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Abstract— This paper proposes a new method, called multi-
layer stacked covariance pooling (MSCP), for remote sensing
scene classification. The innovative contribution of the proposed
method is that it is able to naturally combine multilayer fea-
ture maps, obtained by pretrained convolutional neural net-
work (CNN) models. Specifically, the proposed MSCP-based
classification framework consists of the following three steps.
First, a pretrained CNN model is used to extract multilayer
feature maps. Then, the feature maps are stacked together,
and a covariance matrix is calculated for the stacked fea-
tures. Each entry of the resulting covariance matrix stands for
the covariance of two different feature maps, which provides
a natural and innovative way to exploit the complementary
information provided by feature maps coming from different
layers. Finally, the extracted covariance matrices are used as
features for classification by a support vector machine. The
experimental results, conducted on three challenging data sets,
demonstrate that the proposed MSCP method can not only
consistently outperform the corresponding single-layer model
but also achieve better classification performance than other
pretrained CNN-based scene classification methods.

Index Terms— Feature fusion, multilayer feature maps, pre-
trained convolutional neural networks (CNN), remote sensing
scene classification.

I. INTRODUCTION

REMOTE sensing scene classification has received consid-
erable attention recently, as can be used in many practical
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applications, such as natural hazards detection, geographic
image retrieval, urban planning, and so on [1]–[3]. Given
a query remote sensing image, scene classification aims to
assign a unique label (e.g., industrial area or airport) to
the image, based on its contents. However, remote sens-
ing scene classification is a challenging problem since the
scene images often exhibit complex spatial structures with
high intraclass and low interclass variabilities. To address
this problem, many scene classification methods have been
proposed over the past years [4]–[11]. An extensive review
of remote sensing scene classification methods can be found
in [1] and [2].

Recently, inspired by the great success achieved by con-
volutional neural networks (CNNs) in the computer vision
community [12]–[15], a considerable number of CNN-based
models have been proposed for remote sensing scene classifi-
cation [16]–[20]. These models can achieve better classifica-
tion performance than other traditional methods. The success
of CNN-based scene classification methods is mainly due to
the fact that pretrained CNN models (e.g., AlexNet [21], VGG-
VD16 [22], and GoogleNet [23]) on the ImageNet [24] exhibit
powerful generalization ability and can extract more represen-
tative features than the traditional feature extraction methods
[e.g., scale-invariant feature transform (SIFT) [25] or color
histograms].

However, although these methods can obtain very good
classification performance, the issue of how to utilize the
pretrained CNN models effectively for remote sensing scene
classification is still an open question. In this paper, we pro-
pose a new method, called multilayer stacked covariance pool-
ing (MSCP), to combine the feature maps from different layers
of a pretrained CNN for remote sensing scene classification.
The proposed MSCP scene classification framework includes
three main steps. In the first step, a pretrained CNN model
(i.e., AlexNet or VGG-VD16) is used to extract multilayer
feature maps. Then, the feature maps are stacked together and
a covariance matrix is calculated. Each entry in the covariance
matrix stands for the covariance between two different feature
maps, which serves as a natural mechanism to fuse the feature
maps from different layers. Finally, the obtained covariance
matrices are used as features for classification using a support
vector machine (SVM) classifier with linear kernel. We note
that, in order to stack feature maps with different spatial
dimensions together, downsampling is adopted. Moreover,
channelwise average fusion is proposed and applied on each
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Fig. 1. Example illustrating the reconstruction [26] of feature maps from
different convolutional layers (conv) of AlexNet [21]. (Left to Right) We show
the feature maps resulting from layers: conv1, conv2, conv3, conv4, and conv5,
respectively. The maps at different levels are shown to convey complementary
information that can be used to further improve the classification performance.

convolutional layer to reduce computational complexity before
stacking the maps together.

The main motivation of the proposed method is to be
able to exploit the complementary information among dif-
ferent convolutional layers to further enhance classification
performance. As pointed by Yann et al. [27], the basic idea
behind the CNN model is to represent the image from raw
to abstract using multilevel architectures. The sallower layers
of the CNN model are more likely to reflect the low-level
visual features (LLFs) (e.g., edges), while the deeper layers
represent more abstract information contained in the images.
Fig. 1 provides a graphical illustration of the feature maps in
different layers of a typical CNN model (i.e., AlexNet [21]).
As can be observed in Fig. 1, the AlexNet (with its hier-
archical architecture) can extract various feature maps from
the image, and these maps are expected to convey comple-
mentary information that can be used to further improve the
classification performance. In addition, using the so-called
shortcut connections to combine different layers, from shallow
to deep, the recently proposed ResNet [28] and DenseNet [29]
can achieve state-of-the-art performance in different computer
vision tasks, which also suggests that the combination of dif-
ferent layers from the CNN can be very useful. In this regard,
our proposed method uses a similar approach to exploit the
complementary information contained by multiple layers. Our
experiments demonstrate that the proposed MSCP method can
indeed exploit such complementary information and achieve
better classification performance than several state-of-the-art
approaches.

The remainder of this paper is organized as fol-
lows. Section II gives an overview of related works and
presents the main innovative contributions of our proposed
approach. Section III details the proposed MSCP framework.
In Section IV, comprehensive experimental results are reported
on three data sets, and an exhaustive comparison to other
state-of-the-art methods is also given. Section V concludes

this paper with some remarks and hints at plausible future
research lines.

II. RELATED WORKS AND CONTRIBUTIONS

Generally, the existing scene classification methods can
be categorized into three classes: 1) LLF-oriented methods;
2) mid-LF (MLF)-oriented methods; and 3) high-LF-oriented
methods. For the LLF-oriented methods, a local or global
feature descriptor is first extracted to represent the test images.
Then, the obtained features are sent to a supervised classifier
such as the SVM for label assignment. Yang and Newsam [30]
combine Gabor features with the maximum a posteriori model
for scene classification, where each test image is represented
by a vector consisting of the mean and standard deviation
of the corresponding Gabor feature. Moreover, the global
color histograms are used to characterize the image and the
SVM is then utilized to classify the obtained feature vec-
tors [31]. In [32], a sparse representation [33]–[37] is adopted
to combine several LLFs (e.g., local binary patterns [38] and
histogram of oriented gradients [39]) to enhance classification
performance.

Bearing in mind that there may be semantic gaps between
LLFs and the high-level semantic meaning of images, MLF-
oriented methods are introduced to bridge these two lev-
els [40], [41]. Yang and Newsam [31] use a bag of visual
words (BoVW) model to encode the SIFT descriptor for MLF
extraction. The MLFs are fed to an SVM with intersection
kernel for classification. To further take into account the spatial
contextual information, the spatial pyramid matching is used
to extend the BoVW model in [42] and [43]. Zhu et al. [7]
utilize the BovW model to combine both the local and global
features, extracted from the images, to enhance classification
performance. With the introduction of partlets, which are a
library of pretrained part detectors used for mid-level visual
element discovery, an effective and efficient MLF method
was proposed in [4]. The probabilistic topic model is another
popular technique to bridge the semantic gap between LLFs
and the high-level semantic meaning [5], by means of which
the input scene is represented as a probability distribution
of the visual words. In [5], a multiple topic model was
proposed to combine several different complementary features
in order to achieve a discriminative MLF feature extraction.
In addition, a sparse topic model was recently proposed to
integrate homogeneous and heterogeneous features for scene
classification [44]. In [45], a multitask learning method is
proposed to take both the multiresolutions analysis (MSA)
and feature selection into account for scene classification. Du
et al. [46] propose a local structure learning framework to
make use of the local topological construction of images for
remote scene image retrieval. Instead of using handcrafted
features such as SIFT, other unsupervised feature learning
methods based on different concepts have also been recently
proposed [6], [47], [48].

Inspired by the recent success achieved by CNNs in the
computer vision community, the CNN models have also
been extended for remote sensing scene classification [17].
However, training a deep CNN model from scratch generally
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Fig. 2. Flowchart of the proposed MSCP classification framework. The proposed framework consists of three steps: 1) multilayer feature extraction using a
pretrained CNN model; 2) MSCP; and 3) SVM classification. Dotted and colored lines: downsampling and channelwise average fusion, respectively.

needs a huge amount of training data, while the available off-
the-shelf remote sensing scene image data sets are relatively
small. For example, deep CNN models are usually trained on
the ImageNet [24], which contains millions of images, while
the NWPU-RESISC45 data set [1] (one of the biggest data
sets for remote sensing scene classification) contains less than
35 000 images. Moreover, the CNN models pretrained on Ima-
geNet show a powerful generalization ability on different tasks
(e.g., object detection and semantic segmentation [49], [50]).
Under this context, the perspective of using off-the-shelf pre-
trained CNN models such as AlexNet [21], VGG-VD16 [22],
and GoogleNet [23] as a universal feature extractors has
become an interesting approach for remote sensing scene
classification. In [51], the GoogleNet is used for remote
sensing scene classification, showing that the pretrained CNN
models can outperform the conventional handcrafted feature-
based methods by a large margin. Hu et al. [16] considered two
different scenarios to utilize a pretrained CNN model (VGG-
VD16). In the first scenario, the last few fully connected layers
are regarded as final image features for scene classification.
In the second scenario, a traditional feature encoding method
such as the improved Fisher kernel (IFK) [52] is used to
encode the feature maps from the last convolutional layer for
representing the input image. Both scenarios adopt the SVM
as the final classifier. Cheng et al. [53] use the BoVW model
to encode a single convolutional layer. In [18], the last two
fully connection layers of the CNN model are fused together
to represent the image. In [19], a multiscale IFK coding
method is proposed to combine the feature maps from different
layers.

More recently, as a second-order pooling strategy, covari-
ance pooling (CP) has been used in many computer vision
tasks, such image segmentation [54], [55] and classifi-
cation [56]. There are two main advantages of the CP
approach. First, different from conventional pooling methods,
the CP takes the second-order statistics (i.e., covariance)
into consideration and, therefore, obtains a more compact
and discriminative representation. Second, each entry in the
covariance matrix obtained by CP represents the covariance
between two different feature maps. This offers a natural
way to fuse complementary information coming from different
feature maps.

The proposed method is different from existing pretrained
CNN-based methods in the following two main innovative

aspects. First, we utilize the different convolutional feature
maps of the CNN (from shallow to deep layers) rather than
the last one or two connection layers for representing the input
image. As a result, the proposed approach can achieve better
classification performance than the methods in [16], [18], [51],
and [53]. Second, we adopted a simple yet effective method
(i.e., CP) to combine feature maps from different layers. Thus,
the proposed method can run much faster than the method
in [19], with very competitive classification performance, and
is suitable to deal with relative large data sets such as the
NWPU-RESISC45 data set in [1]).

III. PROPOSED METHOD

Fig. 2 illustrates the proposed MSCP-based classification
framework, which consists of the following three steps:
1) multilayer feature extraction using a pretrained CNN model;
2) MSCP; and 3) SVM-based classification. In the following,
we describe each one of the aforementioned steps in more
detail.

A. Multilayer Feature Extraction

The CNN model can be thought as a composition of a
number of functions as shown in (1), where each function
fl takes the data samples Xl and a filters bank wl as inputs
and produces Xl+1, where l = 1 · · · L and L is the number of
layers

f (X) = fL(· · · f2( f1(X; w1); w2) · · · , wL). (1)

For a pretrained CNN model, the filters bank wl has been
learned from some big data set (e.g., ImageNet [24]). Given an
input image X, the multilayer features are extracted as follows:
M1 = f1(X; w1), M2 = f2(M1; w2), and so on. In this
paper, the AlexNet and VGG-VD16 are used as pretrained
CNN models. Specifically, three convolutional layers (i.e.,
“conv3,” “conv4,” and “conv5”) of AlexNet are adopted, which
are denoted by M3, M4,andM5, respectively. Three convolu-
tional layers (i.e., “conv3-3,” “conv4-3,” and “conv5-3”) of
VGG-VD16 are also used, denoted by M3,3, M4,3,andM5,3,
respectively. Note that the other layers (e.g., pooling layers)
are omitted in (1) for simplicity.
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Fig. 3. Illustration of the concept of CP. Off-diagonal entries of C: covariance
between two different feature maps. Diagonal entries: variance of each feature
map. Blue square entry (i.e., the second entry in the first line) of covariance
matrix C: covariance of the last two feature maps (i.e., the red one and the
blue one).

B. Multilayer Stacked Covariance Pooling

Usually, different convolutional layers have different spa-
tial dimensions, and thus, they cannot be stacked directly.
If we take the VGG-VD16 as an example, we have M3,3 ∈
R

56×56×256, M4,3 ∈ R
28×28×512,andM5,3 ∈ R

14×14×512.
To address this problem, downsampling with bilinear inter-
polation is adopted in this paper. Moreover, to reduce the
computational complexity (the dimension of the covariance
matrix is determined by the number of feature maps), a chan-
nelwise average fusion method is further proposed and adopted
on each convolutional layer before stacking them together.
For a given convolutional layer Y ∈ R

H×W×L and a
predefined number of fused feature maps d , the channel-
wise average fusion is conducted as follows. We first par-
tition the L feature maps (each feature map is with size
H × W ) into d subsets based on its original sequence. Then,
the average feature maps of each subset are further calculated
and are stacked together. Through the downsampling and
channelwise average fusion operations, three preprocessed
convolutional layers are obtained (i.e., M̂3,3 ∈ R

s×s×d , M̂4,3 ∈
R

s×s×d ,andM̂5,3 ∈ R
s×s×d) and the stacked feature set is

obtained as follows: M = [M̂3,3; M̂4,3; M̂5,3] ∈ R
s×s×D,

D=3d and s is the predefined downsampled spatial dimension.
Finally, the CP of stacked feature M is expressed as follows:

C = 1

N − 1

N∑
i=1

(zi − μ)(zi − μ)T ∈ R
D×D (2)

where [z1, z2, · · · , zN ] ∈ R
D×N is the vectorization

of M along the third dimension, N = s2 and μ =
(1/N)

∑N
i=1 zi ∈ R

D . A graphical illustration of the CP is
shown in Fig. 3. The off-diagonal entries of covariance matrix
C stands for the covariance between the two different feature
maps and the diagonal entries represent the variance of each
feature map. For example, in Fig. 3, the blue square entry of
covariance matrix C stands for the covariance of the last two
feature maps (the red and the blue ones). From the definition
of the CP [see (2)], the following three advantages of CP can
be concluded [57]–[59]. (Note that, in [57] and [58], the CP
is first proposed as a region feature descriptor, called region
covariance descriptor, for texture classification and pedestrian
detection.) First, CP provides a natural way to fuse different
feature maps. As we have mentioned earlier, each off-diagonal
entry of the covariance matrix stands for the covariance of

two different feature maps, which can fuse different feature
maps effectively. Second, there is an average operation during
covariance computation [see (2)], which can greatly filter
the noise corrupting individual samples. Last but not least,
the computation of covariance matrix is independent of the
ordering information of the samples (i.e., zi , i = 1 · · · N),
which indicates that CP is robust to the rotation. In summary,
the CP can not only make use of the second-order information
(i.e., covariance) to fuse different feature maps but also be
robust to the noise and rotation. Meanwhile, psychophysics
research shows that the second-order information plays an
important role in the human visual recognition process [60]
The above-mentioned three distinctive advantages enable the
CP that becomes a very effective feature coding method and
thus it could be expected that more discriminative representa-
tion can be achieved by CP, when compared to the first-order
pooling method (e.g., average pooling). More related works
about CP and second-order pooling can be found in [55], [61],
and [62].

In addition, as pointed out by Arsigny et al. [63], the covari-
ance matrices do not lie on the Euclidean space, but on the
Riemannian manifold space. Thus, they cannot be processed
by the SVM which is originally designed for data lying on
the Euclidean space. Fortunately, with the matrix logarithm
operation, the covariance matrix can be mapped into Euclidean
space while preserving the intrinsic geometric relationships as
defined on the manifold as follows [63]:

Ĉ = logm(C) = Ulog(�)UT ∈ R
D×D (3)

where C = U�UT is the eigen decomposition of the
covariance matrix C. More detailed explanation about matrix
logarithm operation can be found in [63] and [64]. Note that
Ĉ is a symmetric matrix and, therefore, only (D(D + 1)/2)
entries need to be stored, which can further reduce the
computational complexity. The (D(D + 1)/2) entries of Ĉ
comprise the final set of output features to represent the input
image X, denoted by v. The channelwise average fusion is an
effective strategy to reduce the computational complexity. For
example, the three original convolutional layers of AlexNet
are with a size as follows: conv3 (13 × 13 × 384), conv4
(13 × 13 × 384), and conv5 (13 × 13 × 256). If we stack
them together without channelwise average fusion and then
perform CP, the dimension of the obtained feature v for one
single image is beyond 500 K [(384 + 384 + 256)2/2], which
is hard to manage. By contrast, the dimension of the obtained
feature v can be reduced significantly by a channelwise average
fusion strategy with a small d , e.g., the dimension of v can be
reduced to 29 K [(80 + 80 + 80)2/2] with d = 80, which is
much less than 500 K.

C. SVM Classification

The aforementioned operations are performed on both the
training samples and test samples. As such, the training set
(i.e., {vi , yi }i=1···n) and the testing set are now considered,
where yi is the corresponding labels and n is the number of
training samples. Then, {vi , yi }i=1···n is used to train an SVM
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Fig. 4. Some examples of the UC data set.

model as follows:

min
α,ξ,b

{
1

2
�α�2 + C

∑
i

ξi

}

s.t. yi(�φ(vi ),α� + b) � 1 − ξi

ξi > 0, ∀i = 1, · · · , n (4)

where α and b define a linear classifier, C is a regularization
parameter that controls the generalization capacity of the
classifier, ξi are positive slack variables to cope with outliers
in the training set, and φ(·) is the mapping function. A linear
kernel is adopted in this paper, with K (vi , v j ) = vT

i v j . Finally,
the prediction label of each test sample v is determined by
means of a decision function, as follows:

f (x) = sgn

(
n∑

i=1

yiλi K (vi , v) + b

)
(5)

where λi is the Lagrange multipliers. Note that the one-
against-all strategy is adopted for solving the multiclass
problem.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Data Sets

To evaluate the performance of the proposed method,
we conduct experiments on three challenging remote sensing
scene image data sets.

1) UC Merced Land Use Data Set: The UC Merced Land
Use (UC) [31] data set contains 2100 images divided into
21 scene classes. Each class consists of 100 images with size
of 256×256 pixels in the RGB space. Each image has a pixel
resolution of one foot. Fig. 4 shows some examples of the UC
data set. As can be seen in Fig. 4, some categories have very
high interclass similarity (e.g., forest and sparse residential),
which makes the UC data set a very challenging one.

Fig. 5. Some examples of the AID data set.

TABLE I

CONVOLUTION LAYERS USED BY THE PROPOSED METHOD

AND CORRESPONDING SIZE OF THESE LAYERS

2) AID30: The AID30 (AID) data set [2] contains
10 000 images divided into 30 scene classes. Each class contain
hundreds of images (ranging from 220 to 420) with size of
600 × 600 pixels in the RGB space. The spatial resolution
changes from about 8 to 0.5 m. Fig. 5 shows some examples
of the AID data set.

3) NWPU-RESISC45 Data Set: The NWPU-RESISC45
(NWPU) data set [1] contains 31 500 images divided into
45 scene classes. Each class consists of 700 images, with size
of 256 × 256 pixels in the RGB space. The spatial resolution
changes from about 30 to 0.2 m/pixel for most of the scene
classes. This data set is of the largest available in terms
of both the number of scene classes and the total number
of images. Thus, it contains richer image variations, larger
within-diversity, and higher interclass similarity than the other
considered data sets.

B. Experimental Setup

In our implementation, two popular CNN pretrained models:
AlexNet [21] and VGG-VD16 [22] are utilized to extract
multilayer features. Specifically, the three convolutional layers
(i.e., “conv3,” “conv4,” and “conv5”) of AlexNet and the
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TABLE II

COMPARISON BETWEEN THE CLASSIFICATION RESULTS (%) OBTAINED BY USING A SINGLE CONVOLUTIONAL LAYER PLUS CP AND THE PROPOSED
MSCP METHOD ON UC (TRAINING RATIO = 80%) AND AID DATA SETS (TRAINING RATIO = 20%). “_PRE” MEANS THAT THE CONVOLUTIONAL

LAYER HAS BEEN PREPROCESSED BY DOWNSAMPLING AND CHANNELWISE AVERAGE FUSION

three convolutional layers (e.g., “conv3–3,” “conv4–3,” and
“conv5–3”) of VGG-VD16 are used, respectively. Detailed
information about the used convolutional layers of the CNN
models is summarized in Table I. Before feeding the scene
images into the pretrained CNN model for feature extrac-
tion, the images are resized to the predefined size as given
in Table I (i.e., 227 × 227 × 3 for AlexNet and 224 ×
224 × 3 for VGG-VG16), which followed the experimental
settings of [21] and [22], respectively. Both two models are
pretrained on ImageNet and downloaded from the homepage
of MatConvNet [65] (a MATLAB toolbox for CNN).1 Since
random sampling is adopted to generate the training and test
sets [1], all experiments are run 10 times. The average and
standard deviation of the obtained overall accuracies (OAs)
are reported. Moreover, to avoid any possible experimental
bias caused by random sampling, for each data set, we first
randomly obtain 10 times splits and then apply the same
10 splits on all experiments. All our experiments are con-
ducted on a laptop with MATLAB 2016, CPU (2.6 GHz) and
16-GB RAM, without any GPU acceleration. The LIBSVM
library [66] (with default parameters setting) is used for the
linear kernel-based SVM. Our code is available online.2

C. Parameters Setting

In the proposed method, there are two main parameters:
the downsampled spatial dimension, s, and the number of
feature maps after channelwise average fusion, d . To avoid
an exhausting search, s is simply set to the minimum spatial
dimension among the used convolutional layers (i.e., s is
set to 13 for the AlexNet and set to 14 for VGG-VD16).
We have empirically tested that this configuration can always
get satisfactory classification performance in our experiments.
The parameter d is then analyzed and the UC data set with
80% samples randomly selected for training is used in this
experiment. Fig. 6 shows the effect of using different values
of d with the proposed MSCP method on the two considered

1http://www.vlfeat.org/matconvnet/
2https://sites.google.com/site/leyuanfang/home

Fig. 6. Effect of parameter d on the proposed MSCP classification
framework.

CNN models. As can be observed, on the AlexNet, when d
grows from 50 to 80, there is an obvious improvement of OA,
while further growing d will degrade the classification perfor-
mance. Similar situation can be also observed on VGG-VD16
but with larger optimal d and the optimal d for VGG-VD16 is
130. The main reason maybe following two aspects. First,
a relative small d means that more adjacent feature maps
on the convolutional layer are fused together by the average
operation, which could discard some useful information and
thus decrease the classification performance. Second, a relative
lager d will result in a covariance matrix with a larger
dimension, which could weaken the discriminative ability and
compactness of the covariance matrix, and therefore, lead
to relative worse classification results. The above-mentioned
parameters configuration are applied to all the test data sets
and remained unchanged in the following experiments.

D. Effect of Combination of Different Layers

In this experiment, to demonstrate that the proposed MSCP
method can fuse multilayer feature maps effectively, a sim-
plified version of MSCP are taken in consideration in this
experiment, i.e., the single-layer feature maps of pretrained
CNN (plus CP), with and without preprocessing, and the
resulting features are classified by a linear SVM (as the
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Fig. 7. Comparison of the per-class classification performance achieved by the proposed method and by a single-layer pretrained CNN architecture
(plus CP) with various pretrained CNN models on different data sets. (a) UC data set (training ratio = 80%). (b) AID data set (training ratio = 20%).
First line: AlexNet. Second line: VGG-VD16. Here, “_pre” means that the convolutional layer has been preprocessed by downsampling and channelwise
average fusion.

proposed MSCP). The UC data set and AID data set are used
here for illustration purposes, where 80% training samples
are randomly selected for UC data set and 20% training
samples are randomly selected for AID data set. Table II
illustrates the corresponding comparison results on the two
data sets. As can be observed from Table II, there is a clear
improvement of OA with the combination of different layers
by the proposed MSCP. For example, on UC data set, the OAs
of the preprocessed single layer of VGG-VD16 are 96.93%,
97.29%, and 96.76%, respectively, while the use of MSCP to
combine these three layers increases the accuracy significantly
(OA = 98.36%). Similar results can also be observed on AID
data sets. In addition, it can also be observed from Table II
that the proposed MSCP method can outperform the origi-
nal single-layer feature map (plus CP) with smaller feature
dimension on both the test data sets. Moreover, Fig. 7 shows
the corresponding per-class accuracies obtained by MSCP and
its simplified versions on the UC and AID data sets. As can
be observed in Fig. 7, using the proposed MSCP strategy,
the classification accuracies achieved for most classes exhibit
obvious improvements on both the data sets. For example,
on UC data set with AlexNet (see the first graph in the
first column of Fig. 7), the accuracy obtained for the 14th
class (mobile homepark) improves from 97% to 99.3%. The
above-mentioned conducted experiments suggest that there
is indeed complementary information among different layers
in the considered CNN architecture, and that the proposed
MSCP can exploit such information to further improve the
classification performance.

E. Compared With Other Pretrained CNN-Based Methods

First, the proposed MSCP method is compared to several
pretrained CNN model-based classification methods on the

TABLE III

COMPARISON OF THE CLASSIFICATION RESULTS (%)
OBTAINED FOR THE UC DATA SET

UC data set, including the two scenarios in [16], the method
in [18], and the method in [19]. Specifically, in the first
scenario of [16], only the last fully connected layer is used to
represent the input image, and then classified by a linear SVM.
In the second scenario of [16], only the last convolutional layer
is encoded by some traditional coding methods (e.g., IFK)
to represent the image, and then classified by a linear SVM.
For the method in [18], the last two fully connected layers
of the CNN are fused by means of a discriminant correlation
analysis (DCA) to represent the image, and then classified
by a linear SVM. For the method in [19], a multiscale IFK
strategy is adopted to fuse different layers of the CNN model
for classification purposes. Table III shows the classification
performance of the proposed method and the other four
compared methods. As can be observed in Table III, the MSCP
(with pretrained AlexNet and VGG-VD16) exhibits better
classification performance than the methods in [16] and [18].
Moreover, the MSCP with pretrained VGG-VD16 is slower
than the MSCP with pretrained AlexNet. This is expected,
since VGG-VG16 contains more layers than AlexNet and thus
needs more time for forward propagation. Indeed, the method
in [19] shows better classification performance than MSCP.
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Fig. 8. Confusion matrix for the UC data set under a training rate of 80%,
using the proposed MSCP method (with pretrained VGG-VD16), in one single
experiment (with OA = 98.57%).

Fig. 9. Misclassified test images in one single experiment using the proposed
MSCP method (with pretrained VGG-VD16) on UC data set. (a) Agricultural
misclassified into (→) forest. (b) Forest → sparse residential. (c) Medium
residential → dense residential. (d) Medium residential → dense residential.
(e) Storage tanks → intersection. (f) Tennis court → sparse residential.

However, the performances are similar and our method is
almost 20 times faster. Fig. 8 shows the confusion matrix
for one of the experiments conducted by the proposed MSCP
(with pretrained VGG-VD16). As can be observed in Fig. 8,
the proposed method can get perfect classification performance
on most classes except the following ones: 1#, 8#, 13#, 21#,
and 21#. It is worth noting that some of the misclassified
images in this case may also be difficult to distinguish for
a human interpreter (see Fig. 9).

We then compared the proposed method with several bench-
mark methods on AID data set: 1) a technique that uses the
last fully connected layers of two pretrained CNN models (i.e.,
VGG-VG16 and GoogleNet) as input to an SVM classifier [2]
and 2) the two fusion methods proposed in [18] (i.e., fusion
by concatenation and DCA) which only fuse the last two fully
connected layers of the pretrained CNN model. In addition,
following the experimental setup in [2], two kinds of training
rates are used for comparison. The first one considers 20%
of the samples for training and the rest for testing. The other
one considers 50% of the samples for training and the rest

TABLE IV

COMPARISON OF THE CLASSIFICATION RESULTS (%)
OBTAINED FOR THE AID DATA SET

Fig. 10. Confusion matrix for the AID data set under a training rate of 50%,
using the proposed MSCP method (with pretrained VGG-VD16), in one of
our experiments (with OA = 94.84%).

TABLE V

COMPARISON OF THE CLASSIFICATION RESULTS (%)
OBTAINED FOR THE NWPU DATA SET

for testing. The corresponding results are given in Table IV.
As can be seen in Table IV, the proposed method (both
with the pretrained AlexNet and VGG-VD16) can obviously
outperform the other tested methods, which demonstrates the
effectiveness of the proposed MSCP approach. Moreover,
Fig. 10 shows the confusion matrix obtained by the MSCP
method (with the pretrained VGG-VD16) in one of the
experiments conducted using a 50% training rate. As can be
seen in Fig. 10, classes 6# (center), 23# (resort), and 25#
(school) exhibit the lowest classification accuracies, which
is mainly due to the fact that these classes usually share
very similar objects (e.g., buildings) and thus making correct
classification of these categories becomes very challenging.
Some misclassified test images in this experiment are also
given in Fig. 11 for illustrative purposes.

Last but not least, we perform the proposed method on
one of the largest and most challenging scene data sets
(i.e., NWPU data set) and make comparison with other two
pretrained CNN-based methods [1] [53]. The experimental
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TABLE VI

COMPARISON OF THE CLASSIFICATION RESULTS (%) ACHIEVE BY OUR METHOD WITH MRA AND WITHOUT MRA AS WELL AS
TWO VERY RECENT REMOTE SCENE CLASSIFICATION METHODS [17], [44]. TR, TRAINING RATIO

Fig. 11. Some examples of misclassified test images in one single experiment
using the proposed MSCP method (with pretrained VGG-VD16) on AID data
set. (a) Bridge misclassified into (→) resort. (b) Center → square. (c) Church
→ square. (d) Commercial → school. (e) Industrial → school. (f) Industrial
→ commercial. (g) Park → square. (h) Railway station → park. (i) Resort
→ park. (j) School → commercial. (k) School → square. (l) School →
commercial.

setup is followed by the description in [1] and [53], two kinds
of splits are used in this experiment. The first one considers
10% of samples for training and the rest for testing. The other
one considers 20% of the samples for training and the rest
for testing. Specifically, in [1], the last fully connected layer
of three pretrained CNN models (using AlexNet, VGG-VG16,
and GoogleNet) is used to represent the image, and then the
SVM is used for classification. In [53], the BoVW model is
used to encode the last convolution layer, and the encoded
features are also fed to an SVM for classification purposes.
Table V reports the classification results obtained by all tested
methods. It is clear that the proposed MSCP (with pretrained
VGG-VD16) can outperform the other methods with the two
considered training rates.

F. MSCP Plus Multiresolution Analysis to Further Improve
Classification Accuracy

Here, we introduce a widely used method, i.e.,
MSA [22], [45], into our method to further improve
the classification performance. The basic motivation using

Fig. 12. Some examples with large scales variance in NWPU data set.
First line: category airplane. Second line: category store tank. Third line:
category tennis court. Last line: category bridge.

MSA in our method is based on the observation that most
of the existing data sets contain a lot of image samples
with large scales variance. Fig. 12 shows some examples
with large scales variance from the NWPU data set.
Specifically, in this experiment, three different resolutions,
i.e., {227 × 227 × 3, 454 × 454 × 3,and908 × 908 × 3}
are considered for AlexNet and three different resolutions,
i.e., {224 × 224 × 3, 448 × 448 × 3,and896 × 896 × 3}
are considered for VGG-VD16. On the feature extraction
stage, each image in the training set has been resized into
the three different resolutions first. Then, the resized images
are fed into the corresponding pretrained CNN model and
processed by the proposed MSCP method, successively.
All the parameters (i.e., the downsampled spatial dimension,
s, and the number of feature map after channelwise average
fusion, d) are kept same to our previous experiment settings.
As a result, three pooled features from different resolutions are
obtained to represent the input image. The above-mentioned
operations are also conducted on each image in the test data
set. It is worth noting that, the pooled features from different
resolutions have the same dimension, which makes the
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images from different resolutions become comparable. On the
train phase, all pooled features from different resolutions of
the training set are used to train the SVM classifier. On the
prediction phase, for each test image, the three pooled feature
are classified by the SVM one by one. The final label of the
test image is obtained based on the sum of the prediction
probability from the three different resolutions.

The classification results achieved by our method with
MRA and without MRA on the three test data sets (i.e., UC
data set, AID data set, and NWPU data set) are reported
in Table VI and are compared with two very recent related
works [17] and [44]. Specifically, Zhu et al. [44] propose
a topical model-based handcrafted feature learning method,
called sparse homogeneous–heterogeneous topic feature model
(SHHTFM), for remote sensing scene image classification,
which can simultaneously explore the homogeneous informa-
tion (i.e., superpixels) and heterogeneous information (i.e.,
square window). In [17], by considering there are large
variance within the same class and high similarity among
different classes, the authors introduce a discriminative loss
term into pretrained CNN models and then fine-tune the whole
CNN model for end-to-end remote scene image classification,
which is called discriminative CNN (DCNN) model. As can be
observed from Table VI, our methods (VGG-VD16 + MSCP
and VGG-VD16 + MSCP + MRA) are slightly better than
the method in [44]. The reason is because our methods use
the deep CNN models for feature extraction, which can obtain
more discriminative future than the handcrafted-based feature
learning method. In addition, our methods (with MRA) show
competitive or better classification performance to the DCNN.
For example, on the AID data set with a training ratio 20%,
our methods (i.e., VGG-VD16 + MSCP and VGG-VD16
+ MSCP + MRA) can outperform the DCNN. However,
in most cases, DCNN shows slightly better classification
results. This is mainly due to that DCNN can fine-tune the
neural units (i.e., parameters) in the CNN models to match
different images in different data sets, and therefore, achieve
better classification results. In our future work, we will modify
our method to an end-to-end classification framework and
then adopt the fine-turning strategy to further improve the
classification performance.

V. CONCLUSION

In this paper, we proposed a new method called MSCP to
fuse the feature maps from different layers of a CNN archi-
tecture for remote sensing scene classification. The proposed
MSCP-based classification framework first performs feature
extraction, using a pretrained CNN model, and then performs
feature fusion by CP. Since the proposed MSCP can take the
second-order information into consideration, more compact
features are extracted for classification purposes. Moreover,
each feature represents the covariance of two different feature
maps, which captures the complementary information among
different layers in a natural way. Our comprehensive exper-
iments using three publicly available remote sensing image
scene classification data sets, and the conducted comparisons
with the state-of-the-art approaches, verify the effectiveness of

the proposed MSCP method. As a potential line of improve-
ment, we realize that it can be useful to process the original
layers with the MSCP approach. However, the dimension of
features is difficult to manage taking into account the available
off-the-shelf CNN models. In the future, we are planning to
address this issue by designing a new end-to-end CNN model
similar to the one presented in [29] with CP, which uses fewer
feature maps in each of the layers.
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