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Abstract— Convolutional neural networks (CNNs) have
become a powerful tool for remotely sensed hyperspectral image
(HSI) classification due to their great generalization ability and
high accuracy. However, owing to the huge amount of parameters
that need to be learned and to the complex nature of HSI data
itself, these approaches must deal with the important problem
of overfitting, which can lead to inadequate generalization and
loss of accuracy. In order to mitigate this problem, in this
letter, we adopt random occlusion, a recently developed data
augmentation (DA) method for training CNNs, in which the
pixels of different rectangular spatial regions in the HSI are
randomly occluded, generating training images with various
levels of occlusion and reducing the risk of overfitting. Our results
with two well-known HSIs reveal that the proposed method helps
to achieve better classification accuracy with low computational
cost.

Index Terms— Convolutional neural networks (CNNs), hyper-
spectral images (HSIs), random occlusion data augmenta-
tion (DA).

I. INTRODUCTION

REMOTELY sensed hyperspectral images (HSIs) comprise
hundreds of continuous and narrow spectral bands, where

each pixel (vector) characterizes uniquely the observed objects.
HSIs have been widely used in many applications, includ-
ing classification, segmentation, or target detection. Many
different machine learning techniques have been used for
extracting information from HSIs, including support vector
machines (SVMs) [1], extreme learning machines (ELMs) [2],
and single-hidden layer feedforward networks (SHLFN) [3].
Recent advances in earth observation missions have allowed
capturing more complex HSI images, comprising a larger
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number of spectral bands and higher spectral and spatial
resolution. This has imposed requirements in terms of run
times and storage [4]. In this context, convolutional neural
networks (CNNs) have emerged as a powerful tool for
HSI data interpretation [5], [6], consolidating deep learning
CNN-based approaches as the current state of the art in HSI
data classification [3].

Most available CNN techniques for HSI data classification
suffer from the problem of overfitting. Coupled with the great
spectral variability present in HSIs, this problem complicates
the learning process. To the best of authors’ knowledge,
traditional efforts to mitigate the overfitting problem [7] and
improve the generalization ability of CNNs are based on
increasing the amount of training data by including large
spatial patches in the training process, possibly by means
of geometric transformations [6]. Other techniques focus on
applying regularization methods; for instance, Paoletti et al. [5]
use dropout and maxpooling techniques. Other recent efforts
are aimed at improving the model architecture, e.g., by adding
more connections between layers [8] or by developing residual
architectures [9] to feed each layer with additional information.
These methods have been further extended by other existing
strategies, such as pixel-pairs features (PPFs) [10], active
learning [11], or fully connected architectures [12]. However,
these methods reduce overfitting at the expense of making an
extensive use of the output (softmax) layer, which increases
computational complexity. For instance, Li et al. [12] try to
insert new information in this layer using principal component
analysis (PCA), while Haut et al. [11] improve the model’s
generalization by incorporating the samples that have more
uncertainty. Similarly, the work by Li et al. [10] intends to
solve the problem of data occlusions by using PPFs in the
pixel neighborhood information.

In fact, data occlusion is an important problem in remote
sensing, which is related to those areas of the surface of the
earth which are not visible from the remote sensor due to
external factors, such as the interruption between the sensor
and the target 2-D surface, or the presence of nearby 3-D
objects. This problem is motivated by the presence of clouds,
shadows, or other objects, which result in a loss of information
over the scene. Inspired by human reasoning, which is intrin-
sically based on the interpretation of 3-D spaces [13], several
techniques have been developed to address data occlusions.
This concept can also be used to enhance the training of
machine learning methods. In this letter, we adopt a recently
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developed technique for data augmentation (DA) [14] that
reduces the overfitting of CNN models by modifying randomly
(in each learning batch and in each iteration) some of the
input data by replacing a part of them with an empty patch
of random dimensions. This technique, known as random
occlusion, is computationally efficient, easy to implement, and
can be inserted into CNN-based HSI classification frameworks
in a straightforward manner, without penalty at runtime.

The main innovative contributions of this letter can be
summarized as follows.

1) We introduce a new deep CNN model for HSI classifica-
tion that eliminates the need to use large spatial patches
in the training phase in order to reduce overfitting. The
use of large spatial patches has been adopted in several
works [12], [15], but this leads to high computational
complexity. Specifically, the aforementioned approaches
use patch sizes of 27 × 27 [15] and 48 × 48 [12] pixels,
respectively. Our proposed method is able to achieve
similar results to those reported by the aforementioned
methods with smaller patch size (i.e., 23 × 23).

2) The proposed method offers a new way to increase
the amount of available training data in the sense that
by generating different samples with different occluded
areas, the number of available samples increases, and
the associated spatial content varies considerably. As a
result, in addition to introducing variations in spatial
features (making the learning process more robust), the
proposed method can be considered as an effective
DA technique.

Furthermore, the adopted strategy is quite simple and easy
to implement/integrate in HSI classification frameworks, and
it does not significantly increase the computational load as
opposed to some widely used DA methods, which are quite
complex and require extra parameter learning and/or high
memory consumption. Also, it can be complemented by
other traditional DA techniques based on crops or rotations.
Section II describes the proposed method in detail. The
experimentation over two HSIs (Section III) demonstrates
that the proposed method exhibits good results with very
few training samples, improving the performance of a spatial
CNN (2-DCNN)—an architecture that is traditionally ham-
pered by overfitting—due to the variability of the information
contributed by means of the adopted random occlusion DA
method. Finally, Section IV concludes this letter with some
remarks and hints at plausible future research lines.

II. METHODOLOGY

An HSI data set X is composed by n1 × n2 pixel vectors,
where each pixel xi ∈ R

nbands collects the spectral infor-
mation in nbands spectral bands, creating a huge data cube,
X ∈ R

n1×n2×nbands .
In order to process the HSI image X using a traditional

2-DCNN model, a preprocessing stage is often carried
out, consisting of two main steps [16]: 1) dimensionality
reduction, normally using PCA [17], which reduces the nbands
to one PC, reducing the spectral dimensionality and the
requirements in terms of runtime and 2) grouping of the HSI
pixels in regions in order to create, for each pixel vector xi ,
a d × d spatial patch pi ∈ R

d×d that contains the spatial

neighborhood around the pixel. These patches are used to
extract feature maps that will represent and characterize the
original input data. Although 2-DCNN models outperform
pixel-based (1-DCNN) models by the inclusion of spatial
information, they are quite sensitive to the quality of the
spatial information contained in the patches, in the sense that
small variations produced by noise or occlusions, together
with overfitting, can lead the model to misclassifications and
oversmoothing of small objects [18]. In order to address this
issue, a large number of training samples Dtrain = {pi , yi }L

i=1
(being yi the corresponding label of pi ) or additional data
variations L + L+ (via DA) are often required.

Instead of obtaining L+ new training samples, our adopted
method increases randomly the variability of training samples
by performing random occlusions over the data, which is a
simple and inexpensive form of DA. In this regard, the pool of
training samples Dtrain is first shuffled, where each pi grouped
into different batches B j in each epoch of the network’s train-
ing process. These batches are initially preprocessed before
being fed to the 2-DCNN model, assigning an initial random
probability from a Gaussian distribution, p, to every patch
pi ∈ B j . Those pi with higher values of p are modified by
random occlusions, until a percentage of randomly occluded
samples per batch (denoted by n) is reached.

The occlusion strategy works as follows. For each pi ,
we calculate a rectangular region p∗

i ∈ R
d∗

1 ×d∗
2 allocated

inside the patch. In order to obtain both the spatial dimension
d∗

1 × d∗
2 and the exact location of p∗

i in pi , the occlusion
strategy first obtains the area of the original input patch pi as
ai = d · d . From this value, the method calculates a smaller
region (whose size is between a minimum and maximum
threshold) over the original patch area, a∗

i = rand(tmax·ai , tmin·
ai ). This a∗

i becomes the area of p∗
i , which complies with the

expression a∗
i = d∗

1 · d∗
2 . The next step is to obtain d∗

1 and d∗
2

as follows:

d∗
1 =

√
a∗

i · ri and d∗
2 =

√
a∗

i

ri
(1)

where ri is a randomly selected value between a minimum
and maximum threshold value: ri = rand(rmin, rmax), whose
goal is to avoid nondesirable shapes (such as horizontal and
vertical lines). Finally, the process randomly allocates the p∗

i
by making sure that it does not exceed the margins of the
original pi , and fills the area with a predetermined value, that
is, the occluded pixels have been set to 0.5 in our experiments.

The aforementioned process is repeated at every epoch
of the training process, over all the batches that conform
the training data set, allowing the model to be fed with
a rich set of variations over the same training data. The
procedure is illustrated in Fig. 1, which shows a graphical
result of this processing method. The details of the 2-DCNN
model architecture adopted in our work to implement the
aforementioned strategy are given in Table I.

III. EXPERIMENTS

A. Experimental Configuration

With the aim of testing the performance of the proposed
DA method for HSI classification using the baseline 2-DCNN
architecture given in Table I, a set of experiments have been



HAUT et al.: HSI CLASSIFICATION USING RANDOM OCCLUSION DA 1753

Fig. 1. Example of random occlusion DA in two different input patches.
(Leftmost column) Original (not occluded) patches, while the other patches
exhibit occluded zones shown in green.

TABLE I

ARCHITECTURAL DETAILS OF THE PROPOSED 2-DCNN
FOR HSI CLASSIFICATION

performed over a hardware environment composed by a sixth
generation Intel Core i7-6700K processor with 8 M of Cache
and up to 4.20 GHz (4 cores/8 way multitask processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz, a
GPU NVIDIA GeForce GTX 1080 with 8-GB GDDR5X of
video memory and 10 Gb/s of memory frequency, a Toshiba
DT01ACA HDD with 7200 RPM and 2 TB of storage capac-
ity, and an ASUS Z170 pro-gaming motherboard. In order
to efficiently implement the proposed approach, it has been
parallelized over the GPU using Cuda language over Pytorch
framework [19]. All the codes and examples presented in this
letter are available online.1

B. Hyperspectral Data Sets

Two well-known HSIs have been used to perform
experiments. The first one is the 145 × 145 × 200 Indian
Pines (IP) data set, captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor [20] in 1992 over
several agricultural fields in Northwestern Indiana. The
16 different classes are available in this scene. The second
data set is the University of Pavia (UP) scene, acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor [21] over a 610 × 340 × 113 urban area, comprising
nine different class labels.

C. Results and Discussion

1) Experiment 1: In this experiment, we compare the
performance of the 2-DCNN model (implemented using the
proposed strategy) with seven standard HSI classifiers which
traditionally suffer from the overfitting problem. Specifi-
cally, six pixel-wise classifiers have been selected: SVM

1https://github.com/mhaut/ROhsi

Fig. 2. Evolution of the (Left) loss and (Right) OA as a function of the
number of training epochs when using the 2-DCNN with and without the
proposed random occlusion DA method (occluding 25% of the IP data in
each training batch).

implemented with radial basis function (SVM-RBF), ran-
dom forest (RF), SHLFN, ELM, kernel ELM (KELM), and
a spectral-based CNN (1-DCNN). In addition, the baseline
spatial-based 2-DCNN without the proposed strategy has also
been included. The resulting values from RF, SVM-RBF,
SHLFN, ELM, KELM, and 1-DCNN have been extracted
from Ghamisi et al. [3], while the two 2-DCNN models (with
and without DA) have been implemented in accordance with
the architectural details given in Table I. The reported results
correspond to the mean of five Monte Carlo runs, and we use
five different training percentages: 1%, 3%, 5%, 10%, and 15%
of randomly selected labeled data from the two considered data
sets. The rest of the data has been used for testing.

Table II reports the overall accuracies (OAs) obtained
after the conducted experiments. On the leftmost part of the
table, we report the results obtained by traditional classifiers.
On the rightmost side of the table, we report the results
obtained by a 2-DCNN implemented with the proposed DA
approach (2-DCNN-n), with n set to 5%, 15%, 25%, and
50% occlusion percentages.

Focusing on the results obtained for the IP data set and
looking at the leftmost part of the table, we can see how
the OA is increased as we add more training samples to the
classifiers, being the 2-DCNN the one with best OA values.
This is mainly due to the efficient use of the spatial information
contained in the input data, which improves the generalization
ability. However, these OAs are lower than those achieved by
the 2-DCNN implemented with the proposed DA approach.
In the rightmost part of Table II, we can see how the proposed
method increases the accuracy by more than 3% points with
only occluding 5% of each batch, until reaching final solutions
with OAs that are 4% or 5% points superior to those achieved
by the standard 2-DCNN model when occluding the 50%
of the batch. This reveals that even with very little effort
(i.e., by simply occluding 10%–15% of the data), the proposed
method is able to significantly increase the OA. If we now
focus on the UP data set, we can also observe that the OA val-
ues of standard classification methods (at the leftmost part of
Table II) are increased when more training data are used, being
the SVM-RBF the best classifier when few training samples
are available. These results are improved by those obtained by
the traditional 2-DCNN when 3% and higher training percent-
ages are used. If we compare the baseline 2-DCNN with the
proposed implementation in the rightmost part Table II, we can
see that by adding only 5% of occlusions into batches, the
proposed method is able to outperform the OA in more than
1% point, a difference that is increased as more occlusions is
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TABLE II

OAS OBTAINED BY DIFFERENT CLASSIFICATION METHODS FOR THE IP AND UP SCENES. THE LEFTMOST PART SHOWS THE RESULTS OBTAINED
BY TRADITIONAL CLASSIFIERS WITHOUT THE PROPOSAL. THE RIGHTMOST PART SHOWS THE RESULTS OBTAINED BY A 2-DCNN WITH THE

PROPOSED DA APPROACH (2-DCNN-n), WITH n SET TO 5%, 15%, 25%, AND 50% OCCLUSION PERCENTAGES

Fig. 3. Classification maps for the IP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table III. Note that, the OA values are shown in brackets and the best result is highlighted in bold font. (a) RGB. (b) GT. (c) 2-DCNN
(92.73%). (d) 2-DCNN-5% (96.00%). (e) 2-DCNN-15% (96.94%). (f) 2-DCNN-25% (96.94%). (g) 2-DCNN-50% (97.50%).

Fig. 4. Classification maps for the UP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table IV. Note that, the OA values are shown in brackets and the best result is highlighted in bold font. (a) RGB. (b) GT. (c) 2-DCNN
(98.33%). (d) 2-DCNN-5% (98.88%). (e) 2-DCNN-15% (99.12%). (f) 2-DCNN-25% (99.17%). (g) 2-DCNN-50% (99.09%).

added to the training data, until reaching the best OA (99.92%)
with 15% of training data and 50% of occlusions.

2) Experiment 2: Our second experiment compares the
proposed approach with traditional spatial-based CNN models.
Specifically, we report the results obtained by the spatial
model proposed by Chen et al. [15] (which is shallower
than the proposed 2-DCNN and fed with bigger spatial
patches), the proposed baseline 2-DCNN architecture without
the proposal improvement, and the 2-DCNN framework with
different percentages of the proposed random occlusion DA
strategy. To facilitate the comparison, we have considered
(for each of the two considered scenes) the number of pixels
per class indicated by Chen et al. [15].

Tables III and IV, respectively, provide the obtained results
for the IP and UP scenes, reporting the OA and also the
average accuracy (AA), kappa statistic, and runtime in the
considered computing environment (in seconds).

The results reported in Table III indicate that the base-
line 2-DCNN provides better results than the method in
Chen et al. [15] in terms of accuracies and runtime. These
results are improved when incorporating the random occlusion
DA strategy to the 2-DCNN, increasing the OA in about
6%–8% points over the method in Chen et al. [15] and
in about 3%–5% points over the standard 2-DCNN. Fig. 2
graphically shows how the standard 2-DCNN tends to quickly
overfit, reaching a very low loss value in the training stage
but being unable to reduce the loss in the test stage, which
ultimately reduces the test accuracy. However, when the ran-
dom occlusion DA strategy is adopted, several variations are
introduced that prevent the training from reaching the lowest
loss value, and this allows the model to continue learning,
which leads to low test errors and high test accuracies. On the
other hand, it is important to emphasize that the runtime of the
2-DCNN, with and without the random occlusion DA strategy,
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TABLE III

OA, AA, KAPPA STATISTIC, AND RUNTIME OBTAINED BY DIFFERENT
SPATIAL-BASED CLASSIFICATION METHODS FOR THE IP SCENE

TABLE IV

OA, AA, KAPPA STATISTIC, AND RUNTIME OBTAINED BY DIFFERENT
SPATIAL-BASED CLASSIFICATION METHODS FOR THE UP SCENE

is very similar (less than one second difference), being in both
cases lower than that of the method in [15]. This makes the
adopted strategy a very attractive one to easily increase the
performance of the network at very low computational cost.

The results obtained with the UP scene provide similar
observations (see Table IV), with improvements of over 5%
points in OA when compared to the method in [15]. In our
experiment, the proposed approach is faster than the 2-DCNN
baseline when occluding 5% of the data in each batch.

For illustrative purposes, Figs. 3 and 4, respectively, show
some of the obtained classification maps for the IP and UP
data sets, using the 2-DCNN baseline model and the proposed
approach (occluding 5%, 15%, 25%, and 50% of training
samples in each batch). Once again, the proposed method is
able to improve the performance of the model at no cost.

IV. CONCLUSION

This letter evaluates a simple DA approach for HSI clas-
sification which is based on randomly occluding areas of the
input data to reduce overfitting problems in CNN models. The
obtained results demonstrate that the adopted approach is quite
efficient, as it is able to improve the generalization ability of
CNNs without increasing the computational cost. Since the
adopted approach is not restricted to spatial-based 2-DCNNs,
in the future, we plan to incorporate it to spatial–spectral
3-DCNN architectures.
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