., the f j

1 and its T 2 − 1 neighboring pixels,
i.e., {f j

i }i=2,...,T 2 . The cosine distance between the central pixel
and its neighboring pixels is calculated as follows:

cos(f j
1, f j

i ) =
〈
f j

1, f j
i

〉

∥
∥f j

1

∥
∥

2 · ∥
∥f j

i

∥
∥

2

(7)

where �·� and � · � denote the inner product and the Frobenius
norm, respectively. Only the K − 1 most similar pixels with
regard to the central pixel within the window are taken into
consideration, whereas the rest of them are discarded. In this
way, we can construct a local neighborhood for each test pixel,
i.e., {f j

k }k=1,...,K . Obviously, the selected K − 1 pixels are
not only spatially close to the central pixel but also share
relatively similar spectral information which can be used to
extract more discriminative features in the construction of
CMRs. At this point, it is important to emphasize that the
cosine distance-based K-NN strategy is used in our method
because of the following two reasons. First, it is quite common
to use the cosine distance-based similarity measurement for
HSI data processing [45], [46] and it has been reported to
specifically provide a good performance in the HSI classifica-
tion [45]. Second, although there are some shape adaptive-
based methods which can automatically search for similar
pixels that show a good performance on the HSI classification
and denoising, they need careful parameter setting. In addition,
these methods exhibit heavier computational burden [47], [48].
Overall, to make the proposed method simple yet effective,
the cosine distance-based K-NN is adopted in our method.

C. Construction of CMRs for Each Pixel and Its
Local Neighbors

After obtaining {f j
k }k=1,...,K , it is easy to construct the CMR

for the central pixel f j
1 with (3), which can be rewritten as

follows:

C j = 1

K − 1

K∑

k=1

(
f j

k − μ
)(

f j
k − μ

)T (8)

where μ denotes the mean vector of the set of feature vectors
{f j

k }k=1,...,K . By conducting this process, a set of covariance
matrices are extracted for each of the pixels in the image,
i.e., {C j } j=1,...,N . The covariance matrices sets are then used
as spatial–spectral features and fed into an SVM with Log-
Euclidean-based kernel for final classification.

The basic motivation behind this step is to fully exploit
the correlation among different spectral bands using the CMR
for more discriminative FE. Fig. 3 provides an example using
four representative pixels from different classes on the original
spectral space (OSS) and the MS obtained by the CMR. The
well-known Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Indian Pines scene is used for illustrative purposes.
As can be seen from the first row in Fig. 3, the four pixels
exhibit very similar spectral signatures, although they belong
to different classes (i.e., grass-pasture-mowed, corn, soybean-
mintill, and soybean-clean). As a result, it is very challenging
to discriminate these pixels. The normalized distance among
the four pixels both on the OSS and the MS is reported
in Table I. As can be seen, the total normalized distance
among the four pixels in the OSS is 0.0097, whereas the total
distance among the four pixels in the MS is 0.2742. Obviously,
the CMR can enlarge the distance among the four pixels
(with very similar spectral signatures but actually belonging
to different classes). In turn, let us now consider four pixels
from the same class (i.e., Corn-mintill) both on the OSS
and the MS, as shown in Fig. 4. As can be observed from
the first row, the four representative pixels now show very
different spectral signatures, although they actually belong to
the same class. The normalized distance among the four pixels
on the OSS and the MS is also reported in the third row
of Table II. Here, we can observe that the total normalized
distance among the four pixels is reduced from 0.1056 to
0.0226. Overall, this indicates that the CMR can not only
enlarge the distance for pixels in different classes but also
reduce the distance for pixels within the same class, which
offers valuable discriminative information for the classification
task. The normalized distance is calculated as follows:

dnorm(y1, y2) = 0.5 × var(y1 − y2)

var(y1) + var(y2)
(9)
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Fig. 3. Comparison between the OSS and the MS obtained by CMR for pixels belonging to different classes in the AVIRIS Indian Pines scene. The first row
shows the spectral signatures of four representative pixels from four different classes in the OSS. The second row shows the corresponding four representative
pixels on the MS obtained by the CMR. As can be observed, the four pixels, belonging to four different classes, share very similar signatures, which are
hard to distinguish on the OSS. The normalized distance among the four pixels on both the OSS and the MS is reported in Table I. (a) 77,110. (b) 34,4.
(c) 58,114. (d) 18,60.

TABLE II

NORMALIZED DISTANCE AMONG FOUR REPRESENTATIVE PIXELS (BELONGING TO THE SAME CLASS OF THE

AVIRIS INDIAN PINES SCENE) SHOWN IN FIG. 4 ON BOTH THE OSS AND THE MS OBTAINED BY CMR

Fig. 4. Comparison between the OSS and the MS obtained by CMR for pixels belonging to the same class in the AVIRIS Indian Pines scene. The first
row shows the spectral signatures of four representative pixels from the same class on the OSS. The second row shows the corresponding four representative
pixels on the MS obtained by CMR. As can be observed, although the four pixels belong to the same class, they exhibit very different spectral curves. The
normalized distance among the four pixels on both the OSS and the MS is reported in Table II. (a) 34,48. (b)36,57. (c)36,46. (d) 35,56.

where y1 and y2 are two vectors on the Euclidean space. var
denotes the variance operator and var(y) = (1/n)

∑n
i=1(yi −

(1/n)
∑n

i=1 yi )
2 for a vector y = [y1, y2, · · · , yn]T ∈ R

n.
Note that, to calculate the normalized distance between two
matrices with the same size, the two matrices are first reshaped
to vectors.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Sets
In our experiments, three real hyperspectral data sets,

i.e., the “Reflective Optics System Imaging Spectrometer
(ROSIS-03) University of Pavia,” “AVIRIS Indian Pines,” and
“AVIRIS Salinas” images are used.



FANG et al.: NEW SPATIAL–SPECTRAL FE METHOD FOR HSIs USING LCMR 3539

TABLE III

NUMBERS OF TRAINING AND TEST SAMPLES ON THE THREE TEST DATA SETS

1) University of Pavia: The University of Pavia image was
acquired by the ROSIS-03 sensor over the campus at the
University of Pavia, Italy. This data set contains 103 spectral
bands after the noise-corrupted bands are discarded, and each
band is of size 610 × 340. The spatial resolution of this data
set is 1.3 m, and the spectral coverage ranges from 0.43 to
0.86 μm.

2) Indian Pines: The Indian Pines image covers the agri-
cultural Indian Pines test site in Northwestern Indiana and
was collected by the AVIRIS sensor. The data set is of size
145 × 145 × 220, with a spatial resolution of 20 m and a
spectral range from 0.2 to 2.4 μm. Before the classification,
20 spectral bands (i.e., 104th–108th, 150th–163rd, and 220th)
are discarded due to low SNR. This image contains 16 classes.

3) Salinas: The Salinas image was also collected by the
AVIRIS sensor over the Salinas Valley, CA, USA. The data
set is of size 512 × 217 × 224, and it has spatial resolution
of 3.7 m/pixel. Before classification, 20 water absorption bands
were removed (i.e., 108th–112th, 154th–167th, and 224th).

B. Experimental Setup

Here, several state-of-the-art HSI classification methods,
i.e., the SVM on the original data set [12], the SVM
on the dimensionality-reduced HSI obtained by the MNF
method [18], the EPF-based method [26], the multiple
feature learning (MFL)-based method [49], the LBP-based
method [27], the weighted Markov random field (WMRF)-
based method [50], the SVM on EMAP method [21],
and the superpixel-based classification via multiple kernels
(SC-MK) [6], are also used for comparison purposes. The
SVM method has been implemented using the LIBSVM
library [51] and a Gaussian kernel with fivefold cross
validation. For the MNF, the number of MNF PCs is set
to be the same with the LCMR. For the EMAP method,
the attributes are extracted using threshold values in the
range from 2.5% to 10% with respect to the mean of the
individual features, with a step of 2.5% for the standard
deviation attribute and thresholds of 200, 500, and 1000 for
the area attribute. For the EPF, LBP, SC-MK, and WMRF,

the parameters are set using the default values in [6], [26], [27],
and [50]. The code of the proposed LCMR method is available
online (https://sites.google.com/site/leyuanfang/home).

To demonstrate the performance of our proposed method,
we consider very small training sets in our experiments. For
the University of Pavia data set, only ten training samples
are randomly selected per class, and the remaining samples
are then used for evaluation purposes. For the Indian Pines
and Salinas data sets, only five training samples are randomly
selected per class, and the remaining samples are then used for
evaluation. The detailed numbers of training and test samples
used are given in Table III. All experiments are repeated ten
times, and the average accuracies (AAs) and standard devi-
ations are reported. Moreover, three widely used quantitative
metrics, i.e., overall accuracy (OA), AA, and Kappa coefficient
are used to evaluate the classification performance.

C. Parameter Analysis

First, the effect of the number of MNF components (i.e., L)
and the number of local neighboring pixels (i.e., K ) are inves-
tigated. In our experiments, K ranges from 100 to 500 with
step 20 and L ranges from 10 to 50 with step 10. The window
(T ×T ) is fixed with the size of 25×25. As can observed from
Fig. 5, with the increase of L, there is a slight improvement
of the OA on the three data sets. However, it should also
be noted that the computing time increase rapidly as well.
This is due to the fact that the computational complexity of
the LCMR is mainly determined by the size of the extracted
covariance matrices. The larger the L value, the larger the
size of the extracted covariance matrices and this increases
the computational cost. Therefore, L is set to 20 and remains
unchanged in the following experiments. For parameter K ,
it is used to determine the number of local neighboring pixels.
In general, a small K implies that less neighboring pixels are
used in the procedure of the CMR calculation and vice versa.
From Fig. 5, it is easy to observe that the OA is increased
when the K grows from 100 to 320 on both the University
of Pavia data set and the Salinas data set. A further increase
of K will decrease the OA. This is because larger K value
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Fig. 5. Sensitivity analysis of parameters L and K in the proposed LCMR method. As can be seen, although the OAs obtained by the proposed method on
the three test data sets can improve slightly with the growing of L (i.e., from 10 to 50), the corresponding computation times increase rapidly as well. As a
result, the parameter L is set to 20. On the other hand, when K ranges from 200 to 220, relative higher classification accuracies can be obtained on the three
data sets. Therefore, K is set to 220 for the remaining experiments.

Fig. 6. Analysis of the sensitivity of parameter T in the proposed LCMR
method. As can be seen, when T grows from 15 to 25, the classification
performance improve stably on the three data sets and when T is larger
than 25, the OAs will decrease. Therefore, T is set to 25.

lead to the incorporation of relatively dissimilar pixels with
regard to the central pixel in the CMR calculation. A similar
situation can also be observed for the Indian Pines data set but
with a different optimal value of K . In this case, the optimal
K for the Indian Pines scene is 220. This is reasonable, since
the Indian Pines image has a smaller size and a larger K will
include relatively more dissimilar pixels. When the K ranges
from 200 to 220, high classification accuracies can be obtained
on the three data sets. As a result, K is set to 220 for the
remaining experiments.

In addition, the sensitivity of parameter T is also inves-
tigated with parameters L and K fixed to 20 and 220,
respectively. T is tuned from 15 to 31 with a step of 2. As can

Fig. 7. Impact of our local neighboring pixels construction strategy.
(a) Classification accuracy comparison between the LCMR and the CMR-
FW. (b) OAs of CMR-FW with various T values, and the best T value for
the CMR-FW is 15.

TABLE IV

PARAMETERS SETUP FOR THE PROPOSED LCMR METHOD

be seen from Fig. 6, the improvement of OA on the three test
images is obvious when T grows from 15 to 25. When T
is larger than 25, the OA on both the University of Pavia
and Salinas data sets remain stable whereas there is a slight
decrease in the case of the Indian Pines data set. This is mainly
due to the fact that the Indian Pines data set has a smaller size,
and a large window size contains relatively more dissimilar
pixels, thus degrading the classification performance. As a
result, T is set to be 25. Table IV summarizes the parameter
setup for the proposed LCMR method in our experiments.
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Fig. 8. Effect of using different numbers of training samples in the classification of different data sets using SVM [12], MNF [18], EPF [26], MFL [49],
LBP [27], EMAP [21], WMRF [50], SC-MK [6], and the proposed LCMR method.

Fig. 9. University of Pavia data set. (a) Three-band color composite image. (b) Training set (with ten labeled samples per class). (c) Test set. Classification
maps obtained by (d) SVM [12], (e) MNF [18], (f) EPF [26], (g) MFL [49], (h) LBP [27], (i) EMAP [21], (j) WMRF [50], (k) SC-MK [6], and (l) proposed
LCMR.

D. Contribution of Local Neighboring Pixels Identification
To demonstrate the necessity of a local neighboring pixel

identification strategy, a simplified version of LCMR, the CMR
with fixed size window (CMR-FW) is used for comparison.
As can be observed from Fig. 7, by using our local neighboring
pixel construction strategy to refine the set of neighboring
pixels, there is an obvious improvement in terms of the
classification performance with regard to the CMR-FW. For
example, the OA is improved from 65% to almost 75%, and

the Kappa is improved from about 62.5% to 70%. Overall,
the local neighboring pixel identification strategy can discard
relatively dissimilar pixels and thus enhance the classification
performance. Note that, to make a fair comparison, L for the
CMR-FW is set to 20, which is the same value used with the
LCMR. In addition, the optimal T value for the CMR-FW is
obtained experimentally, as shown in Fig. 7(b). The optimal T
value for CMR-FW is 15. This experiment is again performed
on the AVIRIS Indian Pines data set.



3542 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 6, JUNE 2018

TABLE V

AA (%) AND STANDARD DEVIATION (IN THE PARENTHESES) OF TEN REPEATED EXPERIMENTS IN THE UNIVERSITY OF PAVIA IMAGE OBTAINED BY
DIFFERENT METHODS WITH TEN TRAINING SAMPLES PER CLASS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE VI

AA (%) AND STANDARD DEVIATION (IN THE PARENTHESES) OF TEN REPEATED EXPERIMENTS ON THE INDIAN PINES IMAGE OBTAINED BY DIFFERENT
METHODS WITH FIVE TRAINING SAMPLES PER CLASS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

E. Comparison With Different Methods
The first experiment is conducted on the University of Pavia

data set and ten training samples are randomly selected per
class. The corresponding classification results, i.e., OA, AA,
Kappa, and classification accuracy of each class obtained by
different test methods are reported in Table V. As can be
observed from Table V, the proposed method delivers the best
results in terms of OA, AA, and Kappa. Moreover, Fig. 9
shows a false color composite image, training set, the test
set, and the final classification maps for the nine considered
methods in a single experiment. As can be observed, since
the SVM and MNF only take the spectral information into
account, the classification map is quite noisy, especially on
large homogenous regions (e.g., the Bare Soil class which
lies on the middle of the image). By optimizing the proba-
bility map obtained from the SVM with an edge-preserving
filter, the EPF method can yield more smooth classification
maps. By taking advantage of the complementary information
provided by multiple features, the MFL can obtain a more
smooth classification map when compared with the SVM,
MNF and EPF, but there is still some noticeable noise on
the bottom of the map. In addition, the LBP and the WMRF
lead to oversmoothed classification maps. For the LBP method,
the classical LBP descriptor with a slack variable is used

to extract the spatial information separately on each of the
PCs. This step could greatly decrease the impact of noise.
However, when the number of training samples is limited, this
step may result in oversmoothed result, since the correlation
among different spectral bands is not taken into account. For
the WMRF, a spatially adaptive total variation regularization is
used to enforce a more spatially smooth classification, which
is helpful while it may also yield an oversmoothed classi-
fication map when training samples are limited. In contrast,
the proposed LCMR can not only preserve the edges and
boundaries in accordance with the false color composite image
but also deliver smoother results. The reason is twofold. First,
by using the local neighboring pixel construction strategy,
the spatial information is accurately taken into consideration.
Second, instead of separately processing the spectral bands
of the HSI, the CMR can fully exploit the correlation among
different spectral bands, thus allowing for the extraction of
more discriminative features.

We have also investigated the influence of the number of
training samples on the performance of the different tested
methods. Fig. 8(a) and (d), respectively, shows the OA and
Kappa coefficient achieved by the different tested methods as
a function of the number of training samples (ranging from
10 to 100, with a step of 10 per class). As shown in Fig. 8,
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TABLE VII

AA (%) AND STANDARD DEVIATION (IN THE PARENTHESES) OF TEN REPEATED EXPERIMENTS ON THE SALINAS IMAGE OBTAINED BY DIFFERENT
METHODS WITH FIVE TRAINING SAMPLES PER CLASS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE VIII

COMPARISON OF COMPUTING TIME (SECONDS) WITH THE SAME NUMBER OF TRAINING SAMPLES IN TABLES V–VII

Fig. 10. Indian Pines data set. (a) Three-band color composite image. (b) Training set (with five labeled samples per class). (c) Test set. Classification maps
obtained by (d) SVM [12], (e) MNF [18], (f) EPF [26], (g) MFL [49], (h) LBP [27], (i) EMAP [21], (j) WMRF [50], (k) SC-MK [6], and (l) proposed
LCMR.

with the increase of the training set size, there is a stable
improvement in classification performance for all considered
classification methods. Most importantly, the proposed LCMR
method consistently provides the best results, which suggests
the effectiveness of the proposed approach (especially, when
the training set size is very small).

The second experiment is performed on the Indian Pines
data set. Fig. 8(b) and (e), respectively, illustrates the OA and
Kappa coefficient using various numbers of training samples
(ranging from 5 to 15, with a step of 1 per class). As can
also be observed, the classification accuracies improve as the
number of training samples increases, and the classification
performance of the proposed LCMR method is the best among
the considered methods. In addition, Table VI reports the

detailed classification results when the number of training sam-
ples is 5 per class. As can be seen, the proposed method has
the highest OA, AA, and Kappa coefficient. The corresponding
classification maps are shown in Fig. 10.

The third experiment is performed on the Salinas data set.
Fig. 8(c) and (f), respectively, illustrates the OA and Kappa
coefficient using various numbers of training samples (ranging
from 5 to 50, with a step of 5 per class). Moreover, the detailed
classification results with five training samples selected per
class are reported in Table VII. Furthermore, Fig. 11 shows the
classification maps obtained by different methods in a single
experiment. As can also be seen from Fig. 11, the proposed
LCMR method can deliver competitive classification results in
terms of accuracy.
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Fig. 11. Salinas data set. (a) Three-band color composite image. (b) Training set (with five labeled samples per class). (c) Test set. Classification maps
obtained by (d) SVM [12], (e) MNF [18], (f) EPF [26], (g) MFL [49], (h) LBP [27], (i) EMAP [21], (j) WMRF [50], (k) SC-MK [6], and (l) proposed
LCMR.

Finally, the computing time of the nine considered methods
when applied to the three tested HSIs is reported in Table VIII.
As can be observed, the LBP method is the slowest one, since
it needs to extract a very high dimensional feature for each
single pixel. In contrast, the proposed method is much faster.
Moreover, the LCMR method is faster than the WMRF on all
data sets. All the experiments are conducted using MATLAB
8.0 with a 2.6-GHz CPU (four cores) and 16 GB of RAM.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a novel LCMR FE method
for spatial–spectral FE prior to the HSI classification. The
proposed method consists of two main stages, i.e., local neigh-
boring pixel construction and the exploration of correlation
among different bands. With the first stage, the rich spatial
information present in the HSI is exploited. With the second
stage, the spectral correlation among different bands is also
fully exploited, providing a competitive advantage with regard
to other FE methods. Our experiments with three real HSIs
demonstrate that the proposed method can outperform other
state-of-the-art methods in terms of qualitative and quantitative
performance, especially when the number of training samples
is very small.

In our future work, we plan to combine superpixel-based
segmentation methods with the CMR to exploit the spatial

information in a more efficient way. Specifically, the following
two directions will be considered. First, the HSI classification
at the superpixel level (rather than at the pixel level) will be
performed using CMRs. Superpixel segmentation methods can
partition the HSI into many homogeneous regions based on
the spatial-contextual information. However, the superpixels
have arbitrary sizes and it might be hard to process them in
a uniform way, whereas the CMR can adapt them into struc-
tures with the same size, which makes their processing more
manageable. Second, superpixel methods can also provide a
postprocessing framework to optimize the classification map
obtained by the LCMR.
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