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Abstract— Super-resolution (SR) brings an excellent oppor-
tunity to improve a wide range of different remote sensing
applications. SR techniques are concerned about increasing the
image resolution while providing finer spatial details than those
captured by the original acquisition instrument. Therefore, SR
techniques are particularly useful to cope with the increasing
demand remote sensing imaging applications requiring fine
spatial resolution. Even though different machine learning par-
adigms have been successfully applied in SR, more research
is required to improve the SR process without the need of
external high-resolution (HR) training examples. This paper
proposes a new convolutional generator model to super-resolve
low-resolution (LR) remote sensing data from an unsupervised
perspective. That is, the proposed generative network is able to
initially learn relationships between the LR and HR domains
throughout several convolutional, downsampling, batch normal-
ization, and activation layers. Then, the data are symmetrically
projected to the target resolution while guaranteeing a recon-
struction constraint over the LR input image. An experimental
comparison is conducted using 12 different unsupervised SR
methods over different test images. Our experiments reveal the
potential of the proposed approach to improve the resolution of
remote sensing imagery.

Index Terms— Convolutional neural networks (CNNs), remote
sensing, super-resolution (SR).
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I. INTRODUCTION

REMOTE sensing image acquisition technology is under
constant development and now provides improved

imagery that are useful to tackle new challenges and needs [1].
Nonetheless, the increasing demand of highly accurate remote
sensing imaging applications, such as fine-grained classifica-
tion [2], [3], target recognition [4], [5], object tracking [6], [7],
and detailed land monitoring [8], still makes the spatial reso-
lution of optical sensors one of the most important limitations
affecting remotely sensed imagery. In general, the spatial
resolution of an instrument defines the pixel size covering
the Earth surface, and, therefore, it describes the ability of
the sensor to capture small image details. Even though the
most technologically advanced satellites are able to discern
spatial information within a squared meter on the Earth
surface [9], the high cost of this acquisition technology,
together with the light physical limitations when substan-
tially decreasing the sensor pixel size, is usually important
constraints that make algorithmic-based resolution enhance-
ment techniques an excellent tool for remote sensing imaging
applications [10].

The general objective in super-resolution (SR) [11]–[14]
is to improve the image resolution beyond the sensor limits,
that is, increasing the number of image pixels while providing
finer spatial details than those captured by the original acqui-
sition instrument. Depending on the number of input images,
it is possible to distinguish between two kinds of SR methods,
single-image [15] and multi-image [16]. Single-image SR
techniques use a single image of the target scene to obtain
the super-resolved output, whereas multi-image SR methods
require several scene shots simultaneously acquired at different
positions. In remote sensing, the single-image approach is
usually adopted, because it provides a more general scheme
to super-resolve any kind of imaging sensor without the need
for a satellite constellation [17], [18].

The single-image SR approach can be considered as an ill-
posed problem, since there is not a single solution for any
given low-resolution (LR) pixel, i.e., the solution is not unique.
This fact has been traditionally mitigated by constraining the
space of possible solutions using a strong prior information
extracted from a specific set of images. In this sense, artificial
neural networks (ANNs) have become a powerful tool due to
their ability to learn image priors from any given data set.
Traditionally used in the pattern recognition field [19], ANNs
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have also been intensively used for the analysis of remotely
sensed imagery [20]–[22], reaching a good performance
without prior knowledge on the input data distribution and
offering multiple training techniques.

With the great evolution of deep learning [23], [24] (DL)
techniques, the ANN architecture has evolved from the simple
linear perceptron classifier to deeper architectures (multilayer
stack of simple modules) called deep neural networks (DNNs),
allowing to create more complex models which can extract
more abstract information (features) from the data than shallow
ones [25]. DNNs are currently able to perform SR in a
successfully way [26]. In particular, convolutional neural net-
works (CNNs) [23] stand out as a powerful image processing
tool due their effectiveness, especially for the analysis of
large sets of 2-D images. CNNs have proven to produce high
performance in a great variety of tasks, such as image analysis
and target detection [27]–[30], pan-sharpening [31], [32],
reconstruction of remote sensing imagery [33], and also image
SR [34]–[38]. However, these supervised techniques require
sufficient high-resolution (HR) training examples in order to
perform properly and generalize well. In addition, they usually
tend to overfit quickly due to the models’ complexity and
the lack of training data. Note that obtaining the relevant
remote sensing training data is expensive and time-consuming.
Besides, the number of available training remote sensing
data sets is rather limited, and normally, they suffer from
a lack of image variations and diversity. For these reasons,
supervised learning is difficult to carry out, while unsupervised
learning methods do not need any external data to train.
On the other hand, the CNN is a very flexible model that
can be adapted to different learning models, such as con-
volutional autoencoders [39], [40], convolutional deep belief
networks [41], convolutional generative adversarial neural net-
works [42], convolutional recurrent neural networks [43], and
fully convolutional networks [44], among others. In particular,
we highlight the hourglass network [45], [46], whose topology
is symmetric, related to the convolution–deconvolution archi-
tecture and also to the encoder–decoder, characterized by a
first step of pooling down to a lower resolution (composed
of convolutional and max pooling layers) and a second step
of upsampling to a higher resolution and combining features
across multiple resolutions.

Following the hourglass approach, a new unsupervised
neural network model is proposed in this paper in order
to super-resolve remote sensing images. The novelty of the
proposed approach lies on using a generative random noise
to introduce a higher variety of spatial patterns, which can be
promoted to a higher scale throughout the network accord-
ing to a global reconstruction constraint. Even though the
relevance of generating new spatial variations when super-
resolving remotely sensed data in an unsupervised manner, this
is, to the best of our knowledge, the first time an unsupervised
generative network model has been successfully formulated to
super-resolve remote sensing imagery. Specifically, a convo-
lutional generator network has been adopted, where from a
given image XLR ∈ R

C×W×H , a higher resolution version
XHR ∈ R

C×t ·W×t ·H is generated (where W < t · W and
H < t · H , with t being a factor of resolution).

In addition, the algorithm has been adapted to be efficiently
executed in parallel on graphics processing units (GPUs)1

and presents some methodological improvements to make the
model more efficient and effective. To summarize, the main
contributions of this paper can be highlighted as follows.

1) An hourglass CNN model is developed to perform
unsupervised SR.

2) In particular, a convolutional generator model has
been implemented to super-resolve LR remote sensing
images.

3) Starting from generative random noise, the model is able
to reconstruct the image, promoting it to a higher scale
according to a global reconstruction constraint.

4) Experiments over three data sets, with two scaling
factors and 12 different SR methods, reveal the compet-
itive performance of the proposed model when super-
resolving remotely sensed images.

The remainder of this paper is organized as follows.
Section II presents an overview of single-image SR methods
and their limitations. Section III describes the methodol-
ogy used by the proposed convolutional generator model.
Section IV validates the proposed approach by performing
comparisons with different single-image SR methods. Finally,
Section V concludes this paper with some remarks and hints
at plausible future research lines.

II. BACKGROUND

A. Brief Single-Image SR Overview

Broadly speaking, single-image SR algorithms can be cat-
egorized into three different groups [53], [54]: image recon-
struction (RE), image learning (LE), and hybrid (HY) methods.
RE methods aim at reconstructing HR details in the super-
resolved output assuming a specific degradation model along
the image acquisition process, which is typically defined by
the concatenation of three operators: blurring, decimation,
and noise. Therefore, RE methods can be usually defined in
terms of the three following stages (see Fig. 1): Stage 1,
where the LR input image (ILR) is upscaled to the target
resolution (ILRI) using a regular interpolation kernel function.
In Stage 2, some physical features are extracted from ILR
to estimate the singularities of the spatial details. Finally,
Stage 3 aggregates both the interpolated image (ILRI) and
the extracted LR features to obtain the final reconstructed
result ISR.

Each particular RE method makes its own assumptions
about the imaging model and the reconstruction process to
relieve the ill-posed nature of the SR problem. Some of
the most popular RE approaches are iterative back projec-
tion (IBP) [55], gradient profile prior (GPP) [56], and point
spread function (PSF) deconvolution [57]–[59]. The rationale
behind IBP is based on iteratively refining an initial interpo-
lation result by means of minimizing the reconstruction error
between the LR input image and a simulated LR version of the

1The use of high-performance computing methods, including parallelization
with accelerators such as field-programmable gate arrays and GPUs [47]–
[49], or the distribution with clusters and clouds [50], [51], has demonstrated
great utility for the classification of remote images [52].
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Fig. 1. SR based on image reconstruction (RE).

Fig. 2. SR based on image learning (LE).

super-resolved result. GP takes advantage of the fact that the
shape of the gradient profiles tends to remain invariant across
scales, and therefore, LR gradient can be used to reconstruct
the output image sharpness. PSF deconvolution methods tackle
the upscaling problem from a deblurring point of view, that is,
they initially estimate the imaging model PSF and then they
try to remove the interpolated image blur.

Regarding LE methods, this type of techniques are able to
provide a more powerful SR scheme, because they learn the
relationships between LR and HR domains from an external
training set containing ground-truth HR images. As shown
in Fig. 2, RE methods can be divided into three stages:
in Stage 1, the relations between LR and HR components
are learned from a specific training set. Stage 2 aims at
estimating the HR components that are related to the LR
input image structures. Finally, Stage 3 combines the estimated
HR components to generate the final super-resolved result.
Over the past years, different machine learning paradigms
have been successfully applied in LE-based SR. Sparse cod-
ing [60], neighborhood embedding [61], and mapping func-
tions [62], [63] are among the most popular methods. In a
nutshell, sparse coding-based techniques take advantage of
the fact that natural images tend to be sparse when they
are characterized as a linear combination of small patches.
The neighborhood embedding approach assumes that small
image patches of LR images describe a low-dimensional
nonlinear manifold with a similar local geometry to their HR
counterparts. Mapping-based techniques cope with the SR task
as a regression problem between the HR and LR domains.

Finally, HY techniques work toward reaching an agreement
between the RE and LE approaches. In particular, they per-
form a training process but only using the LR input image.
The rationale behind the HY methods is based on the patch

Fig. 3. SR based on HY algorithms.

redundancy property pervading natural images, which assumes
that natural images tend to contain repetitive structures within
the same scale and over scales as well. Taking this principle
into account, it is possible to find patches which appear
in a lower scale, without any blurring or decimation, and
then extracting their corresponding HR counterparts from the
higher scale image. Eventually, the super-resolved image can
be generated using the LR/HR relationships learned across
scales. In particular, HY methods generally follow the scheme
shown in Fig. 3: in Stage 1, the self-learning process is
conducted, that is, several lower scale images are initially
generated from ILR and then those patches which tend to
appear across scales are extracted. Stage 2 projects the input
LR image to the target resolution using the relations previously
learned. Finally, the final super-resolved result is generated in
Stage 3 considering some sort of reconstruction constraint.

Logically, each specific HY approach defines its own
assumptions about the imaging model and the patch searching
criteria. For example, the work presented in [64] approxi-
mates the blur operator by a Gaussian kernel, and the patch
redundancy process is conducted by an approximation of the
nearest neighbor search. Other works propose different kinds
of modifications over this scheme. It is the case of [65],
which introduces a model extension to enable patch geometric
transformations across scales. Therefore, the number of patch
matches can be increased and consequently the amount of
learned LR/HR relationships. In other works, such as in [66],
the blur operator is estimated at the same time as the SR output
is generated through an optimization process.

B. SR Limitations in Remote Sensing

Each single-image SR methodology has shown to be partic-
ularly effective under specific conditions [15], [54]. RE meth-
ods are able to reduce the noise as well as the blur and
aliasing inherent to interpolation kernel functions. However,
the lack of relevant high-frequency information in the LR input
image limits their effectiveness to small magnification factors,
which can be an important limitation for many of the currently
operational (moderate) resolution satellites [67].

LE-based techniques potentially overcome these drawbacks
by learning the relationships between LR and HR domains
from an external training set. Nonetheless, the availability of
suitable HR training examples can also be a serious constraint
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for many satellites. Note that the ground-truth HR images are
usually not available in real scenarios, and this may lead to an
unrepresentative training phase with a biased super-resolved
result. Eventually, the application of LE-based SR methods
in actual ground segment production environments is rather
limited [68].

HY methods offer the advantage of not requiring any
external training set to learn the LR/HR relationships by
taking advantage of the patch redundancy property over scales.
However, the probability of finding patches satisfying this
property decreases with the input resolution, and therefore,
the amount of useful LR/HR connections over scales highly
depends on the input image.

With all these considerations in mind, unsupervised RE
and HY methods are especially attractive to remote sens-
ing. While supervised approaches use a training set of HR
images to learn the relationships between the LR and HR
domains [35], [69], [70], unsupervised approaches only make
use of the target LR image to generate the corresponding
super-resolved output result. Moreover, supervised network
architectures implement a regressor function to project general
LR image patches onto the HR domain. However, in a real-
life remotely sensed data production environment, there is no
actual HR captured by the sensor. In this sense, unsupervised
methods do not require the availability of HR images to train
a general SR model, super-resolving each specific LR input
image without using any other external data and providing
the opportunity to offer new super-resolved data products in
satellite and airborne missions that use relatively inexpensive
sensors without the need of using any external HR training
set. Nevertheless, the number of works in the remote sensing
literature dealing with the unsupervised SR problem is rather
constrained, and this is precisely the gap that motivates this
paper.

Mianji et al. [71] proposed an SR approach using a
backpropagation neural network as a regression function and
basing on: 1) spectral unmixing; 2) SR mapping; and 3) self-
training, which is exploited taking advantage of the embedding
provided by the spectral unmixing process itself. However,
this approach could be highly affected by the spectral simplex
geometry of the input image [72]. In contrast, an HY (also
called self-learning) SR scheme has been proposed in this
paper to super-resolve remote sensing data from an unsuper-
vised perspective, basing on a new end-to-end convolutional
generator model. The rationale behind the proposed approach
is based on learning the relationships between the LR and
HR domains by downsampling the original input image to a
lower scale and then using the learned relations at a lower
scale to project the LR input image to the target resolution.
However, the amount of spatial information that it is possible
to retrieve from a downsampled LR image may be limited,
so a random generative noise has been additionally introduce
together with a global reconstruction constraint to activate a
higher amount of consistent spatial variations along the SR
process. That means, random spatial variations are initially
generated to be introduced in the self-learning process in
order to mitigate the ill-posed nature of the SR problem.
Regarding the proposed network global scheme, it provides

a similar end-to-end framework to other DL-based approaches,
e.g., [35], [69], [70], where the original LR image is used to
learn the downsampling filters at the same time that they are
also used to generate the super-resolved output.

III. METHODOLOGY

Traditionally, a generator network is an algorithm for image
generation, where given a random variable z, the model is able
to learn internal relationships (represented by the model para-
meters θ ) to generate an image X = fθ (z), i.e., a regression
problem. This allows us to learn the distribution of the data
and the correlations between z and X . We can follow this
approach in order to perform SR over remote sensing images,
where z ∈ R

C×W×H is a random noise and X ∈ R
3×W �×H � is

the desired RGB HR image.
Given an LR image XLR ∈ R

3×W×H , the SR’s goal is
to improve the image resolution beyond the sensor limits
obtaining an HR version XHR ∈ R

3×t ·W×t ·H from XLR, where
t is the resolution factor and W < t ·W , H < t ·H . In order to
do this, a deep model based on CNNs has been implemented.
This kind of networks is composed of the layers that are
applied over defined regions of the input data, i.e., they are
locally connected to the input, transforming the input volume
to an output volume of neuron activations which will serve
as an input to the next layer. The fact that each layer is
not completely connected to the previous layer (only with
a patch/window defined as the receptive field) is a great
advantage for data analysis, thus reducing the number of
connections in the network, where each layer composes feature
extraction stages working as a filter or kernel over patches of
the input volume.

Depending on the treatment of the data, CNNs can be
classified into three categories. Supposing that x (i) ∈ R

C =
[x (i)

1 , x (i)
2 , . . . , x (i)

C ] is a pixel with C spectral bands of image
X ∈ R

C×W×H , with i = 1, 2, . . . , W · H , while P( j ) ∈
R

b×p×p is a patch of X , where p is the width and height (with
p ≤ W and p ≤ H ) and b is the number of spectral bands
of the patch (with b ≤ C). 1-D-CNN models take separately
as input data each pixels vector x (i), extracting only spec-
tral information [73]. On the other hand, 2-D-CNNs extract
spatial information, taking as input data the entire image
X [74] or image patches P( j ) [75], where C and b are set to
small values, i.e., the spectral information is not very relevant
compared with the spatial information. Finally, 3-D-CNNs
extract spectral–spatial information, taking normally as input
data patches P( j ) of the original image X [29], [30], where
C and b are set to large values, i.e., the spectral information
is very relevant and it is combined with spatial information.
Usually, for panchromatic and RGB remote sensing images,
a 2-D-CNN approach is taken, while 1-D- and 3-D-CNNs are
usually for multispectral and hyperspectral images. This paper
works with the RGB remote sensing data sets, so the 2-D-
CNN architecture has been implemented to take advantage of
the spatial information contained in the images. It is composed
of five different kinds of layers, as described in the following.

1) Convolution (CONV) Layer: This kind of layer is com-
posed of a block of neurons where each slice (also called
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a filter or a kernel) shares its weights and biases between
all the neurons that compose it. Given a CONV layer
C(i), its output volume O(i) (also called feature maps)
can be calculated by the following (1) as the dot product
between the n(i) slices’ weights W (i) and biases B(i)

(where n(i) is the number of depth slices, also known as
number of filters or kernels) and a small region of the
input volume O(i−1), i.e., a rectangular section of the
previous layer C(i−1), defined by the kernel size k(i) of
the current layer C(i):

O(i) = (O(i−1) · W (i)) f,l + B(i)

=
k(i)�

m=1

k(i)�
n=1

(o(i−1)
f−m,l−n · w(i)

m,n)+ B(i) (1)

where o(i−1)
f,l is the feature ( f, l) of the feature map

O(i−1) ∈ R
W,H , with f = 1, 2, . . . , W and l =

1, 2, . . . , H , and w
(i)
m,n is the weight (m, n) of the weight

matrix W (i) ∈ R
k(i),k(i)

. As a result, O(i) ∈ R
n(i),W �,H �

forms a data cube whose depth is defined by the number
of kernels n(i) (that indicates the number of output
feature maps) and its width and height are calculated as

W � = (Wk + 2P)

S
+ 1 and H � = (H k + 2P)

S
+ 1

respectively, where P indicates the padding (zeros)
added to the input data borders and S indicates the stride
of the kernel over the data. W and H are, respectively,
the width and height of the previous feature maps
O(i−1) ∈ R

n(i−1),W,H .
2) Batch Normalization (BATCH-NORM) Layer: Normally,

it is placed behind the convolution layer, and it applies
the normalization defined by (2) over the batch data

y = x −mean[x]√
Var[x] + �

· γ + β (2)

where γ and β are the learnable parameter vectors, and
� is a parameter for numerical stability.

3) Activation Layer: After CONV and BATCH-NORM
layers, the activation layer or the nonlinearity layer
embeds a nonlinear function that is applied over the
output of the previous layer as the rectified linear
unit (ReLU) [76], [77]. In this case, the LeakyReLU
function is implemented [78]

f (x) =
�

x if x > 0

αx if x ≤ 0
(3)

where α is a small nonzero parameter, normally 0.001.
4) Downsampling/Upsampling Layer: The proposed model

also implements downsampling and upsampling layers
at certain locations of the architecture. The first one
reduces the spatial resolution of the input volumes by
reducing the width and height with a resolution fac-
tor t . A max pool function is generally implemented to
perform the downsampling, and however, the proposed
model downsamples the input data setting the strides of

certain CONV layers to S = 2. In addition, the upsam-
pling layers try to reconstruct the data size using the
bilinear function given a scaling factor.

The proposed methodology provides a novel approach to
effectively super-resolve remote sensing data from an unsuper-
vised perspective. Specifically, our model receives the random
noise vector z as input data, which is resized into a cube
matrix R

C×t ·W×t ·H in order to feed the network, where W
and H are the width and height of the original LR remote
sensing image, C = 3 is the number of spectral channels,
and t is the resolution factor. Following a fully connected
hourglass architecture [45], [79], z goes through two main
steps composed of several blocks as follows.

1) The downsampling step is composed of N blocks of
layers, called d(i) (i = 1, 2, . . . , N), where the input of
each one is the feature maps of the previous one. Each
d(i) is composed of an initial CONV layer C(1)

d that
performs the downsampling step by its stride S = 2,
dividing the output volume size by two. This output
volume feeds the BATCH-NORM layer and the non-
linear LeakyReLU activation function. The output of
the neuron activations feeds the second CONV layer
C(2)

d without downsampling (i.e., S = 1) and also
followed by a BATCH-NORM layer and the LeakyReLU
activation function. C(1)

d and C(2)
d have their own number

of filters (n(1)
d and n(2)

d ) and their own kernel size

(k(1)
d and k(2)

d ). In fact, each block d(i) is reducing
the space information, i.e., generating a low spatial
resolution data that will feed the second upsampling
step.

2) The upsampling step is symmetric to downsampling one,
and it is also composed of N blocks of layers, called
u(i) (i = N, . . . , 2, 1), where the input of each one
is the output of the previous one. In this case, each
u(i) is composed of several stacked layers. The first
one is a BATCH-NORM layer, followed by the first
CONV layer C(1)

u (which maintains the size of the data,
i.e., S = 1) and its BATCH-NORM and LeakyReLU
function. The output of the neuron activations feeds
the second convolutional layer C(2)

u (which also main-
tains the size of the data). After the BATCH-NORM
and the activation function, the output will finally feed
the bilinear upsampling layer with factor equal to 2.
Again, C(1)

u and C(2)
u have their own number of filters

(n(1)
u and n(2)

u ) and their own kernel size (k(1)
u and k(2)

u ).
Both the steps, downsampling and upsampling, are symmetri-
cal and connected by skip connections, i.e., the input of each
upsampling block u(i) is combined with the corresponding d(i)

through the skip connection s(i) (i = 1, 2 . . . , N) composed
of a CONV layer C(1)

s , with its number of filters n(i)
s and its

kernel size k(i)
s , a BATCH-NORM layer, and the activation

function, LeakyReLU. In fact, the output of s(i) is concate-
nated to the input of u(i). The chosen topology is shown
in Fig. 4. At the end of the topology, an output block is added,
composed of a CONV layer and a sigmoid function at the end.
As a result, an HR image XHR

o ∈ R
3×t ·W×t ·H is generated as

an output of the network.
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Fig. 4. Proposed 2-D-CNN architecture model follows a symmetric topology. The input image z goes through a first step of downsampling composed
of blocks (d(1), d(2), . . . , d(N )) of several CONV, downsampling, BATCH-NORM, and activation layers, where each n( j )

d and k( j )
d (with j = 1, 2) are the

number of filters and kernel sizes of each downsampling connection d(i) . Then, symmetrically, data go through the upsampling step, where the output of
each block u(i) (with number of filters n( j )

u and kernel size k( j )
u , j = 1, 2 and composed of CONV, BATCH-NROM, upsampling, and activation layers) is

combined with the features of corresponding di through a skip connection si , which also has the number of filters n(1)
s and a kernel size k(1)

s and is composed
of a CONV, a BATCH-NORM, and an activation layers.

In particular, the SR’s goal is to generate an HR image from
an LR one, minimizing the following cost function:

min � φ(XHR)− XLR �2 . (4)

In fact, our remote sensing data sets are composed of HR
images. However, we cannot use them, because they cannot
be considered as ground truth to perform SR. In order to
solve this, an LR version is generated from each HR image
by a downsampler φ : R

3×t ·W×t ·H → R
3×W×H , so XLR =

φ(XHR). In our case, the downsampler φ has been imple-
mented using Lanczos3 resampling [80], where pixels of the
original image XHR are passed into an algorithm that averages
their color/alpha using sinc functions. With this LR version,
we can perform the SR task. However, the model is generating
an HR image, XHR

o . In order to solve this, the downsampler
function φ is applied over XHR

o . At the end, (4) can be
rewritten as

min � φ(XHR)− φ(XHR
o ) �2→ min � XLR − XLR

o �2 . (5)

The cost function defined by (5) is optimized iteratively by
the model via an Adam optimizer [81]. The proposed method
is summarized in Algorithm 1. Also, in Fig. 8, we can observe
the XHR

o image generated by the model at each epoch.
In order to test the proposed model, two networks have been

implemented. The first one performs a two times SR over an
LR image XLR ∈ R

3×W×H , i.e., the resolution factor is set
to t = 2, obtaining a XHR ∈ R

3×2·W×2·H HR image, and
the second one performs a four times SR, i.e., t = 4 obtaining
a XHR ∈ R

3×4·W×4·H HR image. Following the scheme

Algorithm 1 Unsupervised Remote Sensing Single-Image SR
Algorithm

1: procedure SR_MODEL(X L R , t) �
X L R ∈ R

C×W×H original low resolution remote sensing
image, t resolution factor

2: z← Random noise with size C × t ·W × t · H
3: repeat
4: X H R

o ←model_net(z)
5: X L R

o ← φ
�

X H R
o

� � φ is Lanczos3
6: loss = MSE(X L R, X L R

o )
7: ADAM_Optimizer(loss)
8: z← X H R

o
9: until Reach maximum epoch

10: return X H R
o

11: end procedure

presented in Fig. 4, both the models have been implemented
with the topology described in Tables I and II.

A. Metrics

In order to compare the properties of the obtained XHR
o

image with regard to the original remote sensing image XHR,
several evaluation metrics have been used. For the sake of
simplicity, we rename XHR

o = Xo and XHR = X , where x (i)
o

and x (i) are the i th pixels of Xo and X , respectively.
Following (6), where nsamples is the number of pixels of

X and Xmax and Xmin are the maximum and minimum
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TABLE I

NETWORK TOPOLOGY FOR TWO-TIME SR. THE UPSAMPLING PHASE
HAS BEEN PERFORMED WITH A SCALE-FACTOR SET TO 2

values of image X , respectively, the normalized root mean
square error (NRMSE) measures the distance between the data
predicted by a model Xo and the original data observed from
the environment X that we want to model

NRMSE(X, Xo) =
�

1
nsamples

·�nsamples
i=0 (x (i) − x (i)

o )2

(Xmax − Xmin)
. (6)

Peak signal-to-noise ratio (PSNR) [82] represents a better
image quality than NRMSE. This metric is defined as the
standard index for SR, where MAX f is the maximum signal
value that exists in the original X image. A higher PSNR value
indicates that the reconstructed image Xo is of higher quality

PSNR(X, Xo) = 20 · log10
MAX f

RMSE(X, Xo)
. (7)

Spectral angle mapper (SAM) [83] calculates the angle
between the corresponding pixels of the super-resolved image
Xo and the original image X in the domain [0, π]

SAM(X, Xo) = 1

nsamples
·

nsamples�
i=0

arccos
x (i) · x (i)

o

�x (i)� · �x (i)
o �

. (8)

The universal image quality index, also called Q-index,
gathers three different properties in the image evaluation:
1) correlation; 2) luminance; and 3) contrast

Q(X, Xo) =
nbands�

j

⎛
⎜⎜⎜⎝

a� � �
σI R

σX σXo

b� � �
2 X Xo

(X)2 (Xo)2

c� � �
2 σX σXo

(σX )2 (σXo)
2

⎞
⎟⎟⎟⎠

j

.

(9)

TABLE II

NETWORK TOPOLOGY FOR FOUR-TIME SR. THE UPSAMPLING PHASE
HAS BEEN PERFORMED WITH A SCALE-FACTOR SET TO 2

An extension of Q-index is the structural similar-
ity (SSIM) [84], a well-known quality metric used to measure
the similarity between two images. It is a combination of three
factors (loss correlation, luminance distortion, and contrast
distortion)

SSIM(X, Xo) = (2μXμXo + c1) ∗ (2σX Xo + c2)

(μ2
X + μ2

Xo
+ c1) ∗ (σ 2

X + σ 2
Xo
+ c2)

. (10)

Erreur relative globale adimensionnelle de synthese
(ERGAS) [85] measures the quality of obtained Xo taking
into account the scaling factor to evaluate the super-resolved
image

ERGAS(X, Xo)

= 100

nsamples

���� 1

nbands

nsamples�
i=0

�
RMSE(x (i), x (i)

o )

x (i)

�2

. (11)
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IV. EXPERIMENTS

A. Experimental Configuration and Data Sets

In order to test the performance of the proposed model,
several experiments have been conducted using two different
hardware environments as follows.

1) A GPU environment composed of a sixth Generation
Intel Core i7-6700K processor with 8 M of Cache and
up to 4.20 GHz (4 cores/8-way multitask processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz,
a GPU NVIDIA GeForce GTX 1080 with 8-GB
GDDR5X of video memory and 10 Gb/s of memory
frequency, a Toshiba DT01ACA HDD with 7200 rpm
and 2 TB of capacity, and an ASUS Z170 pro-gaming
motherboard. The software environment is composed of
Ubuntu 16.04.4 x64 as an operating system, Pytorch [86]
0.3.0, and compute device unified architecture (CUDA)
8 for GPU functionality.

2) A CPU environment composed of Intel Core i7-4790 @
3.60 GHz, 16 GB of DDR3 RAM with a serial speed
of 800 MHz, and a Western Digital HDD with 7200 rpm
and 1 TB of capacity. The software environment is
composed of Windows 7 as an operating system and
MATLAB R2013a.

It should be noted that our proposed method has been exe-
cuted on the GPU environment, while the other methods have
been executed in the CPU environment. Although our method
uses Pytorch and CUDA, its parallelization can still be further
optimized, and therefore, the difference in computation times
with regard to the other methods was not very significant.

In addition, the employed database is composed of multiple
RGB images from three different remote sensing repositories
with the aim of testing the SR approach process under different
sensor’s acquisition conditions and including different kinds of
small perturbations. No additional levels of noise have been
considered due to the design of the proposed SR approach,
given by the noise-free scheme of (4), presented in other
approaches, such as [35], [69], [70] and [87]. The employed
repositories are described in the following and are publicly
available on this repository (see Fig. 5).2

1) UCMERCED [88]: It is composed of 21 land-use
classes, including agricultural, airplane, baseball dia-
mond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbor, intersection, medium
density residential, mobile home park, overpass, parking
lot, river, runway, sparse residential, storage tanks, and
tennis courts images. Each class consists of 100 images
with 256× 256 pixels and a pixel resolution of 30.

2) RSCNN7 [89]: This data set contains 2800 images
with seven different classes. The data set is rather
challenging due to the wide differences of the scenes,
which have been captured under changing seasons and
varying weathers and sampled with different scales. The
resolution of individual images is 400× 400 pixels.

3) NWPU-RESIS45 [90]: The remote sensing image scene
classification data set has been created by Northwestern
Polytechnical University. This data set has 45 scenes

2https://github.com/mhaut/images-superresolution

Fig. 5. Data set used in the experiments, comprising the following images:
agricultural, agricultural2, airplane, baseball, bridge, circular-farmland, harbor,
industry, intersection, parking, residential, and road.

TABLE III

METHODS CONSIDERED FOR THE EXPERIMENTS. FURTHER DETAILS
CAN BE FOUND IN THE CORRESPONDING REFERENCES

with a total number of 31500 images, 700 per class.
The size of each image is 256× 256 pixels.

From these images, an LR version has been generated from
their corresponding HR counterparts following a two-step pro-
cedure [91]: 1) an initial blurring step and 2) a final decimation
process. In particular, a Lanczos3 windowed sinc filter has
been used for blurring the corresponding HR images, and
then, these images have been downsampled according to the
considered scaling factors (2 and 4, respectively). Regarding
the blurring step, it should be noted that the Lanczos3 kernel
size has been adapted to the scaling factor using the following
expression, w = (4∗s+1), where w represents the filter width
and s is the considered scaling factor. For the downsampling
process, image rows and columns have been selected from
the top-left corner using a stride equal to the considered
scaling factor. The goal behind this preprocessing step is to
generate LR images from ground-truth HR ones maintaining
the acquisition sensor properties but considering a lower
spatial resolution. In this way, it has been possible to conduct a
full-reference assessment protocol in experiments.
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TABLE IV

AVERAGE SR RESULTS. THE BEST RESULT FOR SCALING RATIO AND METRIC IS HIGHLIGHTED IN BOLD FONT

The performance of the proposed approach has been com-
pared with the results obtained by 11 different unsupervised
SR methods available in the literature, as well as the bicu-
bic interpolation kernel function [80] used as an upscaling
baseline. These SR methods have been considered for the
experimental discussion, because they provide an unsupervised
SR scheme in the same way that the proposed approach does,
using the LR input image to generate a super-resolved output
result. In addition, two different scaling factors, two times and
four times, have been tested over the considered image data
set (see Section IV-A). Table III provides a brief description
of the SR techniques considered in the experimental part of
this paper.

All the tested methods have been downloaded from the
following website,3 and they have been used considering
the default settings suggested by the methods’ authors for
each particular scaling ratio [54]. Note that this configuration
provides the most general scenario to super-resolve a wide
range of image types taking into account the tested image
diversity.

B. Results

Tables V–VII present the quantitative assessment of the
considered SR methods in terms of seven different quality
metrics. Specifically, each table contains the super-resolved
results of four test images, and for each image, the SR results
are provided in rows considering two different scaling factors,
two times and four times, which are shown in columns.
Besides, Table IV provides the average results for the whole
image collection in order to provide a global view.

In addition to the quantitative evaluation provided by the
considered metrics, some visual results are provided as a
qualitative evaluation for the tested SR methods. Specifi-
cally, Figs. 6 and 7 show the super-resolved results obtained
for harbor and road test images considering two-time and
four-time scaling factors, respectively. Besides, Fig. 8 presents
the visual evolution of the super-resolved result along the
network iterations.

3http://www.vision.uji.es/srtoolbox/

C. Discussion

According to the quantitative assessment reported in
Tables IV and V, it is possible to rank the global performance
of the tested SR methods into three different categories:
1) high performance: for the proposed approach; TSE and SRI,
2) moderate performance: for IBP, DLU, DRE, and UMK; and
3) low performance: for GPP, LSE, GPR, BDB, and FSR.

When considering a two-time scaling factor, the proposed
approach (together with the HY methods TSE and SRI)
provides a significant improvement with respect to the BCI
baseline. Specifically, the proposed approach obtains the
best performance for NRMSE, PSNR, and ERGAS metrics,
whereas TSE exhibits the best result for Q-index, SSIM,
and SAM. Although TSE and SRI also achieve, on average,
a remarkable improvement over the baseline, the proposed
approach provides a more consistent performance, because
it obtains the best average result for NRMSE, PSNR, and
ERGAS metrics, and the second best value for Q-index,
SSIM, and SAM. It can be observed that the average PSNR
gain provided by the proposed approach is 0.39 dB for two
times and 0.48 dB for four times. Regarding the methods
providing a moderate improvement 2), the PSF deconvolution-
based techniques, DLU, DRE, and UMK, provide a similar
average performance, and IBP is able to obtain a slightly better
quantitative result over all the considered metrics. Within the
low-performance method group 3), it is possible to see that
GPP and LSE methods provide a result similar to the one
obtained by the baseline, and GPR, BDB, and FSR obtain
even a worse result.

A similar trend can be observed when considering a four-
time scaling factor. In this case, the proposed approach is,
on average, the best method according to NRMSE, PSNR,
and ERGAS metrics. TSE obtains the best Q-index and SSIM
results, and both the methods obtain a similar average result
for the SAM metric. It should be noted that SRI performance
has worsened when using a four-time ratio, and however, it still
obtains the third best Q-index and SSIM results. With respect
to the rest of the moderate 2) and low-performance methods 3),
they obtain similar results with regard to the ones obtained
with a two-time factor. Overall, the proposed approach and
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Fig. 6. SR results obtained using the methods shown in captions over the test image harbor with a two-time scaling factor. For each result, PSNR (dB) values
appear in brackets. The best PSNR value is highlighted in bold. (a) HR. (b) BCI (21.73 dB). (c) IBP (23.43 dB). (d) SRI (25.82 dB). (e) DLU (23.40 dB).
(f) UMK (23.44 dB). (g) TSE (25.63 dB). (h) Proposed approach (26.84 dB).

Fig. 7. SR results obtained using the methods shown in captions over the test image road with a four-time scaling factor. For each result, PSNR (dB) values
appear in brackets. The best PSNR value is highlighted in bold. (a) HR. (b) BCI (20.57 dB). (c) IBP (21.86 dB). (d) SRI (22.36 dB). (e) DLU (21.32 dB).
(f) UMK (21.93 dB). (g) TSE (23.86 dB). (h) Proposed approach (25.69 dB).

TSE have shown to obtain the best quantitative performance
followed some way behind by SRI. However, the differences
among these methods are relatively small, which motivates a
thorough discussion over qualitative results to find out each
method’s singularity.

According to the visual results presented in Figs. 6 and 7,
each SR method tends to foster a particular kind of visual

feature on the super-resolved output. Some methods, like
TSE or SRI, are able to obtain sharper edges, while others,
like DLU or UMK, seem more robust to noise by generating
smoother super-resolved textures. In terms of visual per-
ceived quality, the proposed approach achieves a remarkable
performance. For instance, the boat detail in Fig. 6(h) is
certainly the most similar to its HR counterpart in Fig. 6(a).
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Fig. 8. SR process conducted by the proposed approach over the parking test image with a four-time scaling factor. Each subfigure represents the
obtained XHR

o images at each epoch of the model, following Algorithm 1. (a) It.0. (b) It.100 (14.73 dB). (c) It.200 (20.69 dB). (d) It.400 (21.48 dB).
(e) It.800 (21.89 dB). (f) It.1000 (21.97 dB). (g) It.2000 (22.13 dB). (h) It.3900 (22.18 dB).

Even though the result provided by SRI [see Fig. 6(d)] seems
to obtain a slightly better contrast on some parts of the
image, the proposed approach is able to introduce more high-
frequency information in the boat structure. In addition, it is
possible to see that the proposed approach also introduces
some shadow fine details, which are not present in the others
methods’ results.

When considering a four-time ratio, the proposed approach
shows even better capability to recover high-frequency infor-
mation while preserving HR details to avoid undesirable visual
artifacts in the super-resolved output. For instance, it is the
case of the result provided by SRI in Fig. 7(d), which provides
a remarkable sharpness on edges, and however, it generates a
kind of ghosting effect and also alters several shapes in the
image. Despite the fact that TSE [see Fig. 7(g)] is able to
overcome some of these limitations, the proposed approach
certainly provides a more competitive visual result. That is,
the proposed approach generates a super-resolved image with
sharper edges, and it is also able to reduce the aliasing effect
present in the TSE result. Another illustrative difference can
be found in the asphalt surface, where the proposed approach
removes the noise appearing in other output results.

Regarding computational time, we can observe some impor-
tant differences among the tested methods. In particular,
three groups can be identified when super-resolving LR input
images: 1) BCI, IBP, DLU, DRE, FSK, and UMK, with
an average time consumption per image under a second;
2) GPP and TSE, with a time between 10 and 120 s; and
3) the proposed approach, SRI, LSE, GPR, and BDB, which

require more than 120 s per image. Even though the proposed
approach is not one of the most computationally efficient
methods, it shows a computational cost comparable to that
of SRI, which, on average, has shown to be among the best
methods together with TSE and the proposed approach.

D. Advantages and Limitations of the Proposed Approach

When comparing the proposed approach performance with
respect to the best ones obtained in the experiments, we can
observe the high potential of the proposed deep generative
network to super-resolve the remote sensing data. To date,
the HY approach used by SRI and TSE has shown to be
one of the most effective ways to learn useful LR/HR patch
relationships under an unsupervised SR scheme. However, this
straightforward approach of searching patches across scales
is rather constrained to the quality of the spatial information
appearing in the LR input image. That is, the super-resolved
result often tends to suffer from ghosting artifacts and watering
effects as the magnification factor increases (see Fig. 7).

Even though TSE deals with this issue by allowing patch
geometric transformation on the searching patch criteria,
i.e., patches can occur in a lower scale as they are or even
transformed, this process does not actually introduce any new
spatial information in the output result which eventually may
limit the SR process, especially in the remote sensing field.
Note that remotely sensed imagery is usually a highly complex
kind of data, because they are usually fully focused multiband
shots with plenty of different spatial details within the same
image. As a result, the generation of a consistent spatial
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TABLE V

SR RESULTS FOR TEST IMAGES FROM 1 TO 4. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO, AND METRIC IS HIGHLIGHTED IN BOLD FONT

variability becomes a key factor to improve the unsupervised
remote sensing SR process.

Precisely, this is the objective of the proposed approach.
In particular, the presented deep generative network learns
the relationships between the LR and HR domains throughout
several convolutional and downsampling layers starting from
the LR input image. However, this process is affected by

random noise, which is also restricted by the cost function,
that is (5), to guarantee a global reconstruction constraint over
the LR input image. That is, the random noise generates new
spatial variations as possible solutions to relieve the ill-posed
nature of the SR problem, while the cost optimizer controls
that only these variations consistent with respect to the input
LR image are promoted though the network to generate the
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TABLE VI

SR RESULTS FOR TEST IMAGES FROM 5 TO 8. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO, AND METRIC IS HIGHLIGHTED IN BOLD FONT

final SR result. Fig. 8 shows the SR process conducted by
the proposed network over the parking test image considering
a four-time scaling factor. As we can see, the reconstructed
super-resolved result is initially noise; however, the spatial
structures are recovered from a coarser to finer level of details
as the network iterates.

In a sense, the proposed approach is able to recover a
richer variety of high-frequency patterns for a given LR image
due to its generative nature. In other words, the proposed
deep generative network provides a more flexible unsupervised

SR scheme than the current HY techniques, because it is able
to introduce some spatial variations that are impossible to
retrieve from the LR input image. In fact, it is possible to
better appreciate the proposed approach effectiveness when
only considering the PSNR metric, which is the most widely
used quality index in SR. Figs. 9 and 10 show the PSNR
gain obtained by the three best methods, i.e., the proposed
approach, TSE, and SRI, with respect to the BCI baseline.
As we can appreciate, the proposed approach provides some
remarkable PSNR improvements in two times; however,
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TABLE VII

SR RESULTS FOR TEST IMAGES FROM 9 TO 12. THE BEST RESULT FOR EACH IMAGE, SCALING RATIO, AND METRIC IS HIGHLIGHTED IN BOLD FONT

the PSNR gain is consistently higher when considering a four-
time ratio. Note that, with this scaling factor, the level of
uncertainty significantly increases, and it is then when the
generative process of the proposed approach becomes more
effective by introducing a higher variety of spatial details.

Although the results obtained by the proposed approach
are encouraging, there are two points which deserve to be

mentioned when comparing the proposed approach perfor-
mance to the one obtained by the most effective unsuper-
vised SR methods: the performance on some metrics and the
computational cost.

On the one hand, the proposed approach performances on
some metrics, specifically Q-index, SSIM, and SAM, seem not
to be superior to the corresponding TSE results. For instance,
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Fig. 9. PSNR (dB) results when considering a two-time scaling factor.

Fig. 10. PSNR (dB) results when considering a four-time scaling factor.

Table VII shows that the TSE obtains the best SSIM result
for the four-time road image (0.8290), whereas the proposed
approach achieves the second best SSIM value (0.8247).
However, the proposed approach provides the best PSNR
result (25.69 dB), which is substantially higher than the TSE
one (23.86 dB). In spite of the small SSIM differences,
it is possible to see the proposed approach advantages when
considering the qualitative results. That is, Fig. 10 certainly
shows that TSE magnifies the aliasing effect in the first line
of pedestrian crossing and also generates a kind of watering
effect on surfaces, whereas the proposed approach is able to
obtain a more natural as well as reliable result, even though
some image materials seem less contrasted. For the proposed
approach, we adopt a cost function based on the mse in the
way many other DL-based SR methods do in the supervised
scheme (see [35], [69], [70]). Logically, our model has a
different nature because of its unsupervised scheme; however,
it seems reasonable to make this consideration, because the
PSNR index, which is based on the mse, is one the most
commonly used metric in SR. Somehow, this definition of the
cost function may constrain the performance on some metrics,
because the network optimizer works for minimizing the mse
and other kinds of metric features are not taken into account
in this optimization process, which eventually may led to a
super-resolved solution with an excellent PSNR performance
but with some small divergences in other figures of merit.

On the other hand, the computational cost of the pro-
posed approach may also become a limitation in some spe-
cific scenarios. According to the quantitative results shown
in Table IV, the proposed approach takes over 300 and 150 s to
process each input image considering a two-time and four-time
ratios, respectively. Even though the proposed approach has

Fig. 11. PSNR evolution for harbor, circular-farmland, industry, and road
test images considering a four-time scaling ratio versus iteration.

Fig. 12. PSNR evolution for harbor, circular-farmland, industry, and road
test images considering a four-time scaling ratio versus time.

not shown to be one of the most computationally efficient
methods, three important considerations have to be done to
this extent. First, the computational burden is not only a
drawback of the proposed approach but also of any DL
architecture, because this kind of technology usually provides
a more powerful framework to cope with new challenges
and tasks. Second, the implementation of our model has not
been optimized to really exploit the GPU hardware resources
in order to substantially reduce the resulting computational
time. That is, we make use of standard functions but further
efforts could be addressed to generate a much more optimized
version of the code. Third, we use a general configuration of
4000 iterations as a security margin to guarantee a good
network convergence; however, this value could be reduced
in order to significantly improve the proposed approach com-
putational efficiency. Fig. 11 shows the evolution of the
PSNR metric with respect to the number of iterations for
harbor, circular-farmland, industry, and road test images with
a four-time ratio. As it is possible to see, the network is
able to achieve a PSNR result that is very close to the
optimal value after 2000 iterations, and therefore, it would
be possible to reduce the number of iterations in order to
significantly decrease the proposed approach computational
time. In Fig. 12, we also show the PSNR evolution over time to
highlight the fact that the proposed approach is able to rapidly
converge to the optimal PSNR value. It should be noted that
we use a unique network settings in this paper, and therefore,
4000 iterations are used to guarantee a good general parameter
convergence, that is, without adapting the network to each
input image.



HAUT et al.: NEW DEEP GENERATIVE NETWORK FOR UNSUPERVISED REMOTE SENSING SINGLE-IMAGE SR 6807

V. CONCLUSION AND FUTURE LINES

In this paper, we have presented a new convolutional
generator model to super-resolve the LR remote sensing data
from an unsupervised perspective. Specifically, the proposed
approach is initially able to learn relationships between the
LR and HR domains while generating consistent random spa-
tial variations. Then, the data are symmetrically projected to
the target resolution, guaranteeing a reconstruction constraint
over the LR input image. Our experiments, conducted using
several test images, two scaling factors, and 12 different SR
methods available in the literature, reveal the competitive
performance of the proposed approach when super-resolving
remotely sensed images.

One of the main conclusions that arises from this paper
is the potential of deep generative models to cope with the
unsupervised SR problem because of their capabilities to
introduce new spatial details not present in the input LR
image. As opposed to the common (HY) SR trend, which
only relies on the patch relationships learned across scales,
the proposed approach extends this scheme by introducing
some spatial variations that allow the network to retrieve new
spatial patterns that are consistent with the input LR image.

According to the conducted experiments, the proposed
approach obtains a competitive global performance over the
considered remote sensing test images in terms of both quan-
titative and qualitative SR results. Regarding the NRMSE,
PSNR, and ERGAS metrics, the SR framework proposed in
this paper obtains, on average, the best performance. When
considering Q-index, SSIM, and SAM, TSE tends to provide
the best average result, but the proposed approach is still
able to perform among the best methods, especially when
considering a four-time scaling factor.

Although the proposed approach results are encouraging as
a generative SR model in remote sensing, the method still has
some limitations, which provide room for improvement by
conducting additional research on unsupervised SR. Specifi-
cally, our future work will be aimed at the following directions:
1) extending the cost function to simultaneously take into
account several image quality metrics and also to extend it
with the aim of implementing a noise reduction scheme for
a different kind of input data; 2) adapting the convolutional
kernel size to each specific input image; and 3) reducing
the model computational cost by designing new strategies to
actively control the number of iterations depending on the
input image.
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