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Abstract— Convolutional neural networks have emerged as an
excellent tool for remotely sensed hyperspectral image (HSI)
classification. Nonetheless, the high computational complexity
and energy requirements of these models typically limit their
application in on-board remote sensing scenarios. In this context,
low-power consumption architectures are promising platforms
that may provide acceptable on-board computing capabilities
to achieve satisfactory classification results with reduced energy
demand. For instance, the new NVIDIA Jetson Tegra TX2 device
is an efficient solution for on-board processing applications using
deep-learning (DL) approaches. So far, very few efforts have been
devoted to exploiting this or other similar computing platforms
in on-board remote sensing procedures. This letter explores the
use of low-power consumption architectures and DL algorithms
for HSI classification. The conducted experimental study reveals
that the NVIDIA Jetson Tegra TX2 device offers a good choice in
terms of performance, cost, and energy consumption for on-board
HSI classification tasks.

Index Terms— Deep learning (DL), embedded computing,
hyperspectral image (HSI) classification, low-power consumption
architectures.

I. INTRODUCTION

THE use of miniaturized satellites (SmallSats) is becoming
an increasingly popular trend in many of the existing

Earth observation programs [1], allowing for a substantial
reduction of financial costs and hardware complexity [2].
As a result, this technology has been successfully employed
in a wide range of remote sensing applications, such as
monitoring of the atmosphere, land-cover categorization or
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mapping of urban areas, and the Earth surface [3]. Nonethe-
less, the increasing demand for extended computing capa-
bilities able to deal with new applications has introduced
the need to seek for architectures able to not only increase
computing capacity but also to reduce energy consumption.
These requirements may eventually constrain the use of these
small devices under highly demanding scenarios, such as the
use of deep-learning (DL) techniques for the classification of
hyperspectral image (HSI) data [4], [5].

Broadly speaking, HSI collects hundreds of narrow spectral
bands in order to simultaneously provide detailed spectral
and spatial information, which makes this data especially
useful to accurately identify different materials [6], [7]. Many
approaches have been proposed to perform HSI classification;
however, the intrinsic complexity of the HSI domain leads
to the fact that only the most advanced convolutional neural
networks (CNNs) are able to consistently provide satisfac-
tory results on different remote sensing applications [4], [8].
Furthermore, the selection of efficient computing platform
is another critical aspect to take into account, especially
when dealing with highly demanding methodologies from a
computational point of view. Even though some novel methods
pursue to reduce the number of training samples in order to
obtain robust classifiers [9], these approaches usually result
in computationally demanding models with limited practical
application in constrained hardware environments.

On the one hand, commodity clusters [10] and graphic
processing unit (GPU) platforms [11] have been traditionally
used to process HSIs, but those systems are hardly adapt-
able to on-board processing requirements which generally
introduce strong constraints in terms of energy consumption.
On the other hand, field-programmable gate array (FPGA)
devices [12] offer a good compromise between performance
and energy consumption, but they generally require a signifi-
cant effort from the design and programmability point of view,
which may eventually limit their practical application. In this
sense, an attractive alternative is the Tegra GPU architecture
which, in the last years, has dominated mobile platforms
and embedded devices as the Internet of Things. High rated
MPixel/s/Watio, less heat, and less space are important keys
when facing the on-board processing challenge.

Traditionally, space electronic systems have been highly
customized based on the FPGA approach; however, the Tegra
architecture is able to provide remarkably higher flexibility
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while becoming more scalable, affordable, and reliable. Even
though there are many on-board computing tasks in which
Tegra devices may be suitable to process and manage HSI
data, it is still necessary to conduct additional research to
fully test this hardware applicability. Although there is a
handful of jobs that embeds HSI-processing algorithms in
efficient platforms [13]–[15], there are very few jobs focused
on adapting DL models for remote HSI processing using
similar architectures. For instance, Randhe et al. [16] propose
to integrate an HSI-CNN model (implemented with Caffe
framework) into a Jetson TK1 application, reducing the com-
plexity via principal component analysis (PCA). However,
no implementation details are provided. In this sense, it must
be highlighted that although some projects developed by Air
Force and NASA experts aim at designing radiation-hardened
Tegra hardware for on-board purposes, there are very few
research works in the literature aimed at testing the actual
performance capability to process HSI data using the most
recent DL models for on-board exploitation.

This letter deeply explores, for the first time within the
remote sensing research community, the use of DL algo-
rithms over the new NVIDIA Jetson Tegra TX2 low-energy
consumption architecture by conducting a comparative study
of low–high-power consumption hardware applied to HSI clas-
sification tasks. The most recent Earth observation programs
work for providing high processing level products which
require an increasing demand of ground-segment hardware
resources [1]. As a result, studying new alternatives to relieve
this workload via on-board low-consumption devices is an
interesting option to alleviate ground-segment HSI data com-
putations. In this regard, the target of this letter is based
on shedding light on the use of the new NVIDIA Jetson
Tegra TX2 device for on-board HSI classification when it
is compared to other popular hardware alternatives avail-
able in regular ground-segment processing units, such as
Intel Xeon and NVIDIA GeForce GTX devices. Initially,
Sections II and III describe the considered low–high-power
consumption architectures as well as the DL-based HSI clas-
sification models. Then, Section IV presents the experimen-
tal comparison and highlights the most interesting results.
Finally, Section V provides interesting conclusions concerning
the energy consumption-based viability of moving specific
HSI data computations from the ground-segment resources to
on-board platforms via the NVIDIA Jetson Tegra TX2 device.

II. HIGH- VERSUS LOW-POWER

CONSUMPTION ARCHITECTURES

Leading manufacturers of high-performance computing
platforms, such as NVIDIA, launched the Jetson Tegra
TX1 device in 2015 as a low-power consumption device. This
platform was one of the first supercomputers built on a module
carrying a Tegra processor from NVIDIA and incorporating
an ARM processor. In 2017, NVIDIA announced the new
Jetson Tegra TX2 as a compact card design for low-power
scenarios. This device belongs to the NVIDIA Pascal family
and is an embedded system. The chip features 256 Compute
Unified Device Architecture (CUDA) cores that are based on
the same DNA that is featured on the Titan X (Pascal) GPU.

The ARM v8 CPU complex comprises two Denver 2 and
four A57 cores with a coherent heterogeneous multiprocessor
architecture geared for multithreading.

In contrast, high-power consumption architectures represent
now the most widely used choice when power restriction
is not necessary. Most of these solutions are based on a
workstation featuring a professional Intel Xeon processor in
conjunction with one or several NVIDIA GPUs from the
Pascal family. Among the main features of the latter is the use
of unified memory to solve the limited capacity available on
the GPU main memory to process large amounts of data. This
mechanism creates a pool of managed memory that is shared
between the GPU and the CPU, using a single pointer that is
accessible to both the CPU and GPU, bridging the CPU–GPU
divide. The data can be read or written from code running on
either CPUs or GPUs using calls to cudaMallocManaged().
An important aspect is that the Pascal GPU architecture is
the first one with hardware support for virtual memory page
faulting and migration, via its page migration engine.

In this letter, the Jetson Tegra TX2 device (referred to here-
inafter as Jetson) is compared against a professional hetero-
geneous platform (Intel Xeon processor equipped with a GPU
NVIDIA GeForce GTX 1080 and referred to hereinafter as
Xeon) focused on a detailed comparative study in performance
and energy consumption terms. To the best of our knowledge,
this kind of analysis has not been previously conducted in
the HSI processing literature using DL models for on-board
exploitation, and in our opinion, it is very important in order to
really calibrate the possibility of using low-power consumption
platforms for efficient HSI processing in real remote sensing
missions.

From a hardware point of view, the main differences
between the considered devices are based on the number of
CUDA processing cores, memory configuration, and thermal
design power (TDP). Specifically, the Xeon environment offers
over 10 times more CUDA cores and streaming multiproces-
sors than the Jetson device. Regarding the memory configu-
ration, we can find some major differences between both the
professional (GDDR5X) and Jetson (LPDDR4) platforms. The
Xeon platform exhibits higher bandwidth (over 4×) and lower
voltage. The 16-nm fin field-effect transistor technology allows
to explore new horizons for discrete memory I/O data rates,
from an initial rate between 10 and 12 Gb/s to a potential
up to 16 Gb/s. Moreover, it is possible to reduce the latency
gap between the local memory and shared internal/external
memory through cache prefetching. In the considered profes-
sional platform, this technique allows 64B data per memory
access to boost execution performance by fetching instructions
or data from their original storage in slower memory to a
faster local memory before it is actually needed. However,
LPDDR4 memory is able to achieve lower memory I/O data
rates (between 3.20 and 4.27 Gb/s) allowing cache prefetching
to 16B. In this way, the power consumption is reduced
by lowering the supply voltage (1.1 V) and maintaining an
acceptable bandwidth.

Last but not least, power consumption is another impor-
tant restriction to be considered in on-board processing.
In this case, the Jetson device presents two performance
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TABLE I

PROPOSED SPATIAL CNN TOPOLOGY

modes: Max-Q and Max-P. The first one is used on the maxi-
mum energy efficiency scenarios, where the board TDP sets to
7.5 W and Max-P sets to 15 W to the maximum performance.
On the other hand, the professional heterogeneous platform
presents an overall TDP of 180 W for the NVIDIA GPU
and 240 W for two Intel sockets considering the maximum
performance scenarios.

With the aforementioned considerations in mind, we empha-
size that the Jetson device offers very encouraging features that
make it a competitive platform for on-board processing, with a
good tradeoff between performance and energy consumption,
as compared to other professional platforms.

III. CONVOLUTIONAL NEURAL NETWORK

To test the performance of the hardware architecture, the
spatial CNN model [4] has been adopted. In particular, it is
composed by a feature extractor network that receives input
data patches of size d × d × 1, which are obtained from
the original HSI cube after applying a PCA-based reduc-
tion. The network topology comprises several convolutional
layers (CONV), defined by their corresponding kernel sizes
and activation functions (ReLU), in order to learn the nonlin-
earities present in the input data with the possibility to add
a downsampling step performed by pooling layers. Finally,
the extracted features are flattened and sent to the classifier that
is implemented as a multilayer perceptron with several fully
connected layers (FC), some of them equipped with dropout
to avoid overfitting. Table I summarizes the topology of CNN
models for each HSI data set.

Finally, CNN models have been optimized by using the
Adam optimizer with a learning rate of 0.001 [for the
Indian Pines (IP) data set] and 0.0008 [for the University of
Pavia (UP) data set] and 150 epochs. Also, d has been set
to 19, 29, and 39 with the aim of testing the computational
complexity when different amounts of spatial information
have been employed. In this sense, the CNN model needs
to fine-tune 54 288, 226 320, and 422 928 parameters for each
value of d .

IV. EXPERIMENTS

A. Experimental Environment
Two well-known HSIs have been used to perform our

experiments. The first one is known as 145 × 145 × 200
IP data set, captured by the airborne visible/infrared imaging
spectrometer (AVIRIS) sensor [4] in 1992 over an agricultural
area in Northwestern Indiana, comprising 16 different classes.
The second data set is the UP scene, acquired by the reflective
optics system imaging spectrometer sensor [4] over a 610 ×
340 × 113 urban area, comprising nine different classes.

Moreover, two different hardware environments have been
considered in this letter: 1) the Jetson (NVIDIA Jetson TX2),

which is an ARM GPU environment composed by a dual-core
NVIDIA Denver2 at 2.00 GHz together with a quad-core
ARM Cortex-A57 at 2.00 GHz, 8-GB 128-bit LPDDR4, and
integrated 256-core Pascal GPU at 1300 MHz; and 2) the
Xeon (multicore heterogeneous system), which is a 2×Intel
Xeon E5-2695v3 processors with 14 cores each, running
at 2.30 GHz, and 64 GB of DDR3 RAM memory. An NVIDIA
GeForce GTX 1080 GPU with 2560 CUDA cores operating
at 1772 MHz and dedicated memory of 8 GB.

Regarding the considered software environment, it consists
of Debian GNU/Linux 9 and Ubuntu 16.04 as operating
systems for both NVIDIA Jetson TX2 and multicore hetero-
geneous systems, respectively. Tensorflow 1.7 and CUDA 8
for GPU functionality.

B. Results
Table II presents the results of our CNN-based classification

experiments, conducted on the IP and UP data sets using the
two considered hardware environments. In columns, we show
the considered input patch size (i.e., 19, 29, and 39), the per-
centage of training data (i.e., 5%, 10%, and 15%), and the
corresponding overall accuracy (%) as well as the average
energy consumption (Wh) and computational time (s) for Xeon
and Jetson environments.

According to the reported quantitative results, it is possible
to highlight some important observations. Regarding the clas-
sification accuracy, the two considered hardware environments
exhibit a similar overall performance. Even though the Xeon
environment provides a slightly better average overall accuracy
than the Jetson one (+0.007%), the differences between both
hardware architectures are always under the standard deviation
values, which indicates that these small variations are not
statistically relevant and, hence, both environments perform
similarly in terms of overall accuracy.

Regarding the energy consumption and processing time met-
rics, experiments reveal several remarkable differences which
deserve to be mentioned. Specifically, the Xeon hardware
reports an average energy consumption of 0.4553 Wh whereas
the Jetson environment only requires, on average, 0.0452 Wh
which makes the former technology 10.06× more energy
demanding than the latter one. When considering the com-
putational time, the Xeon and Jetson environments obtain an
average computational time of 9.14s and 69.79s, respectively.
As a result, the Jetson hardware is 7.63× slower than Xeon,
nonetheless, it is also 10.06× more energy efficient, which
generates a positive balance of 2.43 in the energy/performance
ratio when considering the Jetson environment.

When analyzing the results in more detail, some interesting
points about the tested configurations can be highlighted. More
specifically, the obtained quantitative metrics show that the
amount of training data does not have a relevant effect on
the differences between both hardware environments. That is,
increasing the number of training samples from 5% to 10%
or 15% does not have an important impact on the compu-
tational time, because both Xeon and Jetson environments
take advantage of their GPU-based architectures to process
the input data, that is, NVIDIA GeForce GTX 1080 and
Pascal GPU, respectively. However, considering a bigger input
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TABLE II

QUANTITATIVE ASSESSMENT FOR XEON AND JETSON HARDWARE ENVIRONMENTS. IN COLUMNS, WE SHOW THE CONSIDERED BATCH SIZE,
THE PATCH SIZE (19 × 19, 29 × 29, AND 39 × 39), AND THE PERCENTAGE OF TRAINING DATA (5%, 10%, AND 15%). IN ROWS,

WE PROVIDE THE CORRESPONDING OVERALL ACCURACY (%), THE ENERGY CONSUMPTION (WH),
AND COMPUTATIONAL TIME (S) FOR EACH EXPERIMENTAL CONFIGURATION

Fig. 1. Runtime and energy differences between Xeon and Jetson environments considering 15% of training data and a spatial size of 19× 19 (first column),
29 × 29 (second column), and 39 × 39 (third column). Red bars: runtime improvement provided by Xeon with respect to Jetson (in number of times better).
Blue bars: energy savings provided by Jetson with respect to Xeon (also in times better). All experiments have been conducted using the AVIRIS IP data set.

patch size affects the two considered hardware configurations
in a different way. On the one hand, the Jetson architecture has
fewer and slower CPU cores than the Xeon one which logically
introduces an unavoidable processing delay as the networks’
parameters increase. Note that the number of parameters that
the CNN model requires to adjust substantially increases with
the input patch size, being 4.16× and 7.79× the increment
when using 29 × 29 and 39 × 39 sizes, respectively. On the
other hand, the Jetson hardware shares the memory between
ARM CPU and Pascal GPU units which makes this hardware
less efficient than the Xeon one when considering very large
input spatial sizes, e.g., 39 × 39, because of the two specific
memories present in the Xeon environment. Regarding the
considered batch sizes, a similar trend can be observed because
Jetson seems to provide a better energy/performance ratio with
respect to Xeon when smaller batch sizes are considered.

Fig. 1 displays the runtime and energy differences between
the two tested hardware environments in order to highlight the
aforementioned points over the IP data set. As we can see,
the runtime improvements provided by the Xeon environment
(red bars) are always lower than the energy consumption
savings provided by Jetson (blue bars), except when a 39×39
patch size is considered with 100 and 200 batch sizes. In turn,
the Jetson environment is, on average, 7.6× slower than the
Xeon one. The former is about 10× more energy efficient
which clearly reveals its better energy/performance tradeoff,
especially when not using very large input patch sizes. In the

remote sensing HSI classification field, the typical input patch
and batch sizes are substantially smaller than the maximum
values tested in this letter. For instance, a normal patch
size value could be 19 × 19 with 100 batch size (see [4]).
As a result, the Jetson hardware environment is shown to be a
highly suitable architecture for on-board remote sensing HSI
classification, because the energy savings in the acquisition
platform are substantially higher than the runtime increase in
the ground-segment unit.

Despite the fact that the Xeon environment has shown to
obtain a significantly lower computational time than Jetson
hardware, it is important to highlight that the latter environ-
ment has a much more reduced power consumption while
maintaining the classification accuracy which provides an
excellent scenario for on-board remote sensing processing
tasks. Fig. 2 shows a detailed graphical comparison between
the power consumption of both hardware environments over
the IP data set in order to better assess the obtained energy
results. As we can see, the Jetson energy consumption (dis-
played in the first row) is substantially lower than the one
corresponding to the Xeon configuration (shown in the second
row). Besides, the advantage provided by the Jetson architec-
ture becomes especially relevant when considering relatively
small batch and patch sizes because of the aforementioned
memory limitation of the NVIDIA Jetson Tegra TX2 hard-
ware. With all these considerations in mind, the Jetson
environment has shown to provide a competitive advantage
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Fig. 2. Energy consumption of Jetson (first row) and Xeon (second row) environments for the four considered batch sizes 25, 50, 100, and 200 (in columns)
considering a 39 × 39 input patch size. Note that each figure shows the used CPU, GPU, and total energy consumption (W) and the time (s).

in constrained scenarios where power consumption, physical
space, and financial costs are important decision factors.
Precisely, this is the case of remote sensing platforms where
this kind of hardware can be an optimal choice to relieve the
ground-segment computations when classifying HSI data using
relatively simple CNN-based architectures with a constrained
number of parameters (i.e., two CNN layers with max-pooling,
over a 19 × 19 input patch size and a batch size up to
100 samples). Consequently, the experimental results and the
exhaustive power consumption analysis conducted in this letter
reveal the viability of integrating the new NVIDIA Jetson
TX2 for on-board remote sensing HSI classification.

V. CONCLUSION

This letter studies the possibility of exploiting the new
NVIDIA Jetson Tegra TX2 device for on-board HSI clas-
sification in order to relieve ground-segment computations
when generating high-level remote sensing products. Our
experimental results, conducted using two different hardware
environments and two reference HSI data sets, indicate that
the Jetson device provides satisfactory energy/performance
results for on-board HSI classification when considering con-
strained CNN-based architectures. Future work will be focused
on analyzing other HSI processing algorithms on additional
low-power consumption hardware platforms.
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