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Spectral-Spatial Weighted Sparse Regression
for Hyperspectral Image Unmixing
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Abstract— Spectral unmixing aims at estimating the fractional
abundances of a set of pure spectral materials (endmembers)
in each pixel of a hyperspectral image. The wide availability of
large spectral libraries has fostered the role of sparse regression
techniques in the task of characterizing mixed pixels in remotely
sensed hyperspectral images. A general solution for sparse
unmixing methods consists of using the £; regularizer to control
the sparsity, resulting in a very promising performance but also
suffering from sensitivity to large and small sparse coefficients.
A recent trend to address this issue is to introduce weighting
factors to penalize the nonzero coefficients in the unmixing
solution. While most methods for this purpose focus on analyzing
the hyperspectral data by considering the pixels as independent
entities, it is known that there exists a strong spatial correlation
among features in hyperspectral images. This information can
be naturally exploited in order to improve the representation of
pixels in the scene. In order to take advantage of the spatial infor-
mation for hyperspectral unmixing, in this paper, we develop a
new spectral-spatial weighted sparse unmixing (S*WSU) frame-
work, which uses both spectral and spatial weighting factors,
further imposing sparsity on the solution. Qur experimental
results, conducted using both simulated and real hyperspectral
data sets, illustrate the good potential of the proposed S“WSU,
which can greatly improve the abundance estimation results when
compared with other advanced spectral unmixing methods.

Index Terms— Hyperspectral imaging, sparse unmixing, spatial
information, spatially weighted unmixing.
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I. INTRODUCTION

ITH the rapid development of the hyperspectral tech-
W nology, hyperspectral remote sensing images have been
widely used in environmental surveillance, target detection,
mineral exploration, and so on [1]. However, due to insufficient
spatial resolution and spatial complexity, pixels in remotely
sensed hyperspectral images are likely to be formed by a
mixture of pure spectral constituents (endmembers) rather than
a single substance [2]. The existence of mixed pixels compli-
cates the exploitation of hyperspectral images [3]. Spectral
unmixing, aimed at estimating the fractional abundance of the
pure spectral signatures or endmembers, was proposed to deal
with the problem of spectral mixing and effectively identifies
the components of the mixed spectra in each pixel [4].

In the past few years, linear spectral unmixing has been one
of the most active research lines in hyperspectral imaging [2].
Depending on whether a spectral library is available or not,
researchers have developed many different unsupervised
and semisupervised unmixing algorithms. Unsupervised algo-
rithms that extract the endmembers directly from the scene
have faced several difficulties, mainly related with the unavail-
ability of pure signatures in the image data [5]-[8]. Further-
more, endmember generation algorithms tend to obtain virtual
endmembers without physical meaning [9]-[14]. In addition,
these algorithms generally require the estimation of the num-
ber of endmembers in the scene, which is also a difficult
problem.

Recently, due to the wide availability of spectral libraries,
sparse unmixing [15] has been shown to be able to circum-
vent the drawbacks introduced by such virfual endmembers
and the unavailability of pure pixels. Sparse unmixing is a
semisupervised approach in which mixed pixels are expressed
in the form of combinations of a number of pure spectral
signatures from a large spectral library. The sparse unmixing
approach exhibits significant advantages over unsupervised
approaches, as it does not need to extract endmembers from the
hyperspectral data or estimate the number of the endmembers.
Another advantage of sparse unmixing is that it provides
great potential for the accurate estimation of the fractional
abundances, as all endmembers are normally represented in the
library. These new perspectives introduced by sparse unmixing
fostered advanced developments in the field [16]-[22].

The success of sparse unmixing relies on the fact that the
unmixing solution is sparse, as the number of endmembers
used to represent a mixed pixel is generally much smaller
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than the number of spectral signatures in the library [15].
As a result, new algorithms have been developed to enforce the
sparsity on the solution. The sparse unmixing algorithm via
variable splitting and augmented Lagrangian (SUnSAL) [15]
adopts the £ regularizer on the abundance matrix, which aims
at introducing sparsity through the spectral domain that a pixel
is unlikely to be mixed by a high number of components. The
introduction of SUnSAL opened new avenues and brought new
insights into the concept of sparse unmixing. However, the real
degree of sparsity is beyond the reach of the £ regularizer due
to the unbalance between the number of endmembers in the
library and the number of components that generally partici-
pate in a mixed pixel. New algorithms have been developed
in order to perform a better characterization of the degree of
sparsity. Two main directions have been pursued. On the one
hand, some techniques have focused on the introduction of new
orders over the sparse regularizer. For instance, the collabora-
tive SUnSAL introduces the £ | regularizer to impose sparsity
among the endmembers simultaneously (collaboratively) for
all pixels [23]. In [24], the {1/, regularizer was introduced
into nonnegative matrix factorization (NMF) for unmixing so
as to enforce the sparsity of endmember abundances. In [25],
the graph-regularized £1,2-NMF was proposed by introducing
the manifold regularization into the sparsity-constrained NMF,
leading to a more desirable result than other sparse NMF
algorithms. In [26], the £, (0 < p < 1) regularizer was
used. On the other hand, other algorithms have introduced
weighting factors to penalize the nonzero coefficients on the
sparse solution [27]. For example, in [28], a weighted ¢
minimization is adopted to enhance the sparsity of the solu-
tion. In the double reweighted sparse unmixing (DRSU) [29]
algorithm, double weights are used to improve the sparsity of
the endmembers in the spectral library and also the sparsity
of the abundance fractions of each endmember. Although
these methods obtained promising results, they consider pixels
in a hyperspectral data as independent entities, while the
spatial-contextual information in the hyperspectral image is
generally disregarded. Since hyperspectral images generally
follow specific spatial arrangements by nature, it is important
to consider spatial information for their characterization.

In fact, hyperspectral images exhibit rich spatial correlation
that can be exploited for better estimating endmember abun-
dances, thus making the obtained abundances more consis-
tent [30]. Following this observation, several algorithms have
focused on promoting the spatial correlation on the final solu-
tion. For instance, the sparse unmixing via variable splitting
augmented Lagrangian and total variation (SUnSAL-TV) [31]
represents one of the first attempts to include spatial infor-
mation in sparse unmixing. It exploits the spatial informa-
tion via a first-order pixel neighborhood system. Similar to
SUnSAL, the SUnSAL-TV opened new avenues and brought
new insights into the concept of spatial sparse unmixing,
which is able to promote piecewise transitions in the esti-
mated abundances. However, its performance strongly relies
on the parameter settings [32]. At the same time, its model
complexity results in a heavy computational cost, further
limiting its practical application potential. New developments
aimed at fully exploiting the spatial correlation among image
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features (and further imposing sparsity on the abundance
matrix) and have been mainly developed along two directions.
On the one hand, high-order neighborhood information over
spatial regularizers has been introduced to reach this goal.
For instance, nonlocal sparse unmixing (NLSU) adopts the
nonlocal means as a spatial regularizer for sparse unmixing,
exploiting similar patterns and structures in the abundance
image [33]. Although NLSU can take advantage of high-order
structural information, the neighborhood of the pixel changes
randomly, thus limiting the continuity of spectral information.
Another drawback of NLSU is that its model is more complex
than that of SUnSAL-TV, which limits its practical application.
On the other hand, spatially weighted factors (aimed at charac-
terizing spatial information through the inclusion of a weight
on the sparse regularizer) have also been used to account
for the spatial information in sparse unmixing. For example,
the local collaborative sparse unmixing (LCSU) uses a spatial
weight to impose local collaborativity, thus addressing some of
the issues observed in SUnSAL-TV (including oversmoothed
boundaries and blurred abundance maps) [34]. With similar
complexity as the SUnSAL-TV (mainly because the spatial
weight can be precomputed beforehand), the LCSU exhibits
similar unmixing performance as the SUnSAL-TV. This indi-
cates the good potential of using spatial weights (as compared
with spatial regularizers) in two main aspects: good unmixing
performance and low computational complexity.

Inspired by the advantages observed by the use of spatial
weights in LCSU, in this paper, we develop a new spectral—
spatial weighted sparse unmixing (S2WSU) framework for
hyperspectral unmixing. The proposed S?WSU aims at obtain-
ing a sparse solution that is constrained simultaneously from
the spectral and spatial domains under the ¢; framework.
The spectral weight, following previous developments [27],
enforces the sparsity of nonzero rows corresponding to the true
endmembers in the estimated abundances. On the other hand,
the spatial weight incorporates the spatial correlation to intro-
duce sparsity along a neighborhood system (which represents
an entirely original contribution of this paper). An important
aspect of our newly proposed S?’WSU framework is that,
with its open structure, it is able to accept multiple types of
spectral and spatial weighting factors, thus providing great
flexibility for the exploration of different spatial scenarios,
such as edge information, nonlocal similarity, and homoge-
neous neighborhood information. This is one of the main
contributions of this paper. With respect to its computational
complexity, the proposed S?WSU can be efficiency solved via
the alternating direction method of multipliers (ADMM) [35],
with complexity levels linearly as the well-known SUnSAL
method. It should be finally noted that, similar to the TV-based
methods, the proposed approach also promotes piecewise
transitions in the estimated abundances, however, with two
main advantages. First of all, the proposed approach only
needs one regularization parameter. Furthermore, the proposed
approach exhibits much lower computational complexity.

The remainder of this paper is organized as follows. The
proposed spectral-spatial weighted sparse unmixing model is
presented in Section II. Section III describes our experimental
results with simulated hyperspectral data sets. Section IV
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describes our experiments with real hyperspectral data sets.
Finally, Section V draws some conclusions and hints at plau-
sible future research lines.

II. PROPOSED SPECTRAL—SPATIAL WEIGHTED
SPARSE UNMIXING MODEL

LetY =[y1,...,yul € RZ*" denote a hyperspectral image,
where n is the number of pixel vectors and d is the number of
bands. Let A € R?*™ be a large spectral library, where m is
the number of spectral signatures in A, and X = [Xx1, ..., X;,]
denotes the abundance maps corresponding to library A for the
observed data Y. With the aforementioned definitions in mind,
sparse unmixing finds a linear combination of endmembers for
Y from the spectral library A

Y=AX+N st:X>0 (1)

where N € RY*" is the error, and X > 0 is the so-called
abundance nonnegativity constraint (ANC). It should be noted
that we explicitly enforce the ANC constraint without the
abundance sum-to-one constraint (ASC), due to some criti-
cisms about the ASC in the literature [15].

As the number of endmembers involved in a mixed pixel
is usually very small when compared with the size of the
spectral library, the abundance matrix X is sparse. With
these considerations in mind, the unmixing problem can be
formulated as an €, — {p optimization problem

1
min §||AX—Y||%+A||X||0 st:X >0 2)

where || - ||F is the Frobenius norm, and A is a regular-
ization parameter. Problem (2) is nonconvex and difficult to
solve [36], [37]. The SUnSAL alternatively uses the £, — ¢
norm to replace the {2 — £y norm and solves the unmixing
problem as follows [35]:

1
min Z[IAX — Y|[F + AlIX|l1 s:X =0 3)

where [|X]|]11 = E?:l [Ix;]]1 with x; being the jth column
of X. The SUnSAL solves the optimization problem in (3)
efficiently using the ADMM [35]. However, as stated before,
the real degree of sparsity is generally beyond the reach of the
{1 regularizer.

A. Double Reweighted Sparse Regression and Total Variation

Inspired by the success of weighted ¢; minimization
in sparse signal recovery, the DRSU and total variation
(DRSU-TV) [38] was proposed to simultaneously exploit the
spectral dual sparsity as well as the spatial smoothness of
fractional abundances as follows:

1
min —{|AX = Y| + Z[(WaW1) © Xyt + 21vTV(X),
st X >0 4)

where the operator (© denotes the elementwise
multiplication of two variables. On the one hand, the first
regularizer A[[(W2W1) © X]|1,1 introduces a prior with
spectral sparsity, where A is the regularization parameter,
Wi = {wili = 1,...,m,j = 1,...,n} € R™" and
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W, = diag(wa 11, ..., W2iis.-.> W2 mm) € R™™  for
i = 1,...,m, are the dual weights, with W; being the
original weight introduced in [27] aimed at penalizing the
nonzero coefficients on the solution and W, promoting
nonzero row vectors. On the other hand, the later regularizer
ArvTV(X) exploits the spatial prior with Aty being the
parameter controlling the degree of smoothness, where
TV(X) EZp,kENHXP —xk|l1, N represents the set of
(horizontal and vertical) pixel neighbors in the image. It can
be seen that DRSU-TV incorporates a TV-based regularizer
to enforce the spatial smoothness of abundances compared
with DRSU.

In [38], Problem (4) is optimized via the ADMM under an
iterative scheme. The dual weights W and W, are updated
as follows, at iteration ¢ + 1:

1
1 _
Wrij = xitj +é )
where ¢ > 0 is a small positive value and
1
1+1

= 6
PTG )l + e ©

where X’(i,:) is the ith row in the estimated abundance of
the tth iteration. Notice that, as shown in (5) and (6), it is
suggested that large weights be used to discourage nonzero
entries in the recovered signal, whereas small weights encour-
age nonzero entries. DRSU-TV, exploiting the spectral and
spatial priors simultaneously under the sparse unmixing model,
exhibits good potential in comparison with the £1- or TV-based
methods. However, as an adaptation of the £1- and TV-based
approach, the limitations of DRSU-TV are associated with the
use of a regularizer-based spatial prior. That is, the computa-
tional complexity is similar to that of SUnSAL-TV. Such high
computational complexity constrains the practical applications
of DRSU-TV. Furthermore, the unmixing performance of the
method is sensitive to the regularization parameter Aty .

B. Spectral-Spatial Weighted Sparse Unmixing

In this paper, aiming at exploiting the spatial information
more efficiently for sparse unmixing purposes (and inspired by
the generally good behavior of the weighted £; optimization),
we develop a new method called S*WSU for hyperspec-
tral unmixing. As opposed to the approaches that exploit
a regularizer-based spatial prior (which have one additional
parameter for the spatial regularizer and often exhibit high
complexity), the proposed S>WSU includes the spatial corre-
lation via a weighting factor, resulting in good computational
efficiency and less regularization parameters. Let Wgpe €
R™>™ be the spectral weighting matrix and Wgp, € R"™*”
be the spatial one. Following [27], the objective function of
the proposed S?WSU is given as follows:

o1
min Z[[AX = Y[} + 2l (WipeWsa) O Xll11. 5.2 X 2 0.
%)

For the spectral weighting factor Wype, relying on the
success of [23] and [29], we adopt row collaborativity to
enforce joint sparsity among all the pixels. Similar to Wy
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in DRSU-TV, Wy, aims at enhancing the sparsity of the
endmembers in the spectral library. In detail, at iteration 7+ 1,
it can be updated as

1 1
XA D2 +e” X m, )l +e ]

As mentioned before, due to the spatial arrangement of the
pixels in an image, their corresponding abundances often show
a pronounced spatial dependence. In other words, the rich
spatial information that the image contains can be of great
importance for estimating endmember abundances and also
making the obtained abundances more consistent. With this
information in mind, for the spatial weighting factor Wgp,, let
w;;;i ; be the element of the ith line and jth row in Wp, at
iteration ¢ + 1, we incorporate the neighboring information as
follows:

Wi = diag

spe

®)

1
+1

Pspaij TheN ()l + € ©
where N(j) denotes the neighboring set for element x;;, and
f () is a function explicitly exploiting the spatial correlations
through the neighborhood system. Notice that the function
f(-) can be linear or nonlinear; for example, the neighbor-
hood coverage [39], the nonlocal similarity [40], the edge
information representing the spatial discontinuity in [41], and
so on. Specifically, in this paper, we use the neighboring
coverage and importance to incorporate the spatial correlation
as follows:

Shenrty €inin

f) =
Y ZheN(j) €in

(10)
where A(j) corresponds to the neighboring coverage and
€ represents the neighborhood importance. As mentioned
before, the neighborhood coverage can be expressed in many
forms, such as superpixel-based [42], first-order-based [43],
and clustering-based [44]. For simplicity, we consider the
8-connected (3 x 3 window) and 24-connected (5 x 5 window)
for algorithm design and experiments. They are defined as
S?WSU-W1 and S?WSU-W2, respectively. With respect to
the neighboring importance, for any two entries i and j,
we compute it as follows:
! 11
U imG ) o
where function im(-) is the importance measurement over the
two elements x; and x;. Let (a,b) and (c,d) be the spatial
coordinates of x; and x ;. The European distance is specifically
considered, that is, ¢;; = 1/((a — )+ (- d)z)l/z.

It should be noted that, although in [29] and [38],
the weighted ¢1 problem is optimized via the ADMM with
very promising performance, the plug of the weights brings
difficulty with respect to the convergence (i.e., there is no
evidence that the ADMM can converge in this scenario).
Nevertheless, we can perform an outer—inner looping scheme
to iteratively solve this problem, as indicated in (7), with the
inner loop corresponding to the update of the coefficients X via
the ADMM and the outer loop corresponding to the update of
the two weights, respectively. Specifically, for each inner loop,
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Fig. 1. Residual ||GU(’ ) 4BV )|| F as a function of the number of iterations
for the complete algorithm.

given Wgpe and Wy, the coefficients X can be optimized via
the ADMM as indicated in (3). In the following, we revisit
the algorithm in detail to account for these enhancements.

Let £(U,V, D) = g(U,V) + (1/2)|GU + BV — D||% be
the augmented Lagrangian for

min g(V) st GU+BV =0 (12)

where 4 > 0 is a positive constant, U = X, and
D = (Dq, D2, D3) denote the Lagrange multipliers associated
with the constraint GU+BV = 0; V = (Vy1,V3,V3),
G = [A, L1, B = diag(-1); g(V) = (1/2)IIV1 - YII7 +
AN (WspeWspa) © Vall1,1 +1£4(V3) is the cost function of the
following optimization problem:

1
SIVi- Y%+ 21 (WspeWspa) © Valli 1+ 1r+(V3)

min
U,V|,V2,V3

st: Vi =AU, V,=0U, V3=U (13)
where 14 (X) = Y.!_,1r+(x;) is the indicator function,

and 1p(x;) is zero if x; belongs to the nonnegative orthant
and +oo otherwise. Now, we can implement the ADMM
to solve the optimization problem involved in the S?WSU
algorithm as shown in Algorithm 1, where soft(-, 7) denotes
the componentwise application of the soft-threshold function
y > sign(y)max{|y| — 7,0}, u and d> denote the elements
of U and D», respectively. In the outer loop of Algorithm 1,
steps 4 and 5 update the spectral and spatial weights, respec-
tively. In the inner loop, the Lagrange multipliers are updated
via the ADMM.

It should be noted that, as mentioned before, we are aware
that it is difficult to justify the convergence of Algorithm 1.
However, the algorithm stops when the maximum iteration
number is reached or ||GU® + BV®||r < threshold in
practice, which we have empirically found out that is quite
common. Fig. 1 illustrates the obtained residual, i.e., ||GU® +
BVY||, as a function of the number of iterations for the
complete algorithm, where the number of iterations of the
inner and outer loops is set to 5 and 200, respectively. It can
be observed that the full scheme results in good convergence.

III. EXPERIMENTS WITH SYNTHETIC DATA

In this section, we illustrate the unmixing performance
of the proposed spectral-spatial weighted sparse unmix-
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Algorithm 1 Pseudocode of the S>WSU Algorithm
1: Initialization:

2: set (O)k, t(0) (0)= o 020) c(}(l)())ose U, A€ >
0
0,UO, v” vi” vy, D{"”,D”, D}
3: Repeat:
4: Wgt)e <« diag L - 1 }
” NUO-D) (1) la+e” " [UO-DP)m.)|+e
(0 (0
Wypa,11 0 Wepain
-w) : ) :
> WSpa - . wspa,ij . ’
w® NG
spa,ml spa,mn
. n 1
6: where wg,, ;; = PR

7: Repeat:
8: UMD « ATA 21 ' ATV + D) + v + DY +
vy + D)
9: VI  LLIY + u(AUEHD — D))
10: VI soft U+ — D Lw (), wi),
11: V&Y maxu®+) —pP o)
12: Update Lag(range multipliersz
. pktD b _ Ayg*+D k1)
13: D}k+1) «~ D%k) AU +XL1)
14: D% <Dy —UkD 4y
15: D¥HD  p{P — gkt 4y
16: Update iteration: k < k + 1
17: UtHD  gk+h
18: DgH) - D(2k+1)
19: Update iteration: t < + 1
20: until some stopping criterion is satisfied.

ing method using simulated hyperspectral data sets. For
quantitative analysis, the signal-to-reconstruction error (SRE)
(measured in dB) is used to evaluate the unmixing accu-
racy. For comparative purposes, the results obtained by
the SUnSAL [15], SUnSAL-TV [31], DRSU [29], and
DRSU-TV [38] algorithms are also reported. Let X be the
estimated abundance, and x be the true abundance. The SRE
(dB) can be computed as follows:

SRE(dB) = 10 - log,o (E(IIxI3)/E(Ix —%I13))  (14)

Endmember 8
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Endmember 5

0 50
Endmember 9

True fractional abundances of the endmembers in the simulated data cube 1 (DC1).

where E(-) denotes the expectation function. Furthermore,
we use another indicator, i.e., the probability of success pj,
which is an estimate of the probability that the relative error
power be smaller than a certain threshold. It is formally defined
as follows: p;, = P(|X — x||?/|x||*> < threshold). In our
case, the estimation result is considered successfully when
IX—x|12/[Ix]|? < 3.16 (5 dB). This threshold was demonstrated
to be appropriate in [15]. The larger the SRE (dB) or p;y is,
the more accurate the unmixing is. Furthermore, a new metric
called sparsity is also introduced for validation. Specifically,
the sparsity measures the proportion of the number of elements
in X that are greater than 0.005 with regard to all elements.
It is obvious that the smaller the sparsity is, the more sparse
the unmixing solution is.

A. Simulated Data Sets

Two spectral libraries are considered in our experiments,
which are dictionaries of minerals extracted from the United
States Geological Survey (USGS) library.! The first library
Ay contains m = 240 materials (different mineral types),
which comprises spectral signatures with reflectance values
given in L = 224 spectral bands and distributed uniformly in
the interval 0.4-2.5 um. The library A, contains m = 222
materials (different mineral types), which comprises spectral
signatures with reflectance values given in L = 221 spectral
bands and distributed uniformly in the interval 0.4-2.5 um.
Two different data sets are simulated, in which the fractional
abundances are subject to the ANC and ASC.

1) Simulated Data Cube 1 (DCI): DC1 is generated with
100x 100 pixels and nine signatures, which are randomly
chosen from the spectral library Aj. The fractional
abundances are piecewise smooth, i.e., they are smooth
with sharp transitions. These data can reveal the spatial
features quite well for the different unmixing algo-
rithms. For illustrative purposes, Fig. 2 shows the true
abundance maps of the endmembers. After generating
the datacube, it was contaminated with independent
identically distributed Gaussian noise, for three levels
of the signal-to-noise (SNR) ratio: 30, 40, and 50 dB.

! Available online at http://speclab.cr.usgs.gov/spectral.1ib06.
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Fig. 3. True fractional abundances of the endmembers in the simulated data cube 2 (DC2).
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2)

Simulated Data Cube 2 (DC2): Following the work
in [45] and [46], a database of 100 x 100-pixel
synthetic hyperspectral scene has been created using
fractals to generate distinct spatial patterns often
found in nature. Nine spectral signatures are cho-
sen from A, to generate the synthetic hyperspectral
images: Alunite GDS83 Na63, Dumortierite HS190.3B,
Halloysite NMNH106236, Kaolinite CM9, Kaolinite
KGa-1 (wxyl), Muscovite GDS108, Nontronite GDS41,
Pyrophyllite PYS1A fine g, and Sphene HS189.3B. The

fractional abundance maps associated with each signa-
ture in the construction of the aforementioned synthetic
scene are shown in Fig. 3. Similar to DC1, the Gaussian
noise with SNR = 30, 40, and 50 dB is included in the
experiments.

B. Impact of the Regularization Parameters

In our first experiment, we analyze the impact of the
regularization parameters involved in the considered methods.
Fig. 4 illustrates the obtained SRE (dB) values as a function
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TABLE I

SRE (dB), ps, AND Sparsity SCORES ACHIEVED AFTER APPLYING DIFFERENT UNMIXING METHODS TO THE SIMULATED DATA CUBE | (THE OPTIMAL
PARAMETERS FOR WHICH THE REPORTED VALUES WERE ACHIEVED ARE INDICATED IN THE PARENTHESES)

. SNR=30dB SNR=40dB SNR=50dB
Algorithm
SRE(dB) Ps sparsity | SRE(dB) Ds sparsity | SRE(dB) | ps | sparsity
SURSAL 8.4373 | 0.7946 | 0.0497 | 15.1721 | 0.9886 | 0.0426 | 23.0894 | 1 | 0.0257
O\ = 2¢-2) (\ = 5e-3) O\ = le-3)
SURSAL.TY | 114304 | 09470 [ 0.0552 | 177695 | 0.9998 | 0.0341 | 26.1655 | 1 | 0.0178
()\ = le-2; Ary = 46—3) ()\ = be-3; Ary = 16—3) ()\ = 2e-3; Ary = 26—4)
DRSU 149876 | 09745 | 00249 | 296861 [ 1 | 0.0137 | 41.1967 | 1 [ 00120
(\ = 3¢-3) O\ = 1e-3) O\ = 6e-4)
DRSU.TY | 18:8630 | 09994 [ 0.0241 | 309403 | 1 [ 0.0128 | 41.1967 | 1 | 0.0120
(A= 2e-3; Ary = 2e-3) (A= 2e-3; Ary = 4e-4) (A = 6e-4; Ay = 0)
swsuwy | 205709 | 09995 | 0.0201 | 319461 | 1 [ 00126 | 41.4053 | 1 [ 0.0120
(\ = 5e-3) (\ = 3¢-3) O\ = 6e-4)
swsu.wa | 200216 | 09995 | 0.0211 | 31.6869 | 1 [ 00128 | 412838 | 1 [ 0.0120
(\ = 3¢-3) (\ = 3¢-3) O\ = 6e-4)
TABLE II

SRE (dB), ps AND Sparsity SCORES ACHIEVED AFTER APPLYING DIFFERENT UNMIXING METHODS TO THE SIMULATED DATA CUBE 2 (THE OPTIMAL
PARAMETERS FOR WHICH THE REPORTED VALUES WERE ACHIEVED ARE INDICATED IN THE PARENTHESES)

. SNR=30dB SNR=40dB SNR=50dB
Algorithm
SRE(dB) Ps sparsity | SRE(dB) Ds sparsity | SRE(dB) Ps sparsity
6.4259 | 0.6327 | 0.0653 | 11.5833 | 0.8877 | 0.0605 | 18.9987 | 0.9992 | 0.0444
SUnSAL
(\ = 8e-3) O\ = 2¢-3) (\ = 3e-4)
SURSAL.TV | 0371 | 07829 | 0.0788 | 154514 | 0.9866 | 0.0415 | 253557 | 1 | 0.0280
()\ = 46—3; )\TV = 26—3) ()\ = 66—5; )\TV = 96—4) ()\ = 56—5; )\TV = 96—5)
DRSU 142770 | 09454 [ 00279 | 260745 [ 1 | 00216 | 345202 | 1 [ 00210
O\ = 2¢-3) (\ = 6e-4) O\ = le-d)
DRSU.TY | 19:1426 | 09926 | 0.0273 | 276676 | 1 | 0.0216 | 359889 | 1 | 0.0209
(A =3e-3; Ary = 2e-3) (A= 6e-4; Ary = 4e-4) (A= 2e-4; Ary = le-4)
wsuwy 193999 | 09946 | 0.0226 | 27.9459 | 1 [ 00216 | 365364 | 1 | 0.0209
(\ = 3¢-3) O\ = Te-4) O\ = 2e-4)
wsu.wa 193593 | 09932 | 00228 | 27.7186 | 1 [ 00216 | 362337 | 1 | 0.0210
(\ = 3e-3) O\ = Te-d) O\ = 2¢-4)

of parameters A or/and Aty for DC1 with SNR = 40 dB for
the proposed approach, taking S>WSU-W1 as an example, and
SUnSAL-TV and DRSU-TV. It can be observed from Fig. 4
that, for the proposed approach (with only one regularization
parameter), it is very easy to reach a suboptimal setting.
However, for the two competitors, the performance strongly
depends on the setting of Aty. It should be noted that we
only report the results obtained from the methods with spatial
information. This is because the impact of the parameters
involved in the other methods, i.e., SZWSU-W2, SUnSAL,
and DRSU, is very similar to that of the proposed approach.

C. Analysis of the Computational Cost

In this experiment, we analyze the computational cost of
the considered methods. Fig. 5(a) and (b) shows the processing
times (in seconds) as a function of a different number of pixels

and a different number of signatures in the spectral library,
respectively. The data sets are generated, similar to DC1, using
11 signatures that are randomly selected from the spectral
library Aj, varying the number of pixels and the number
of signatures in the spectral library. All the algorithms were
implemented using MATLAB R2016a on a desktop computer
equipped with an Intel Core 7 Duo central processing unit (at
3.6 GHz) and 32 GB of RAM memory. It can be observed
from Fig. 5 that, for the methods with spatial information,
the proposed S?WSU-W1 and S?WSU-W2 methods are faster
than SUnSAL-TV and DRSU-TYV, especially with large image
sizes or spectral libraries containing many signatures.

D. Results and Discussion

Tables I and II show the SRE (dB), ps, and sparsity
results achieved by the different tested methods with the two
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considered simulated data sets, using all considered SNR
levels. In Tables I and II, the best scores obtained across
the considered parameter range (the optimal parameters for
which the reported values were obtained are indicated in the
parentheses) were reported.

From Tables I and II, we can see that the proposed
S?WSU-W1 and S?WSU-W2 algorithms obtain better SRE
(dB) results than other algorithms in all the cases. p; obtained
by the proposed approaches is also much better than those
obtained by other algorithms in the case of low SNR values,
which reveals that the inclusion of spatial information leads
to high robustness. Furthermore, the proposed approaches
can result in a substantial sparsity improvement. Note that,
with respect to the degree of sparsity, the S>WSU-W1 and
S?WSU-W?2 algorithms achieved better or comparable results
than the competitors in all the cases, which indicates that the
inclusion of a spatial factor in the sparse regularizer can further
enhance the sparsity of the solution. Based on this, we can

Pixels

SUnSAL-TV estimated abundances

Pixels

S2WSU-W1 estimated abundances
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Ground-truth and estimated abundances obtained for each endmember material in the spectral library for 1000 pixels in DC2 with SNR = 30 dB.

SZWSU-w2

(d) (e) ®

Fig. 7. Abundance maps obtained for the first endmember from DC1 under noise ratio of SNR = 30 dB. Difference map between the ground-truth abundances
and the result obtained by (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) DRSU-TV, (e) SZWSU-W1, and ) SZWSU-W2.

DRSU-TV S2WSU-W1

conclude that the spectral—spatial weighted strategy offers the
potential to improve unmixing performance in two different
analysis scenarios. Finally, the results obtained by S>WSU-W1
and SZWSU-W?2 are very similar, which indicates that different
window sizes have a little impact on the quality of the final
results.

To further illustrate the advantages of the proposed
spectral-spatial weighted framework in improving the sparsity
on the solution, we take DC2 with SNR = 30 dB as an
example for the purpose of visual interpretation. Fig. 6 shows
the corresponding fractional abundance estimations obtained
for each endmember in Aj, along with the ground-truth abun-
dances, in which the line denotes the abundance of a certain
endmember with 1000 randomly selected pixels. It should
be noted that, due to space constraints and in view of the
relatively poor estimation results of the SUnSAL, we did not
show it in Fig. 6. It can be seen that the number of endmembers
recovered by the proposed S>WSU-W1 and S?WSU-W2, and
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Fig. 8. Abundance maps obtained for the first endmember from DC2 under noise ratio of SNR = 30 dB. Difference map between the ground-truth abundances
and the result obtained by (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) DRSU-TV, (e) SZWSU- W1, and (f) SZWSU-W2.

DRSU-TV is very similar to the true number of endmembers,
which is much smaller than those produced by SUnSAL-TV
and DRSU. In other words, the proposed approaches obtained
less abundance lines corresponding to false endmember sig-
natures in the abundance matrix than both SUnSAL-TV and
DRSU. The superiority of S?WSU with respect to the other
algorithms indicates that spectral-spatial weights can further
improve the ability of the method for successfully identifying
endmembers.

For illustrative purposes, Figs. 7 and 8 show a graphical
comparison of the considered unmixing algorithms for the
simulated problems with an SNR of 30 dB, in which only the
abundance map of endmember 1 is presented, as the abundance
maps estimated for all endmembers exhibited similar behavior.
The difference maps between the estimated abundances and
the real ones are computed. The results obtained by SUnSAL
look noisy and/or inaccurate. SUnSAL-TV imposes spatial
consistency to improve the quality of unmixing results, but the
obtained abundance maps are oversmooth. Specially in Fig. 8,
the results obtained by both SUnSAL and SUnSAL-TV are
inaccurate. The unmixing results obtained by S?WSU-W1
and SZWSU-W2 are close to the ground-truth abundances,
which reveals a great advantage over other methods, espe-
cially the SUnSAL and SUnSAL-TV algorithms. Furthermore,
from those difference maps, we can observe that the results
produced by the proposed approaches exhibit more details,
preserving fine structures and texture, thus providing much
better estimations than those obtained by the DRSU algorithm.
Finally, the results obtained by S?WSU methods are slightly
better than those provided by DRSU-TV. This further indicates
that the spatial weight can promote the spatial correlation on
the solution and improve the unmixing performance.

IV. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this section, we resort to the well-known Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) Cuprite data set for
the evaluation of the proposed approach, which is a common
benchmark for the validation of spectral unmixing algorithms.
The data are available online in reflectance units.” The portion
used in experiments corresponds to a 350 x 350 pixel subset of
the scene, with 224 spectral bands in the range of 0.4-2.5 um

2http://aviris. jpl.nasa.gov/html/aviris.freedata.html.

Cuprite, Nevada
AVIRIS 1995 Data
USGS
Clark & Swayze
Tricorder 3.3 product
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Fig. 9. USGS map showing the location of different minerals in the Cuprite
mining district in Nevada.

and the nominal spectral resolution of 10 nm. Prior to the
analysis, bands 1 and 2, 105-115, 150-170, and 223 and
224 were removed due to water absorption and low SNR,
leaving a total of 188 spectral bands. The spectral library
used in this experiment is the same library Ay used in our
simulated experiments and the noisy bands are also removed
from Aj. The classification maps of these materials produced
by Tricorder software® are also displayed. Fig. 9 shows a
mineral map produced in 1995 by USGS, in which the
Tricorder 3.3 software product [47] was used to map different
minerals present in the Cuprite mining district. The USGS
map serves as a good indicator for qualitative assessment
of the fractional abundance maps produced by the different

3http://speclab.cr.usgs. gov/PAPER/tetracorder.
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Fig. 10. Fractional abundance maps estimated by SUnSAL, SUnSAL-TV,

DRSU, DRSU-TV, S2WSU-W1, and SZWSU-W2 as compared with the
classification maps produced by USGS Tricorder software for the considered
350 x 350 pixel subset of the AVIRIS Cuprite scene.

unmixing algorithms. Note that the publicly available AVIRIS
Cuprite data were collected in 1997 but the Tricorder map was
produced in 1995. In addition, the true abundances of the real
hyperspectral data are unavailable. Thus, we can only make
a qualitative analysis of the performances of different sparse
unmixing algorithms by comparing their estimated abundances
with the minerals map.

Fig. 10 conducts a qualitative comparison between the
classification maps produced by the USGS Tricorder algo-
rithm and the fractional abundances estimated by the
SUnSAL, SUnSAL-TV, DRSU, DRSU-TV, S?WSU-W1, and
S?WSU-W2 algorithms for three highly representative miner-
als in the Cuprite mining district (Alunite, Buddingtonite, and
Chalcedony). In this experiment, the regularization parameters
used for SUnSAL, DRSU, S>WSU-W1, and S’WSU-W2 were
empirically set to 4 = 0.001, 4 = 0.0001, 4 = 0.002,
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and 1 = 0.002, respectively, whereas the parameters for
SUnSAL-TV and DRSU-TV were set to 4 = 0.001 and
Aty = 0.001 and 2 = 0.002 and Aty = 0.0001, respectively.
As shown in Fig. 10, all the algorithms obtained reasonable
unmixing results, with high abundances for the pixels showing
the presence of the considered minerals. This indicates that the
sparse unmixing algorithms can lead to good interpretation
of the considered hyperspectral data set. However, it can
be seen that some of the abundance maps (e.g., Budding-
tonite mineral) estimated by SUnSAL and SUnSAL-TV look
noisy and the results obtained by SUnSAL-TV are over-
smoothed. In addition, DRSU yields abundance maps without
good spatial consistency of the minerals of interest (e.g.,
Chalcedony mineral), and we can also find that the abun-
dances estimated by S’WSU algorithms are generally compa-
rable or higher in the regions classified as respective minerals
in comparison with DRSU. Finally, the sparsity obtained
by SUnSAL, SUnSAL-TV, DRSU, DRSU-TV, S?WSU-W1,
and SZWSU-W2 are 0.0682, 0.0743, 0.0430, 0.0423, 0.0420,
and 0.0422, respectively. These small differences lead to the
conclusion that the proposed approaches use a smaller number
of elements to explain the data, thus obtaining higher sparsity.
Therefore, from a qualitative viewpoint, we can conclude that
the newly developed S*WSU method exhibits good potential
to improve the results obtained by other algorithms in real
analysis scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new spectral-spatial
weighted sparse unmixing (S?WSU) framework for an
enhanced hyperspectral data analysis. The proposed S?WSU
simultaneously exploits the spectral and spatial information
contained in hyperspectral images via weighting factors, aim-
ing at enhancing the sparsity of the solution. The underlying
optimization problem is iteratively solved by an outer—inner
looping scheme, where the inner loop updates the unmix-
ing coefficients via the ADMM and the outer loop updates
the spectral and spatial weights. Our experiments with both
simulated and real hyperspectral data reveal that the S>WSU
consistently achieves a better unmixing performance than other
advanced spectral unmixing algorithms. In addition, the pro-
posed method exhibits comparable or lower computational
complexity than available techniques. Although the experi-
mental results obtained in this paper are very encouraging, fur-
ther experiments with additional data sets should be conducted
in the future developments to further evaluate the performance
of S2WSU. Furthermore, in future work, we will adopt new
techniques, such as low-rank representation [48], [49] and
parallel computing [50], [51], to further optimize our new
spectral-spatial weighted model for hyperspectral unmixing.
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