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Abstract— Accurately estimating the elements in Earth obser-
vations is crucial when assessing specific features such as air
quality index, water pollution, or urbanization process behavior.
Moreover, physical–chemical composition can be retrieved from
hyperspectral images when proper spectral unmixing architec-
tures are employed. Specifically, when linear and nonlinear
combinations of endmembers (pure spectral components) are
accurately characterized, hyperspectral unmixing plays a key
role in understanding and quantifying phenomena occurring
over the instantaneous field-of-view. Thus, reliable detection of
nonlinear reflectance behavior can play a key role in enhancing
hyperspectral unmixing performance. In this paper, two new
methods for adaptive design of mixture models for hyperspec-
tral unmixing are introduced. One of the methods relies on
exploiting geometrical features of hyperspectral signatures in
terms of nonorthogonal projections onto the space induced by
the endmembers’ spectra. Then, an iterative process aims at
understanding the order of local nonlinearity that is displayed
by each endmember over every pixel. An improved version
of an artificial neural network-based approach for nonlinearity
order information is also considered and compared. Experimental
results show that the proposed approaches are actually able to
retrieve thorough information on the nature of the nonlinear
effects over the image, while providing excellent performance in
reconstructing the given data sets.

Index Terms— Adaptive fitting, iterative nonlinearity detection,
nonlinear hyperspectral unmixing, nonorthogonal projection.

I. INTRODUCTION

HYPERSPECTRAL imagery provides a huge amount
of information about spectral features of the earth

surface [1]–[8]. Specifically, physical composition and
anthropogenic phenomena (such as urbanization processes,
air pollution, and water quality and distribution [9], [10])
can be detailed by appropriately estimating the fractions of
the materials and elements (endmembers) appearing at each
location [11].

Manuscript received May 25, 2017; revised October 5, 2017 and
January 13, 2018; accepted May 13, 2018. Date of publication June 21,
2018; date of current version October 25, 2018. (Corresponding author:
Andrea Marinoni.)

A. Marinoni and P. Gamba are with the Telecommunications and Remote
Sensing Lab, Department of Electrical, Computer and Biomedical Engineer-
ing, University of Pavia, I-27100 Pavia, Italy (e-mail: andrea.marinoni@
unipv.it; paolo.gamba@unipv.it).

J. Plaza and A. Plaza are with the Hyperspectral Computing Laboratory,
Department of Computer Technology and Communications, University of
Extremadura, E-10071 Cáceres, Spain (e-mail: jplaza@unex.es; aplaza@
unex.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2840524

Hyperspectral unmixing aims at characterizing a scene by
inverting (unmixing) models that describe the mixture of
the elements. In order to deal with the nonlinear spectral
variety of the hyperspectral signatures induced by their low
spatial resolution, mixture models relying on the sparsity of
the endmember set to perform unmixing have been consid-
ered [12]. In fact, methods that aim at characterizing the
nonlinear effects of endmember combinations by promoting
sparse mixing solutions have been proposed [13]–[15]. These
models might effectively reconstruct the hyperspectral mix-
tures when the mixture model used to generate the endmember
set spectrally and geometrically matches the scenario profile.
Hence, they cannot adaptively describe the different sources
of nonlinear effects in the hyperspectral target, leading to an
eventual degradation on the performance of the architecture to
understand and quantify the actual endmember combination
and the elemental composition of the considered scenes.

Thus, several models take into consideration the complex
physical interactions of the elements of the surface and involve
nonlinear effects. For instance, in [16], a multilinear mixture
model (multi-LMM) has been introduced. This scheme aims at
characterizing linear and nonlinear interactions among the end-
members by properly minimizing a cost function, and detects
the most likely type of mixture. The methods introduced
in [17] and [18] can be also used to retrieve a feasible
description of the effects that result from linear mixtures of
endmembers. Specifically, they aim at identifying the additive
term which is assumed to corrupt the linear mixture term. The
expression of the corruption contribution can be adapted to
account for a set of considered phenomena (e.g., endmember
variability and mismodeling effects [17], [18]).

These aforesaid algorithms are able to detect and describe
the nonlinearities affecting the pixel signatures. In order to
deliver a feasible architecture and leverage computational
complexity, they rely on probability estimation [16], kernel
separability [17], and Bayesian inference [18]. This choice
may represent a limit, and lead to solutions that are not com-
pletely detailing physical effects while being mathematically
feasible.

On the contrary, several papers have recently addressed
the topic of nonlinearity detection in hyperspectral images
according to macroscopic mixture modeling. For instance,
a posteriori statistical tests have been used to understand
bilinearity in [19]–[21]. In [11], a semisupervised approach to
address higher order nonlinearity detection has been proposed
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by introducing a framework for efficient p-linear unmixing
with a preprocessing step to estimate the nonlinearity order of
each pixel. To this aim, an artificial neural network (ANN)
is properly trained to perform an estimate of the order of
the nonlinear interactions that occur over every pixel of the
scene. This architecture delivers an effective improvement in
hyperspectral unmixing performance, as it prevents overfitting.
The downside of this approach is its computational complexity.
Hence, there is room for more efficient methods for nonlinear-
ity detection within hyperspectral images possibly based onto
new strategies.

In this paper, a novel method for adaptive design of mixture
models for hyperspectral unmixing is introduced. Specifically,
the proposed approach relies on exploiting the geometrical
features of hyperspectral signatures in terms of nonorthogonal
projections onto the space induced by the endmember spectra
to select whether the mixture is linear or nonlinear. Then,
an iterative process used to understand the order of the local
nonlinearity by each endmember over every pixel. In addition,
an improved version of the original ANN-based nonlinearity
order information is considered and compared. Experimental
results show that both newly developed approaches are able to
retrieve enough information about the nature of the nonlinear
effects over the image while providing excellent performance
in reconstructing the given data sets.

The remainder of the paper is organized as follows:
Section II describes the proposed methods, while Section III
analyzes the experimental results. Finally, Section IV provides
the conclusions of this paper and some final remarks.

II. METHODS

In this Section, two methods to estimate the order of the
non-LMM are presented. Specifically, these methods aim at
identifying the parameters of a multiple p-LMM (mpLMM)
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In this formula, plr� identifies the order of the r �th endmem-
ber’s contribution to the nonlinear mixture of the lth pixel,
and the proposed methods are able to estimate it. Specifically,
in Section II-A, a scheme based on iterative nonorthogonal
projection process is reported, while Section II-B introduces
an approach based on ANNs.

A. Estimating Nonlinearity Orders by Nonorthogonal
Projection

The first approach is based on the nonorthogonal projec-
tion (N.O.Pro) estimate introduced in [22] with important
and novel additions (highlighted by the red box in Fig. 1).

Fig. 1. Basic workflow of the framework for linear mixture detection
introduced in [22], with the proposed scheme for nonlinearity order estimation
reported in Section II-A highlighted in the red box.

This architecture (named N.O.Pro., according to the main
technique it employs) exploits fully constrained least
squares (FCLS) algorithm to first detect the linear mixtures
in the considered image. Specifically, we first run FCLS on
the lth pixel y

l
to decompose it as a combination of the

linear contributions of the endmembers, i.e., y
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r=1 âlrmr + n̂l . We also use FCLS to identify the role of
linear and bilinear contributions of the endmembers in the y
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l . In the aforesaid equations, the a, a� and β �
terms identify the coefficients that drive the linear and bilinear
mixtures as computed by FCLS. Moreover, n̂ and n̂� are the
noise residuals obtained from the FCLS linear and bilinear
unmixing, respectively. Please also note that the notation in
the aforesaid equations is different to emphasize the differ-
ence among the coefficients retrieved by FCLS in those two
situations.

The method in [22] detects the linear mixtures by processing
these coefficients. It basically relies on the difference between
the distributions of the parameters in the aforementioned
equations to estimate the nature of the mixtures in the scene.
In the noiseless case, this information can be retrieved by the

difference ŷ(L)
l

− ŷ �(L)

l
, which tends to 0 if the lth pixel results

from a linear mixture of endmembers. On the other hand, when
the noise-free scenario assumption does not hold, we need
to design a more complex metric to assess the occurrence
of linear mixtures in the image. To this aim, let us define
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l − n̂l). This representation allows us to quantify
the actual contribution of noise and nonlinear combinations
of endmembers to the spectral signature of each pixel. The
method in [22] introduces a metric based on volume distances
computed on the polytopes induced by D̂l , ŷ �(NL)

l
, and δ

(n)
l in

the space spanned by M = {mr }r=1,...,R . This metric requires
these quantities to be referred to the M mutual vectorial
field, such that the distance and difference definitions can be
delivered according to Euclidean geometry, and volumes can
be consistently computed.
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In other terms, we aim to write D̂l = ∑R
r=1 δ̂lrmr =
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to be computed by applying Clifford algebra and Cramer’s
rule to the M-space [22]. Then, it is possible to compute
the volume induced by the polytopes identified by D̂l , Y �
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M-space according to the Cayley–Menger formula [23], [24].
Finally, the likelihood for linear mixture occurrence over the
lth pixel is set as follows:
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Specifically, assuming uniform distribution to discriminate the
linear and nonlinear mixtures, we can state that the lth pixel
is assumed to result from a linear mixture of endmembers if
Ll > 0.5. Therefore, recalling the workflow in Fig. 1, we step
in the red box part when Ll < 0.5.

In order to proceed to understand the nonlinear contribution
of each single endmember to the target spectral signature,
we compute the distances of the projections over the r th

endmember direction delivered by ŷ�(NL)

l
and δ

(n)
l to δ̂r as

follows:
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Eventually, we can assume that the r th endmember is
involved in the second-order nonlinear effects that gathered
in y

l
if �r < 0 [22]. This scheme can be further improved

beyond simply checking linear against bilinear mixtures.
It aims at acquiring information on the actual order of the
nonlinear effects that are driven by each endmember, the pro-
posed approach can be iterated by extending the original set
of endmembers and their square values with higher order
contributions of the endmembers for which �r < 0. The
general extension of this approach would turn into setting M�
at the kth step of the process to M ∪ M(k)

, where M(k)

collects the k-linear contribution of the endmembers that have
been considered as involved in the nonlinear effects at the
(k − 1)th step, i.e., those for which �r < 0 at the (k − 1)th
step. This process would iterate until �r > 0 ∀r . Table I
reports the pseudocode of the proposed iterative structure.

B. ANN-Based Estimation of Nonlinear Orders

ANNs have been extensively exploited for hyperspectral
analysis. In particular, feedforward networks (FNs) have been
widely used in terms of classification and/or regression prob-
lems. Here, we use a standard FN with one single-hidden
layer to estimate the nonlinearity order of the contribution
of each endmember within each image pixel. This simple
ANN has been proven to be very efficient due to its ability
to approximate complex nonlinear mappings directly from the
input samples [25].

Conjugate gradient algorithms have been proposed to per-
form a search along the conjugate directions, which generally

TABLE I

PSEUDOCODE OF THE ALGORITHM FOR ESTIMATION OF THE
plr� PARAMETERS IN (1) BY MEANS OF AN ITERATIVE

NONORTHOGONAL PROJECTION PROCESS

result in faster convergence than traditional gradient descent-
based learning algorithms. Although they usually require
higher storage capacity, they are widely used in networks
with large number of weights. In particular, we adopted the
scaled conjugate gradient learning algorithm, a variant of the
conjugate gradient method, which avoids the line search per
learning iteration by using a Levenberg–Marquardt approach
in order to scale the step size [26].

The proposed ANN-based model to estimate the nonlin-
earity orders is then based on a very simple FN architecture
composed of an input layer, one hidden layer, and an output
layer. The node count in the input layer is fixed to the
spectral dimensionality of the data (number of spectral bands
of the considered data set). The number of output nodes
equals the number of estimated endmembers in the data
set, thus the target outputs of the network are the vectors
with as many components as endmembers containing values
in the set {0, 1, . . . , plr}, being plr the maximum possible
order of nonlinearity. Finally, a logistic activation function is
considered in the hidden layer.

A shortcoming of the proposed methodology for estimating
the nonlinearity order is its supervised nature, together with
the lack of available reference information for real images.
It is then necessary to access a sufficient number of repre-
sentative training samples which lead the model to produce
accurate nonlinearity order estimations. In this sense, there
exist some automatic training generation processes which
have been published in the machine learning community.
In particular, Okujeni et al. [27] and Suess et al. [28] present
a strategy to use synthetically mixed training data for mapping
subpixel land cover fractions with machine learning regression
algorithms.

In this paper, we adopt a similar approach based on the syn-
thetic generation of a representative set of training samples that
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allow for a successful estimation of the mixture nonlinearity
orders. The generation process only requires the extraction of
the spectrally pure constituents (endmembers) of the image
to be processed. With these endmembers, we automatically
generate nonlinear mixtures (according to a specific model)
with known nonlinearity orders, following a mixing systematic
that is described in the following. These training patterns
are used to train the neural network architecture. In order to
generate the mixed training patterns, we need to define the
following parameters.

1) Pure Spectra: as we have already mentioned, this is the
only a priori information that we need from the image
to be processed. For this purpose, we can use a variety
of endmember extraction algorithms [3]. In particular,
in this paper, we will use the well-known automated
target generation process [29] for this purpose.

2) Mixing Systematic: To generate the nonlinear mixtures
between the endmembers that will be used as training
samples to feed the neural network, the first step is to
select a mixture model. In this paper, we adopt the model
defined by (1) to generate the spectral mixtures used
for training purposes. Therefore, we need to specify the
following aspects.

a) Mixing Complexity: this is related with the number
of spectrally pure constituents available [R in (1)].
We need to decide the maximum of simultaneous
different spectral signatures that will contribute to
each mixture, and further analyze the effect of
increasing this number of constituents in each mix-
ture (i.e., binary, ternary, quaternary mixtures, etc.).
It should be noted that the number of endmembers
used in the mixtures R is not necessarily the same
as the number of pure materials contributing to
the mixture in each generated spectrum. It has
been previously addressed in the literature that,
in practice, a mixed pixel consists of four to five
constituents at most [30], [31].

b) Mixture Coefficients Sampling: we also need to
define a sampling strategy to generate the mixture
coefficients â�

lr and β̂ �
lr�k� , which determine the

intermediate mixtures between pure spectra. In this
sense, if the number of maximum different spectral
signatures is less than the number of available end-
members (which is the usual situation), we need to
perform all the combinations between the possible
permutations with repetitions of maximum pure
elements within the total number of endmembers.
Fig. 2 shows all the possible permutations with
repetitions of three different elements, considering
a mixture increment/decrement of 25%. To gener-
ate the final training sample data set, it would be
necessary to perform all the possible combinations
of three elements (out of the whole set of available
endmembers) satisfying these mixture coefficients.
Then, we analyze the impact of this parameter in
the final estimation produced by the ANN model.

c) Mixing Nonlinearity Order Sampling: this is
related with the number of different nonlinearity

Fig. 2. Generation of synthetically mixed training data. Binary and ternary
mixtures coefficients are calculated using mpLMM. Mixture coefficients
represent the mixing portions between 0% and 100% in 25% increments for
the three considered endmembers. Nonlinearity orders are assigned randomly
to every endmember contributing to the mixture.

orders which can be considered for the contribution
of each pure spectra over each considered mix-
ture [plr� in (1)]. For the training data generation,
we adopt a random nonlinearity order distribution
that (combined with a proper mixture coefficient
sampling) provides our methodology with suffi-
cient representativity.

Last but not least, when dealing with real data sets, it is
also highly desirable to expand the synthetically generated
mixtures including noisy versions of each training pattern.
For this purpose, we have used zero-mean Gaussian noise
in different signal-to-noise ratios following the procedure
described in [32].

III. EXPERIMENTAL RESULTS

To validate the proposed approach, tests on synthetic and
real hyperspectral data were performed. All the experiments
and the corresponding results are reported in the following.

A. Synthetic Data Sets

In order to evaluate the performance of the proposed
methodologies, we have designed two different
synthetic databases. The first one is a database of five
100 × 100 pixel synthetic hyperspectral scenes with randomly
generated abundance and nonlinearity order coefficients
(Random 1–Random 5). It should be noted that these data do
not contain meaningful spatial information, which is not the
typical situation in real hyperspectral data sets. Therefore,
we have also designed a second set of five 100 × 100 pixel
synthetic hyperspectral that have been created using fractals
to generate distinct spatial patterns (Fractal 1–Fractal 5).
Several natural objects can be approximated by fractals to a
certain degree, including clouds, mountain ranges, coastlines,
vegetation areas, etc., thus providing a baseline for simulating
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Fig. 3. Block diagram describing our procedure for generating synthetic hyperspectral images based on the mpLMM, as described in Section III-A.

spatial patterns often found in nature. In this paper, we used
fractals to simulate the linear mixtures of a set of endmember
signatures randomly selected from a spectral library compiled
by the U.S. Geological Survey (USGS)1 and made up of a
total of 420 signatures (see Fig. 3). Fig. 4 displays the five
fractal images used in the simulations. These images are
further divided into a number of clusters using the k-means
algorithm [33], where the number of clusters extracted from
the five fractal images was always larger than the number of
endmember signatures, fixed in our experiments to p = 9.

A crucial step in the simulation procedure is how to
assign a spectral signature to each cluster. For this purpose,
we have implemented an automatic procedure that follows
a simple strategy in which the p = 9 signatures are first
assigned to spatially disjoint regions belonging to different
clusters. The remaining regions are then assigned spectral
signatures in an automatic way, ensuring that: 1) spatially
adjacent clusters always have different signatures associated
with them and 2) there is a balance among the overall number
of pixels in the image which are associated with each spectral
signature. Inside each region, the abundance proportions of
spectral signatures have been generated following a procedure
that tries to imitate reality as much as possible, i.e., those
pixels closer to the borders of the regions are more heavily
mixed, while the pixels located at the center of the regions
are more spectrally pure in nature. This is accomplished by
mixing the signature associated with each cluster with those
associated with neighboring clusters, making sure that the most
spectrally pure signature remains at the center of the region
while signature purity decreases linearly away from the center
to the borders of the regions. For this purpose, a Gaussian
filter is applied where the width of the Gaussian is carefully
adjusted according to the width of each window. With the
aforementioned procedure which is graphically illustrated by

1http://speclab.cr.usgs.gov/spectral-lib.htm

Fig. 4. Synthetic images, where spatial patterns for the mixture coefficients
were (Left) generated using fractals then (Right) segmented into clusters. The
generation of these patterns follows the guidelines described in Section III-A.

a block diagram in Fig. 2, the simulated regions exhibit the
following properties.

1) All the simulated pixels inside a region are mixed, and
the simulated image does not contain completely pure
pixels. This increases the complexity of the unmixing
problem and simulates the situation often encountered
in real-world analysis scenarios, in which completely
pure pixels are rarely found.

2) Pixels close to the borders of the region are more heavily
mixed than those in the center of the region.
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Fig. 5. Nonlinearity estimation results obtained over the synthetic data sets generated according to (a) and (b) fractal patterns and (c) and (d) random patterns.
Performances are evaluated in terms of overall accuracy and Kappa coefficient. Bars: outcomes achieved by different settings of the method in Section II-B.
Red solid lines: results provided by the framework in Section II-A.

3) If the simulated region is sufficiently large, the pixels
located at the center can exhibit a degree of purity
of 99% of a certain endmember. However, if the
size of the simulated region is small, the degree
of purity of pixels at the center of the region can
decrease until 95% of a certain endmember, while pixels
located in the region borders are generally more heavily
mixed.

4) The nonlinearity orders are set so that those pixels
that are more heavily mixed have larger nonlinearity
orders, while more spectrally pure pixels have lower
nonlinearity orders in their mixtures.

Fig. 3 illustrates the procedure for generating one of
the synthetic hyperspectral scenes (labeled as “Fractal 1”
in Fig. 4). The results obtained are summarized in Fig. 5,
which includes the overall accuracy and Kappa coefficient.
The Kappa coefficient is defined as a function of the confusion
matrix that is achieved. In detail, let us assume that the counts
of true positives, true negatives, false positives, and false
negatives are listed as TP, TN, FP, and FN, respectively. Then,
the Kappa coefficient is defined as κ = (po − pe/1 − pe),
where po = (TP + TN)/(TP + TN + FP + FN) and pe =
(α + β)/(TP + TN + FP + FN). Moreover, α = [(TP + FN) ·
(TP+FP)]/(TP+TN+FP+FN) and β = [(FP+TN) · (TN+
FN)]/(TP+TN+FP+FN). Accordingly, the overall accuracy
is defined as (TP + TN/TP + FN + TN + FP). The outcomes
achieved by different settings (i.e., number of pure compo-

nents and percentage of mixture increment) of the method in
Section II-B are displayed as bars, whilst the results provided
by the framework in Section II-A are shown as red solid lines.
The obtained estimates show that the architecture introduced
in Section II-A is typically able to track and quantify the
nonlinear contributions delivered by each endmember to the
considered scene. Furthermore, the tests that have been carried
out by different settings of the architecture in Section II-B
show that it can actually provide very accurate estimates of
the nonlinearity orders. Indeed, it is possible to appreciate that
the actual improvement delivered by increasing the number of
pure components to be used within the ANN scheme (mixing
complexity) is very tiny when the order is greater than 3.
Mixture coefficient sampling has a larger impact on the results.
It can be seen in Fig. 5 that the lowest mixture increments the
highest estimation accuracy (best results are achieved using
a mixture increment of 0.05, which means that we generate
20 training patterns of a simple binary mixture). Summarizing
our experiments with synthetic data indicate that the pro-
posed ANN-based framework for estimation of nonlinearity
orders according to mpLMM can deliver precise outcomes
with a low computational complexity cost at the same time.
Moreover, the proposed scheme for enhanced definition of
hyperspectral mixture model provides a thorough characteriza-
tion of scene composition, since abundance distribution can be
accurately estimated by precise determination of the nonlinear
contributions.
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Fig. 6. Spectral signatures of magnetite, enstatite, anorthosite, and olivine
in Relab data set described in Section III-B1.

B. Real Data Sets

1) ReLab Data: We have also applied the methods in
Section II to a data set with real spectra collected from
nonlinear mixtures. These data, provided by Prof. John
Mustard at Brown University, consisted of a set of spectral
signatures collected using the ReLab spectrometer (a high-
resolution, bidirectional spectrometer at Brown University).
The ReLab data set has been constructed by using 22 spectral
signatures characterized by 211 bands in the 400–2500 nm
range. These records result from different mixtures of
four minerals, namely, magnethite, enstantite, anorthosite,
and olivine (see Fig. 6). Specifically, the data set consists
of 16 spectra resulting of mixtures of two endmembers and
six signatures obtained from mixing three endmembers.

In order to evaluate the consistency of the results achieved
by our newly introduced methods, we computed the spectral
angle distance (SAD) [30] between the nonlinearity order
estimates provided by both of them. Hence, when SAD
tends to 0, it means that the estimates achieved by the two
methods are coherent; on the contrary, when SAD tends to 90°,
the nonlinearity order estimates are completely divergent.
Fig. 7 shows a radar plot of the SAD between the estimates
of the nonlinearity orders of each endmember in the ReLab
data set achieved by means of the methods in Section II.
The SAD distribution obtained over the spectra resulting from
mixtures of two and three endmembers are shown in blue and
orange solid lines, respectively. The vertices of those curves
show the achieved SAD value for each endmember. It is
possible to appreciate that the two methods we considered
deliver very consistent performance. Specifically, the result-
ing estimates are very similar when the spectra resulting
from mixtures of two endmembers are considered. Moreover,
the lowest correlation factor that has been achieved shows up
when considering the magnetite mineral. It is worth noting
that magnetite is characterized by octahedral crystal structure
where fractures are typically uneven. These properties lead
to reflectance contributions living in a higher order nonlin-
earity spectral domain at a macroscopic scale. Thus, mixtures
involving magnetite might have been better tracked by extend-
ing the analysis to higher nonlinearity orders, so that more
accurate description of the mpLMM composition could be
retrieved.

Fig. 7. Radar plot of the SAD (in degrees) between the estimates of the
nonlinearity orders of each endmember in the ReLab data set achieved by
means of the methods in Section II: Blue solid lines: results over the spectra
identifying mixtures of two endmembers. Orange solid lines: results over the
spectra identifying mixtures of three endmembers.

Fig. 8. (a) Red-green-blue composite of the WTC image and (b) RE
performance as delivered by the POD method, the ANN+POD architecture
[11], and the proposed approach based on mpLMM as considered by the
methods in Section II-A and II-B.

2) AVIRIS Data: Finally, we tested our new techniques
using a real hyperspectral image collected over the World
Trade Center area in New York City [see Fig. 8(a)].
The image was obtained by the AVIRIS instrument on
September 16, 2001, just 5 days after the terrorist attacks that
collapsed the two main towers and other buildings in the WTC
area. The full data set considered consists on 614×507 pixels,
with N = 224 bands, and a spatial resolution of 1.7 m/pixel.
Fig. 8(a) shows a false color composite of the area using
the 1.682, 1.107, and 655-nm channels, displayed as red,
green, and blue, respectively. Extensive reference information,
collected by the USGS, is available for the WTC scene.
To be consistent with the analysis we have performed in [11],
10 endmembers of the WTC scene have been extracted using
the orthogonal subspace projection algorithm [29].

Fig. 8(b) reports the reconstruction error (RE) performance
[defined as RE = ((1/P N )

∑P
l=1 �y

l
− ŷ

l
�2)1/2 and ŷ

l
iden-

tifies the reconstructed spectral signature of the lth pixel
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Fig. 9. (a) Nonlinearity order as estimated by the scheme in [11] on each pixel of the WTC image. (b), (c), and (d) Nonlinearity orders estimated by the
method in Section II-A for three endmembers over the same image.

obtained by means of unmixing] as provided over the
WTC image by the polytope decomposition (POD) method,
ANN+POD architecture [11], and the proposed algorithms
based on mpLMM. Specifically, according to the investigation
we have performed in [11], POD has been used when the
hyperspectral mixture is modeled by means of a five-LMM.
In the case of mpLMM+ANN, the synthetic training was
generated using three pure components on each mixture with
an increment of 0.05 and the maximum nonlinearity order
considered was 5. On the other hand, the nonlinearity order
used to unmix each pixel according to the ANN+POD scheme
is set as described in Fig. 9(a). Finally, Fig. 9(b)–(d) reports
the nonlinearity orders of three endmembers over each pixel
as estimated by means of the proposed approach. Moreover,
the maximum value of nonlinearity that has been discovered
by the proposed framework is 5.

From a computational viewpoint, the mpLMM+ANN
results have been obtained in 550.02 s (synthetic data gener-
ation for 5 different simulations: 13.67 s; 5 repetitions of the
training and test process: 535.56 s; ensemble of the 5 results:
0.79 s). These results have been obtained on a MacBook Pro
2.3-GHz Intel Core i5, 16-GB 2133-MHz LPDDR3 laptop.
On the other hand, the mpLMM+NOPro tests have been
carried out using a 2.6-GHz, 64-bit Intel Core i7-4510U
CPU 16-GB RAM laptop, and have been obtained in 792 s.
It is worth noting, however, that the computational efficiency
of the proposed frameworks was beyond the scope of this
paper. Indeed, it is possible to foresee that more efficient
performance of the considered algorithms can be achieved by
taking advantage of the geometrical properties (Section II-A)
and the convolutional processing (Section II-B) within prop-
erly configured high performance computing platforms [34].
Hence, the execution times could be further decreased so that
the computational complexity of the proposed architectures
can be further leveraged and reduced.

Our results based on the RE show that the proposed
approach is actually able to outperform the other higher order
nonlinear hyperspectral unmixing architectures that have been
introduced in [11]. Apparently, the proposed algorithm is
able to accurately detect the nonlinearities over the image.
Moreover, the method proposed in Section II-A aims at
avoiding the local overfitting provided by the p-LMM when a
higher nonlinearity order is applied to endmembers that poorly

Fig. 10. Nonlinearity orders estimated by the method in Section II-B for
three endmembers over the WTC image. The same colormap as in Fig. 9
applies here.

contribute to the overall nonlinear combinations which occur
over each pixel (see Fig. 9). Thus, the proposed approach can
be actually used for enhancing higher order nonlinear hyper-
spectral unmixing by an accurate detection of the nature of the
reflectance combinations occurring over the considered image.
Furthermore, Fig. 10 reports the nonlinearity order estimates
obtained over three endmembers according to the algorithm in
Section II-B. Apparently, the obtained nonlinearity estimates
are a little less smooth than those retrieved by the method in
Section II-A. This effect might be caused by the geometrical
complexity of the scenes, where the urban environment was
affected by fires contribution as well. This situation, together
with the lack of ground truth available on the area, can
jeopardize the performance of the architecture in Section II-B,
as the ANN can be not effectively be trained. However, it is
also possible to appreciate that the architecture for nonlinearity
order estimation based on ANN is able to outperform the other
considered methods in terms of RE (Fig. 8).

IV. CONCLUSION

In this paper, two new methods have been developed for
accurately estimating the nonlinear contributions within hyper-
spectral mixtures. One of the methods relies on exploiting
geometrical features of hyperspectral signatures in terms of
nonorthogonal projections onto the space induced by the
endmembers’ spectra. Another method uses an ANN-based
approach for nonlinearity order estimation. Both methods aim
at providing a precise estimation of the order of nonlinearity
that characterizes the combinations of endmember recorded
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by each pixel spectrum. The proposed architectures aim at
understanding the order of local nonlinearity that is displayed
by each endmember over every pixel by projecting every quan-
tity in the unmixing formula onto the space spanned by the
given endmember set, and by learning the nonlinearity orders
according to a properly designed neural network, respectively.
The main contributions of this paper are:

1) the introduction of a novel mixture model that is able to
outline the actual nonlinear contributions delivered by
the interactions among endmembers;

2) the development of a new scheme for efficient descrip-
tion of the nonlinear combinations of endmembers based
on nonorthogonal projections; and

3) the design of a novel approach for characterization of
the nonlinearity distribution over each pixel developed
according to a neural network learning framework.

Our experimental results, conducted using a variety of syn-
thetic and real hyperspectral data sets, show that the proposed
approaches are actually able to retrieve thorough information
on the nature of the nonlinear effects while providing excellent
performance in reconstructing the given data sets. In the future,
we plan to develop computationally efficient implementations
of the proposed methods using a variety of high-performance
computing architectures.
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