
1432 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 9, SEPTEMBER 2019

Remote Sensing Single-Image Superresolution
Based on a Deep Compendium Model

J. M. Haut , Student Member, IEEE, M. E. Paoletti , Student Member, IEEE, R. Fernandez-Beltran ,
J. Plaza , Senior Member, IEEE, A. Plaza , Fellow, IEEE, and Jun Li , Senior Member, IEEE

Abstract— This letter introduces a novel remote sensing single-
image superresolution (SR) architecture based on a deep efficient
compendium model. The current deep learning-based SR trend
stands for using deeper networks to improve the performance.
However, this practice often results in the degradation of visual
results. To address this issue, the proposed approach harmonizes
several different improvements on the network design to achieve
state-of-the-art performance when superresolving remote sensing
imagery. On the one hand, the proposal combines residual
units and skip connections to extract more informative features
on both local and global image areas. On the other hand,
it makes use of parallelized 1×1 convolutional filters (network in
network) to reconstruct the superresolved result while reducing
the information loss through the network. Our experiments,
conducted using seven different SR methods over the well-known
UC Merced remote sensing data set, and two additional GaoFen-2
test images, show that the proposed model is able to provide
competitive advantages.

Index Terms— Deep learning (DL), remote sensing,
superresolution (SR).

I. INTRODUCTION

IMAGE superresolution (SR) has found a fertile domain in
the remote sensing field in order to overcome the optical

limitations inherent to airborne and space acquisition instru-
ments. Remote target tracking [1], land-cover mapping [2],
and fine-grained image classification [3] are some of the
most popular applications in which SR has shown to provide
competitive advantages. In general, single-image SR aims at
enhancing the resolution of a given input image from a single
view of the target scene, that is, the SR technology pursues to
recover spatial details that not captured by the imaging sensor,
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which logically implies a high level of visual uncertainty and
eventually demands strong image priors to effectively relieve
the ill-posed nature of the problem.

Different kinds of image reconstruction and learning para-
digms have been successfully applied to superresolve remotely
sensed imagery [4]. From the most traditional signal recon-
struction mechanisms to the most recent machine learning
algorithms, all the existing SR methodologies have their own
advantages and limitations. For instance, Zhang et al. [5] pro-
pose a land-cover mapping SR approach that takes advantage
of the self-similarity property to learn multiscale patch rela-
tions useful to increase the input image resolution. Despite
the fact that this and other approaches, such as [6], do not
require any external training set, their performances are usually
rather unsatisfactory in applications where precision is impor-
tant. Other authors make use of different machine learning
paradigms to define more accurate SR models based on a
training procedure using exemplar high-resolution data. For
instance, Yang et al. [7] present an SR technique based on
the sparse coding approach, which learns a coupled dictionary
from an external high-resolution training set in order to project
the input low-resolution image at a higher resolution scale.
Alternative works propose the use of probabilistic models to
learn the mapping between low-resolution and high-resolution
image domains [8]. Even though these and other recent
models [9], [10] have shown to obtain a good SR performance,
they are typically based on low-level visual features, which
eventually limits the SR capabilities, especially under the most
challenging remote sensing scenarios.

Recently, convolutional neural networks (CNNs) have
shown a great potential to capture high-level features from
optical data. Therefore, this paradigm has become one of the
most important technologies to deal with the SR problem,
and many CNN-based learning models have been proposed in
the literature. For instance, Dong et al. [11] propose a deep
learning (DL)-based approach to superresolve low-resolution
image patches. In the training stage, the method upscales the
low-resolution input images by a bicubic (BC) interpolation,
and then, a three-layer CNN is trained to learn a mapping
between these interpolated versions and their ground-truth
counterparts. Conceptually, each layer represents: 1) patch
extraction; 2) nonlinear mapping; and 3) high-resolution
generation. The first two layers use a formulation based
on the rectified linear unit (ReLU) on the filter responses,
i.e., max(0, W ∗ Y + B), where W and B represent the filters
and biases, respectively, ∗ is the convolution operator, and Y is
the input image. The third layer is a regular convolutional layer
with filter responses W ∗ Y + B . Finally, the loss function
used to train the parameters W and B of the network is
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Fig. 1. Proposed model architecture, composed by FE-net (whose layer’s outputs are concatenated at the end) and the R-net (composed by the inception
module, whose concatenated output feeds the upsampler, which is defined by a BC upsampling). The final output is obtained as the ensemble of eight models.

the mean square error. Despite the remarkable performance
achieved by this reference work, alternative CNN-based SR
approaches have been also proposed in the literature. In par-
ticular, a relevant extension can be found in [12], where
authors introduce several improvements based on three main
points: 1) defining an end-to-end mapping to avoid the initial
interpolation process; 2) reformulating the mapping layer by
shrinking the input feature dimension; and 3) using a deeper
architecture to achieve a superior restoration quality. Other
authors propose different network improvements instead. For
instance, Kim et al. [13] define an SR approach considering
a deeper architecture, a data augmenting scheme together
with residual and multiscaling learning. Even though all these
exhibit satisfactory SR performance, they have not been specif-
ically designed to manage remote sensing imagery, which
eventually constrains their effectiveness over this application
domain. Unlike general-purpose optical data, remotely sensed
images exhibit special complexity because they are typically
highly detailed and fully focused multiband shots. As a result,
other works propose CNN-based SR methods aimed at dealing
with satellite and aerial data: Lei et al. [14] present a DL
approach, especially designed to superresolve remote sens-
ing data. Specifically, this method defines a multilevel CNN
architecture in order to learn multiscale local and global image
features when introducing new spatial details. Notwithstanding
the remarkable performance achieved by these and other SR
approaches [15], [16], the intrinsic complexity of airborne and
space optical data, together with the specific particularities and
difficulties of the DL domain, still make room for improve-
ments focused on the development of new architectures able
to obtain performance advantages in the SR task.

Taking into account this scenario, this letter proposes a
novel SR approach based on a deep efficient compendium
model which integrates different improvements on the network
design to effectively superresolve remotely sensed images:
1) residual units; 2) skip connections; and 3) network in
network (NIN). On the one hand, the proposed architecture
uses a combination of residual units and skip connections
to extract more descriptive and informative visual features
on both local and global image areas. On the other hand,

TABLE I

KERNEL SIZES AND NUMBER OF FILTERS PER LAYER

parallelized 1 × 1 convolutional filters, also NIN [17], are
employed to generate the output superresolved image by
substantially reducing the dimensions of the previous layers
and, hence, the information loss through the network. With
this design, the proposed approach pursues to competently
superresolve remote sensing data while avoiding undesirable
visual artifacts. Our experiments, which include seven different
SR methods, the UC Merced data set, and two additional
GaoFen-2 test data products, reveal a very competitive per-
formance of our newly proposed approach.

II. METHODOLOGY

We propose an architecture based on fully CNN [18]. Our
model is composed by two parts (Fig. 1): 1) the feature extrac-
tor part (FE-net) and 2) the reconstruction part (R-net), which
are connected through a “concatenation” layer, where all the
feature maps obtained by FE-net are concatenated through skip
connections before being fed to R-net. The FE-net receives
the original image X ∈ R

n1×n2×n3 as input, which passes
through a hierarchical set of 12 convolutional layers, denoted
as C(n), in order to extract the corresponding feature maps
as a linear transformation between each layer’s input and
the layer’s kernel. The kernel size has been set to 3 × 3,
in order to reduce the number of parameters while considering
enough spatial information. Also, with the aim of learning the
nonlinear relationships between the data, nonlinear activation
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TABLE II

QUANTITATIVE ASSESSMENT FOR THE CONSIDERED SR METHODS (IN COLUMNS) USING THREE DIFFERENT SCALING FACTORS (IN ROWS)

functions have been allocated behind each learnable layer:
X(l+1) = H(W(l) ∗ X(l) + b(l)), where H(·) is implemented
by the parametric ReLU (P-ReLU) [19] in order to deal with
the decaying ReLU effect and the vanishing gradient problem.
In the end, all the output feature maps are concatenated and
sent to R-net.

The R-net follows the NIN architecture, implemented by
an inception module with two branches (layers A and B(1),
with kernels 1 × 1, and B(2) with kernel 3 × 3) in order
to reduce the input volume’s depth. The obtained output is
upsampled by one or more upsampling layers U of 3 × 3
kernels, which increment the spatial dimension by a 2× factor
through phase shift reshaping [20]. Then, upsampled feature
maps are processed by a convolutional layer (or reconstruction
layer with 3 × 3 kernel), which obtains a single map that
is combined with a BC-upsampled image X� ∈ R

m1×m2×m3 ,
where m1 = f · n1, m2 = f · n2, and m3 = n3 being
f the scaling factor. Finally, with the aim of stabilizing the
performance of the model, a self-ensemble learning step has
been included [21], obtaining the final superresolved image
Y ∈ R

m1×m2×m3 as the ensemble of eight models. Model
topology is described in Table I.

III. EXPERIMENTS

A. Data Sets and Methods
The remote sensing UC Merced data set has been considered

in our experiments, which contains 21 ground-truth classes
with 100 RGB images per class and a spatial resolution of
0.3 m/pixel. The data set has been randomly split into two
balanced halves for training and test purposes. In addition,
20% of the training data has been reserved for validation.
Regarding the experimental protocol, the original 256 × 256
high-resolution images have been initially downsampled using
the considered scaling factor and the BC kernel to generate
the corresponding low-resolution counterparts. Then, the low-
resolution test images have been superresolved using dif-
ferent learning-based SR models after training and validat-
ing the methods. It is important to highlight that all the
experiments have been carried out following the standard SR
procedure for RGB imagery, which is based on the uniform
color space transformation YCbCr [4]. In order to assess
the SR performance, two reference image quality metrics
have been employed: peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) [22]. Our exper-
iments include seven different SR methods available in the
literature: the BC interpolation kernel, the original sparse
coding approach (SR) [7] and five different DL-SR methods,
i.e., SRCNN [11], FSRCNN [12], CNN-7 [14], LGCNet [14],
and the proposed approach. An additional data set has also
been considered in order to assess the performance of the
proposal when transferring the knowledge learned from the
UC Merced data set to a different remotely sensed image

TABLE III

CLASS-BASED UC MERCED QUANTITATIVE SR ASSESSMENT

CONSIDERING A 3× SCALING FACTOR

collection. The considered external test collection is made
of two multispectral data products captured by the GaoFen-2
satellite, where only the RGB channels (3.2 m/pixel) have been
selected for the experiments. This collection has been kindly
provided by LGCNet authors for qualitative assessment since
there is not available high-resolution reference data.

B. Results and Discussion

Tables II–IV provide a quantitative assessment of the exper-
iments conducted over the UC Merced data set. In particular,
Table II presents the average PSNR (decibel) and SSIM results
for the considered SR methods when using three different
scaling factors, i.e., 2×, 3×, and 4×. Table III shows the
average PSNR (decibel) metric per class when considering a
3× upscaling factor. In addition, Table III contains a summary
of the quantitative metric results as well as the corresponding
inference times for the considered SR methods. Note that the
best metric value in all the tables is highlighted using bold
font.

According to the average quantitative results reported
in Table II, it is possible to point out several important observa-
tions. The first remarkable point is related to the effect of using
different scaling factors when superresolving the considered
test images. As we can observe, all the considered methods
obtain a better metric result with smaller magnification ratios
because, logically, there is more available visual information
to introduce high-frequency components when considering
small factors over the UC Merced data set. Nonetheless,
the proposed approach consistently provides the highest metric
improvement with respect to the second best method for
all the tested scaling ratios and metrics. In the case of the
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PSNR metric, the proposed approach outperforms, on average,
LGCNet in 0.20 dB, CNN-7 in 0.45 dB, FSRCNN in 0.40 dB,
SRCNN in 0.70 dB, SC in 0.95 dB, and the BC baseline in
2.17 dB. Analogously, the proposed approach average SSIM
result is higher on 0.013 for LGCNet, 0.020 for CNN-7,
0.019 for FSRCNN, 0.026 for SRCNN, 0.030 for SC, and
0.068 for BC. This initial quantitative comparison reveals that
the most recent DL-based SR models, i.e., LGCNet, CNN-7,
FSRCNN, and the proposed approach, are the most effective
to superresolve the UC Merced remote sensing data for all
the considered scaling ratios. However, the proposed approach
clearly provides the best average result in terms of the PSNR
and SSIM image quality metrics.

When analyzing the quantitative SR results per class,
we can also observe a remarkable improvement provided by
the proposed approach. Table III shows that the proposed
approach obtains the best PSNR result using a 3× scaling
factor in 13 UC Merced categories, whereas the second best
SR method (LGCNet) achieves the highest value in the rest
classes (8). Despite the fact that LGCNet and other recent
DL competitors provide a good SR performance, the proposed
approach shows a superior overall result when evaluating the
individual class results in more detail. On the one hand,
the proposed approach absolute PSNR class improvement
over LGCNet is 13.06 dB, which indicates the proposed
architecture effectiveness to superresolve UC Merced remote
sensing data. On the other hand, it is also possible to observe
that the proposed approach is especially effective in those
classes that contain a high level of spatial details, such as dense
residential, harbor, or parking, and therefore, they require a
higher amount of spatial details in the SR process.

In addition to the quantitative evaluation reported by
Tables II and III, some visual superresolved results are shown
in Figs. 2–5 as a qualitative evaluation for the tested methods.
In particular, Figs. 2 and 3 show the SR results for two specific
test UC Merced images, airplane and road considering 3× and
4× scaling factors, respectively. The visual results presented
in Figs. 2 and 3 reveal that each particular SR model tends to
generate different visual features on the superresolved output.
On the other hand, the BC baseline together with SC and
SRCNN seem very sensitive to the upscaling aliasing effect,
the most recent DL-based models FSRCNN, CNN-7, LGCNet,
and the proposed approach provide a substantially more robust
result for UC Merced remote sensing data, that is, SC and
SRCNN models were designed to superresolve images starting
from their corresponding interpolated versions, which logically
introduce an unavoidable aliasing effect that is eventually
superresolved in the final result. The most recent DL-SR
models, e.g., FSRCNN, CNN-7, LGCNet, and the proposed
approach, work for relieving this effect by using deeper
architectures that allow them to recover cleaner high-resolution
image patterns. For instance, it is easy to appreciate in Fig. 2
that BC, SC, and SRCNN introduce an important aliasing
effect on the airplane wing.

According to the visual result displayed in Fig. 3, it is
possible to see that the proposed approach is able to remove
a large amount of the noise present in the road details of
FSRCNN, CNN-7, and LGCNet. That is, the image lines
of the proposed approach result are sharper and certainly
the most similar to their high-resolution counterparts, which

Fig. 2. UC Merced airplane test image qualitative assessment for a 3× factor.

Fig. 3. UC Merced road test image qualitative assessment for a 4× factor.

eventually leads to the best visual perceived quality. Moreover,
the qualitative SR results provided in Figs. 4 and 5 show that
the proposed model is able to reduce the ringing artifacts when
compared to other methods that also indicates the proposed
model higher robustness to transfer the knowledge acquired
from the UC Merced data set to the GaoFen-2 collection
despite the existing spatial resolution differences. Finally,
the computational time results reported in Table IV reveal that
the proposed approach is able to achieve a high computational
performance level using a GPU NVIDIA GeForce GTX 1080,
whereas the considered competitors make use of a more
powerful GPU device, i.e., NVIDIA Titan Z.

The current trend in DL-SR is inspired on using
deeper architectures to improve the resulting performance
(see [13], [14]); however, this practice may result in a poor
propagation of activations and gradients, which eventually
degrades the quality of the convolutional features and, hence,
the superresolved result because output images can be affected
by noisy artifacts. To mitigate these issues, the proposed
approach makes use of a combination of residual units and
skip connections in order to extract more informative features
on both local and global image areas. On the other hand,
parallelized 1 × 1 convolutional filters are used to reconstruct
the resulting superresolved image by means of a network
architecture which substantially reduces the dimensions of
the previous layers in order to minimize the information loss
through the network. The combination of these improvements
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Fig. 4. GaoFen-2 airport test image qualitative assessment for a 3× factor.

Fig. 5. GaoFen-2 factory test image qualitative assessment for a 4× factor.

TABLE IV

METRICS SUMMARY FOR THE BEST CONSIDERED SR METHODS

allows the proposed approach to produce a more effective
remote sensing image computation while achieving state-of-
the-art performance.

IV. CONCLUSION

This letter presents a novel remote sensing single-image
SR approach based on a deep efficient compendium model.
The proposed architecture integrates different improvements
on the network design to achieve state-of-the-art performance
to superresolve remote sensing data: 1) residual units; 2) skip
connections; and 3) NIN. Our experiments, conducted over the
remote sensing UC Merced data set and GaoFen-2 tests images
using seven different SR methods available in the literature,
reveal that the presented approach is able to archive a state-
of-the-art SR performance in the remote sensing field. Future
work will be aimed at extending the proposed model to deep
self-learning architectures and comprehensively analyzing the

effect of considering different network modifications within
the remote sensing SR domain.
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