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A B S T R A C T

Advances in computing technology have fostered the development of new and powerful deep learning (DL)
techniques, which have demonstrated promising results in a wide range of applications. Particularly, DL methods
have been successfully used to classify remotely sensed data collected by Earth Observation (EO) instruments.
Hyperspectral imaging (HSI) is a hot topic in remote sensing data analysis due to the vast amount of information
comprised by this kind of images, which allows for a better characterization and exploitation of the Earth surface
by combining rich spectral and spatial information. However, HSI poses major challenges for supervised clas-
sification methods due to the high dimensionality of the data and the limited availability of training samples.
These issues, together with the high intraclass variability (and interclass similarity) –often present in HSI data–
may hamper the effectiveness of classifiers. In order to solve these limitations, several DL-based architectures
have been recently developed, exhibiting great potential in HSI data interpretation. This paper provides a
comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and
weaknesses of the most widely used classifiers in the literature. For each discussed method, we provide quan-
titative results using several well-known and widely used HSI scenes, thus providing an exhaustive comparison
of the discussed techniques. The paper concludes with some remarks and hints about future challenges in the
application of DL techniques to HSI classification. The source codes of the methods discussed in this paper are
available from: https://github.com/mhaut/hyperspectral_deeplearning_review.

1. Introduction

Imaging spectroscopy, also called hyperspectral imaging (HSI),
studies how the light interacts with the observed materials, measuring
the amount of light that is emitted, reflected or transmitted from a
certain object or target. Imaging spectrometers (also called HSI sensors)
usually operate in the 0.4 to 2.5µm spectral region, capturing the
visible and solar-reflected infrared spectrum (i.e., the near-infrared or
NIR, and the short-wavelength infrared or SWIR) from the observed
materials. However, as opposed to broad-band sensing systems that
under-sample the available spectral information, narrow-band HSI
systems are able to produce, for each captured target, a distinctive
spectral signature composed by reflectance measurements at hundreds
of different wavelength channels (Goetz et al., 1985). The exploitation
of spectral signatures as unique fingerprintsmakes imaging spectrometry
an interesting and powerful tool for the categorization of the surface of
the Earth, reaching promising results in a wide range of applications
(Huadong et al., 2001; Transon et al., 2017; Khan et al., 2018; Transon
et al., 2018). In the current literature, a great number of works focus on
the use of HSI data for resource management. For instance, in

agricultural applications (Teke et al., 2013) there are several works
focused on the analysis of environmental stress in crops and associated
diseases (Strachan et al., 2002; Feng et al., 2017), crops variability
(Yang et al., 2004; Rußwurm and Körner, 2017), soil erosion stages
(Bannari et al., 2006; Chabrillat et al., 2014) or precision agriculture
(Haboudane et al., 2004; Rodríguez-Pérez et al., 2007; Mahesh et al.,
2015), among many others. In forestry and environmental manage-
ment, relevant works have been presented on analyzing the status and
health of forests (Coops et al., 2003; Shang and Chisholm, 2014), in-
vasive species detection (Ustin et al., 2002a; Große-Stoltenberg et al.,
2016), and infestations in plantation forestry (Narumalani et al., 2009;
Peerbhay et al., 2015). Also, in water and maritime resources man-
agement (Younos and Parece, 2015), several studies have focused on
water quality analysis (Koponen et al., 2002; Olmanson et al., 2013; El-
Magd and El-Zeiny, 2014) and precipitations (Zhou et al., 2011) or sea
ice detection (Han et al., 2017). In geological exploration and miner-
alogy, HSI data have been used for detection and mapping of mineral
deposits (Resmini et al., 1997; Kokaly et al., 2013; Kokaly et al., 2016;
Mazhari et al., 2017; Scafutto et al., 2017; Aslett et al., 2018; Dumke
et al., 2018; Acosta et al., 2019) or soil composition analysis (Shi et al.,
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2014). Other areas in which the use of HSI provided relevant results
include urban planning (Abbate et al., 2003; Lulla et al., 2009; Heldens
et al., 2011; Man et al., 2015; Anand et al., 2017), disaster prediction
(Ustin et al., 2002b; Roberts et al., 2003; Transon et al., 2018;
Veraverbeke et al., 2018), military and defense applications (Richter,
2005; Briottet et al., 2006; Ardouin et al., 2007; El-Sharkawy and
Elbasuney, 2019) and archaeological analyses (Savage et al., 2012).
Several efforts have been made over the past decades to produce

high-quality HSI data for Earth Observation (EO) (Lucas et al., 2004;
Ghamisi et al., 2017b), developing a wide range of imaging spectro-
meters placed on aerial/satellite platforms, and recently also on sta-
tionary or hand-held platforms. These sensors combine the power of
digital imaging and spectroscopy to extract, for every location in an
image plane, the corresponding spectral signature, using thousands of
narrow and continuous bands and acquiring complete HSI data cubes
by raster-scanning the scene while the platform moves across the sur-
face (i.e. pushbroom sensors), covering large observation areas. As re-
sult, the captured area or scene is recorded in different wavebands,
creating a huge data cube × ×X n n nbands1 2 , composed by ×n n( )1 2
spectral vectors or HSI pixels, where each xi

nbands records the
spectral signature of the observed material.
Nowadays, several instruments are routinely capturing great vo-

lumes of HSI data, with some of them exhibiting high acquisition rates,
i.e. being able to capture gigabytes (GBs) or even terabytes (TBs) of data
per hour (Vane et al., 1989; Kruse et al., 2000). In this regard, Table 1
provides the specifications of some of the best-known spectrometers
currently available. Moreover, advances in computing technologies
have achieved great improvements in the data acquisition, storage and
processing procedures, allowing also the launch of a number of HSI-EO
missions –such as the NASA Hyperspectral Infrared Imager (HyspIRI)
(Roberts et al., 2012), the Environmental Mapping and Analysis Pro-
gram (EnMAP) (Kaufmann et al., 2008) or the Precursore IperSpettrale
della Missione Applicativa (PRISMA) program (Galeazzi et al., 2008)–
as well as the practical application of remotely sensed HSI data in real
scenarios (Tuia and Camps-Valls, 2009; Zhang and Du, 2012), pro-
viding a general idea about the importance and utility of HSI-based
remote sensing.
The specialized literature about remotely sensed HSI data covers a

wide range of processing techniques that can efficiently extract the
information contained in the HSI cube. The most popular ones include:
(i) spectral unmixing (Bioucas-Dias et al., 2012; Heylen et al., 2014; Shi
and Wang, 2014; Sánchez et al., 2015; Zhong et al., 2016a), (ii) re-
solution enhancement (Eismann and Hardie, 2005; Mookambiga and
Gomathi, 2016; Yi et al., 2017; Yi et al., 2018), (iii) image restoration
and denoising (Xu and Gong, 2008; Chen and Qian, 2011; Zhang et al.,
2014; Wei et al., 2017b), (iv) anomaly detection (Stein et al., 2002; Xu

et al., 2016; Kang et al., 2017), (v) dimensionality reduction (Bruce
et al., 2002; Haut et al., 2018d) and (vi) data classification (Fauvel
et al., 2013; Camps-Valls et al., 2014; Ghamisi et al., 2017a). In this
work, we particularly focus on the topic of HSI data classification,
which has received remarkable attention due its important role in land
use and land cover applications (Cheng et al., 2017a), and which is
currently one of the most popular techniques for HSI data exploitation
(Chang, 2007).
A wide variety of HSI data classification methodologies rely on

machine learning (ML) techniques (Kotsiantis et al., 2006; Kotsiantis
et al., 2007), which are already collected in an extensive list of detailed
reviews, such as Plaza et al. (2009), Zhang and Du (2012), Ablin and
Sulochana (2013), Fauvel et al. (2013), Camps-Valls et al. (2014), Li
and Du (2016), Chutia et al. (2016), Ghamisi et al. (2017b), Chen et al.
(2014b), or even more recently in Li et al. (2019a), Audebert et al.
(2019), Signoroni et al. (2019), among others. However, ML is a field in
constant evolution, where new and improved methods are designed
from time to time. In this sense, from the early 2000s, the ML field has
experimented a significant revolution thanks to the development of new
deep learning (DL) models (Schmidhuber, 2015), which have been
supported by advances in computer technology. These models have
become an inspiration for the development of new and improved HSI
data classifiers, marking a clear trend since 2017 (Petersson et al.,
2016; Ghamisi et al., 2017a; Zhu et al., 2017). In this sense, the aim of
this work is to delve deeper into those classification techniques based
on DL techniques, providing an updated review about the most popular
models and widely used architectures to perform remotely sensed HSI
data classification.
The remainder of the paper is organized as follows. In Section 2, we

introduce the problem of HSI data classification, providing a brief fra-
mework for ML and DL methods, introducing the general benefits of DL
models and their limitations, coupled with the challenges that must be
faced when working with remotely sensed HSI data. Section 3 in-
troduces some general DL concepts, while Section 4 reviews the prin-
cipal DNN architectures employed for HSI data classification. Section 5
introduces some widely-used techniques to overcome DL and HSI lim-
itations. Section 6 presents some popular programming frameworks for
the development of DL models. Section 7 provides an experimental
evaluation of the discussed methods using several well-known HSI data
sets. Our experimental assessment includes a detailed discussion of the
results obtained in terms of accuracy and performance. Section 8 con-
cludes the paper with a discussion on future trends, including ongoing
computational developments such as the use of parallelization and
distribution techniques via graphical processing units (GPUs) and cloud
computing environments.

Table 1
Some of the most widely-known HSI sensors, highlighting several of their spectral-spatial characteristics. In particular, we outline the spectral features, the number of
bands, range (µm), and spectral resolution (nm), taking into account also the spatial ground sample distance measured in meters per pixel (mpp).

Sensor Bands Range Width GSD

Airborne AVIRIS (Green et al., 1998) 224 0.36–2.45 10 20
AVIRIS-NG (Bue et al., 2015) 600 0.38–2.51 5 0.3–4.0
CASI (Babey and Anger, 1989) 144 0.36–1.05 2.4 2.5
HYDICE (Rickard et al., 1993) 210 0.40–2.50 10.2 1–7
HYMAP (Cocks et al., 1998) 126 0.45–2.50 15 5
PRISM (Mouroulis et al., 2014) 248 0.35–1.05 3.5 2.5
ROSIS (Kunkel et al., 1988) 115 0.43–0.86 4 1.3

Satellite EnMAP (Guanter et al., 2015) 228 0.42–2.40 5.25–12.5 30
DESIS (Eckardt et al., 2015) 180 0.40–1.00 3.30 30
HYPERION (Pearlman et al., 2003) 220 0.40–2.50 10 30
PRISMA (Pignatti et al., 2013) 237 0.40–2.50 12 30
SHALOM (Feingersh and Dor, 2015) 241 0.40–2.50 10 10
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2. Hyperspectral data classification: backgrounds and challenges

2.1. From traditional machine learning methods to deep learning models

Any classification problem can be mathematically formulated as an
optimization one, where a mapping function (with or without certain
parameters θ) f (·, )c receives an input data sample and obtains the
corresponding label category, , by applying several transformations
over the original input, i.e. f :c , with the aim of minimizing the
gap between the desired output and the obtained one. In this regard, the
purpose of classifying HSI data is to categorize those pixels xi

nbands

(spectral vectors) contained in the HSI scene × ×X n n nbands1 2 into a set
of unique and mutually exclusive land cover classes (He et al., 2017a),
obtaining the classification map …× nY {1, , }n n

classes1 2 . Moreover,
it is usual to binarize each category, performing the so-called one-hot
encoding × ×Y n n nclasses1 2 , so the mapping function = fY X( , )c as-
signs a vector label yi

nclasses to each spectral pixel, =x y{ , }i i i
n n

1
( · )1 2 .

In the literature, there is a vast amount of works about HSI data
classification. Usually, these methods have been inspired by those al-
gorithms and techniques developed in the fields of computer vision and
pattern recognition, exhibiting a wide variety of methodologies and
learning procedures. As a result, they can be divided in many groups
depending on multiple factors, from unsupervised methods (for in-
stance: k-means (Haut et al., 2017b), k-nearest neighbors -KNN- (Cariou
and Chehdi, 2015) or iterative self-organizing data analysis technique
-ISODATA- (Wang et al., 2014)) to supervised ones (support vector
machines -SVMs- (Melgani and Bruzzone, 2004) or random forests -RFs-
(Ham et al., 2005)), from statistical classifiers (such as multinomial
logistic regression -MLR- (Haut et al., 2017a)) to deterministic methods
(for instance, extreme learning machines -ELMs- (Li et al., 2018a)),
from parametric algorithms (such as the maximum likelihood -ML-
(Kuching, 2007)) to non-parametric ones (such as the evidential rea-
soning -ER- (Sanz, 2001)), from spectral-based methodologies (tradi-
tional distance metrics based classifiers (Du and Chang, 2001; Keshava,
2004), spectral angle mapper -SAM- (Camps-Valls, 2016; Calin et al.,
2018), etc.) to spatial or spectral-spatial ones (sparse coding -SC-
(Charles et al., 2011; Yang et al., 2014), morphological profiles -MP-
(Fauvel et al., 2008; Huang and Zhang, 2013; Bhardwaj and Patra,
2018), among others). In this regard, several taxonomies have been
proposed in order to categorize the available methods. For instance, Lu
and Weng (2007) offered an interesting and complete taxonomy of
thirteen categories, considering six different criteria, while Chutia et al.
(2016) presented a simpler taxonomy of six different groups depending
on the classification procedure. Also, Ghamisi et al. (2017a) provided a
complex taxonomy with eight criteria and twenty categories, although
none of them are exclusively dedicated to DL methods.
In fact, DL is a subfield of ML inspired by the structure and functions

of the biological brain (Bengio, 2009; LeCun et al., 2015; Goodfellow
et al., 2016), so those DL-HSI classifiers are often framed within the
field of artificial neural networks (ANNs) (Plaza et al., 2011b), which
are characterized by their flexible architecture, composed by groups
(layers) of connected computational units (neurons). ANNs work on the
basis that the global classification problem defined by fc is split into
several hierarchically ordered sub-mapping functions

= f f f fY X X( , ) ( ( ( ( , ) ), ))c
L L( ) (1) (1) ( ) , being L the number of

layers that compose the network, X the original input data and f the
final classifier (performed by a classification layer in end-to-end models
or by any standard ML classifier). This is supported by the assumption
that approximating a high number of small steps is better than solving a
small number of large steps, implementing a “divide & conquer”
strategy. In this context, each f l( ) is of the general form defined by Eq.
(1):

= f bX X W( , , ),l l l l l( ) ( ) ( 1) ( ) ( ) (1)

where weights W l( ) and biases b l( ) are the parameters l( ) of the sub-

mapping function f l( ), and X l( 1) and X l( ) are the input and output data,
respectively. Moreover, ANNs are inspired by the neural connections
that conform the biological brain’s structure and the pulses that travel
through synaptic connections to transmit information. In this sense,
each f l( ) is in fact composed by a set of neurons, which apply their
corresponding synaptic weights over the input data, and whose re-
sponses are filtered, determining the neural activations which will be
forwarded to the following +f l( 1).
This hierarchical structure of stacked functions has fostered the rise

of deep and very deep ANN models, as described in the outstanding and
comprehensive overview presented in Zhang et al. (2016b). These
models will be referred to hereinafter as DNNs and VDNNs. In this re-
gard, although the limits between one type of network and another
have not been established (Schmidhuber, 2015), there is an agreement
among the experts to establish a distinction between shallow and deep
architectures (Bengio et al., 2007b), whereby single-hidden layer
structures are considered as shallow ANNs, architectures with two or
more hidden layers are considered as DNNs, and models with dozens of
layers are categorized as VDNNs (Srivastava et al., 2015). For instance,
Hinton et al. (2006) presented a neural model with three hidden layers
as one of the first deep architectures; Krizhevsky et al. (2012) con-
sidered their model with more than 5 layers as a deep network, and
Simonyan and Zisserman (2014) introduced a VDNN with 16–19 layers.
Following this trend, extremely deep neural networks (EDNN, also
known as ultra-deep nets) have been introduced as architectures with
more than 50 layers, reaching even thousands of layers (He et al.,
2016). In this context, the stack of functions allows to extract data re-
presentations at different levels, which are processed by the successive
neural layers. In fact, any ANN works as a feature extractor (FE), re-
gardless of its depth, where each sub-mapping function encodes dif-
ferent characteristics from the input data. In general, these models’
architecture allows for the learning of generic features at the early
stages, a piece of knowledge that is traditionally considered as less
dependent on the application, while the final layers are able to learn
pieces of knowledge that are more related with the application at hand.
This allows for the extraction of highly abstract data representations,
which are directly obtained and refined by the classification problem
itself, being modeled by each l( ) of the architecture. This also allows a
higher flexibility in comparison with those methods that are sub-
ordinated to hand-crafted features, which should manually design the
desired features, employing some well-known FE methods such as the
scale invariant feature transform -SIFT- (Al-khafaji et al., 2018), his-
togram of oriented gradients -HOG-, local binary patterns -LBP- (Li
et al., 2015b), or speeded-up robust features -SURF-, among others. This
last procedure imposes several restrictions, in particular, the obtained
features are very specific and usually exhibit limited levels of in-
variance and abstraction. Also, they are critically dependent on the
user’s knowledge, making hard to guarantee their setup (Yang et al.,
2016).
In turn, the structure and functions of ANNs makes them universal

approximators (Cybenko, 1989; Hornik, 1991), allowing them to learn
any data system’s behavior without any prior or additional information
about the statistical distribution of the input data. In this sense, ANNs
have attracted the attention of a large number of researchers in the area
of HSI data classification (Benediktsson et al., 1993; Yang, 1999), and
nowadays also in their DL version (Chen and Wang, 2014), due to the
benefits that DNN models exhibit when compared to traditional ML
methods (Collobert and Bengio, 2004):

1. The ability to extract hidden and sophisticated structures (both,
linear and non-linear features) contained in the raw data. Such
ability is intrinsically related, on the one hand, to the capacity to
model their own internal representation (rather than having it pre-
specified, as handcrafted features by kernel functions (Camps-Valls
et al., 2006)) and, on the other hand, to their ability for generalizing
any kind of knowledge.
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2. They are extremely flexible in the types of data they can support. In
particular, they can take advantage of the spectral and spatial do-
mains of HSI data, in both separate and coupled fashion.

3. Also, they offer a large flexibility on architectures, in terms of the
type of layers, blocks or units, and their depth.

4. Moreover, their learning procedure can be adapted to a great variety
of learning strategies, from unsupervised to supervided techniques,
going through intermediate strategies.

5. Finally, advances in processing techniques such as batch partition
and high performance computing (HPC) (Plaza et al., 2009; Lee
et al., 2011; Bioucas-Dias et al., 2013), in particular on parallel and
distributed architectures (Plaza and Chang, 2008; Plaza et al.,
2011a), have allowed DNN models to scale better when dealing with
large amounts of data.

These characteristics make DNNs very powerful and popular models
for HSI data classification. However, as traditional ML approaches,
DNNs are not exempt from certain limitations, which are highly related
to the characteristics of HSI data.

2.2. Hyperspectral data challenges and deep learning limitations

ANN classifiers in general (and DL-based models in particular) need
to face some challenges related to the processing of high-spectral di-
mensional data sets such as HSI data cubes. In fact, although the rich
spectral information contained in each pixel xi

nbands is very useful to
perform an accurate discrimination process, its large dimensionality
brings new challenges, not only in terms of computation time and
storage, but also due to the so-called peaking paradox (Theodoridis and
Koutroumbas, 2003; Kallepalli et al., 2014; Sima and Dougherty, 2008).
This paradox establishes that the use of additional features (i.e., spec-
tral bands) brings complexity into the classifier, increasing the number
of statistical parameters that define the land cover classes, and which
must be estimated in advance. Following the previous notation, if we
formulate the classification process as the approximation of a function
f :c

n nbands classes that identifies, for each spectral pixel x Xi , its
corresponding label vector =f x y( )c i i,we can infer that the corre-
sponding estimation errors will increase when more parameters/fea-
tures are taken into account, hampering the final classification perfor-
mance (Landgrebe, 2005). This leads to the curse of dimensionality
problem (Bellman, 2015) that greatly affects supervised classification
methods, in which the size of the training set may not be sufficient to
accurately derive the statistical parameters, thus leading the classifier
to quickly overfit (Hughes phenomenon (Hughes, 1968)).
Coupled with their high dimensionality, HSI data presents several

artefacts that make the classification process a difficult task. Similar to
very high-resolution (VHR) images, HSI data also suffers a high in-
traclass variability, resulting from uncontrolled changes in the re-
flectance captured by the spectrometer (normally because of changes in
atmospheric conditions, occlusions due to the presence of clouds, and
variations in illumination, among other environmental interferers).
Also, the instrumental noise produced by the spectrometer may degrade
the data acquisition process, corrupting spectral bands to different de-
grees (Rasti et al., 2018), or even making several bands unusable due to
saturation/cutoff or calibration errors (Pearlman et al., 2003). Also,
there is a tendency in HSI instruments to include significant redundancy
across adjacent spectral bands, which leads to the presence of re-
dundant information that may hinder computational efficiency of
analysis algorithms. Regarding the spatial information, pixels in HSI
data often cover large spatial regions on the surface of the Earth in
images with low/medium spatial resolution, so they tend to generate
mixed spectral signatures, leading to high interclass similarity in border
regions. In the end, these challenges create potential ambiguities and
uncertainties (Varshney and Arora, 2004; Gomez et al., 2015) that must
be faced by classification algorithms in order to extract representative
features from the images.

Another important issue is the problematic lack of labelled data. In
fact, despite the launch and start-up of the HSI-EO missions described
on Section 1, the number of operational spaceborne spectrometers that
are continuously acquiring images is still low in comparison with
multispectral remote sensing sensors such as Landsat or the Sentinel
missions, and in general the captured data are not publicly offered.
Moreover, airborne spectrometers cover much smaller areas than those
sensors allocated on satellite platforms, so the amount of HSI datasets is
quite limited. In addition, the task of labelling each pixel contained in
the HSI dataset is arduous and time-consuming, as it generally requires
a human expert, further limiting the number of available HSI datasets
for classification tasks.
These challenges greatly worsen the limitations already exhibited

by DNN models (Nogueira et al., 2017), which are related to the
complexity of the classifiers, such as the number of parameters required
by deep models. In the following, we enumerate some of the afore-
mentioned issues:

1. The training of DNNs is complex, since the optimization and the
tuning of parameters in deep models is a non-convex and NP-com-
plete problem (Blum and Rivest, 1989), much harder to train and
without guaranteeing the convergence of the optimization process
(Chen and Wang, 2014; Nguyen and Hein, 2018). Also, the increase
in the number of parameters in deeper architectures often leads to
multiple local minima (Bach, 2017).

2. Resulting from the large amount of parameters that must be man-
aged in a deep model, there is a high computational burden in-
volved, requiring computationally expensive and memory-intensive
methods (Cheng et al., 2017b)

3. Also, due to the number of parameters that must be fine-tuned,
supervised deep models consume great amounts of training data,
and they tend to overfit when there are few training parameters
(Erhan et al., 2010). In this context, the high-dimensional nature of
HSI data, coupled with the limited availability of training samples,
makes DNNs quite ineffective in generalizing the distribution of HSI
data, requiring excessive adjustments at the training stage, while the
performance on the test data is generally poor.

4. Moreover, simply stacking of layers by itself does not achieve the
desirable improvement in precision results. In fact, forward propa-
gation suffers from an important degradation of the data (He et al.,
2016), while the backpropagation mechanism presents difficulties in
propagating the activations and gradient signal to all layers as the
network’s depth increase (Srivastava et al., 2015). The gradient
(which is necessary to update the model’s parameters) fades slightly
as it passes through each DNN layer. This degradation becomes
quite severe in VDNNs, resulting in its practical disappearance or
vanishing. These problems elongate the model’s objective function
until the model cannot properly change its weights at each iteration.

5. The “black box” nature of the training procedure is also a dis-
advantage, being the model’s internal dynamics very hard to inter-
pret (Benítez et al., 1997; Lipton, 2016). This may hinder the design
and implementation of optimization decisions, although several ef-
forts have been done to visualize the parameters of DNN models
(Shwartz-Ziv and Tishby, 2017), and to enhance the extraction of
more significant and interpretable filters.

The combination of the aforementioned challenges introduced by
HSI data and the limitations of deep models force developers to care-
fully select and implement those models that best suit HSI data,
choosing the architectures, learning strategies and improvement tricks
that best fit the data while maintaining computational efficiency. In the
following sections, these points will be covered in detail, providing a
list of current models and methods that have been successfully applied
to HSI data classification.
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3. Deep neural networks: flexible and configurable models

Standard ANN models for HSI data classification exhibit a rather
limited performing, usually conducting supervised learning of purely
spectral features in a fully-connected architecture. On the contrary,
DNNs offer a great variety of models, allowing for the inclusion of
different layers, the exploitation of features in both the spectral and
spatial domains, and the adoption of different learning strategies. In the
following, these concepts will be briefly introduced.

3.1. Type of features

The type of features obtained from HSI data × ×X n n nbands1 2 are one
of the factors that impose several restrictions in the performance of the
classifier, being crucial to the discrimination between the different
classes. In particular, HSI data are characterized by their two spatial
components: ×n n1 2, and by their large spectral domain, nband, allowing
the exploitation of both types of features (Landgrebe, 2002). Although
there are also many traditional ML methods that allow for the ex-
ploitation of these two types offeatures, DNN models stand out for their
versatility, adapting both their input and their internal operation to the
use of such features through the implementation of different types of
layers.
Focusing on traditional pixel-wise DNN classifiers, these methods

exploit the ability of HSI data for detecting and uniquely characterizing
the captured surface materials in certain land cover classes, learning
existing relationships between the spectral signatures associated to each
HSI pixel and the information that is contained in them (Chen et al.,
2014b). In this sense, spectral-based DNN models learn spectral feature
representations from X, processing each pixel vector x Xi in a way
that is completely isolated from the rest of the pixels in the image
(Romero et al., 2016), under the assumption that each xi contains a
perfect and pure signature of a single surface material, without any
mixing of different land cover materials (Fisher, 1997). The perfor-
mance and final accuracy of these classifiers is strongly related to the
available training samples, usually requiring a large number of them to
properly learn the parameters of the classifier (Hu et al., 2015) and to
deal the spectral intraclass variability and interclass similarity –with the
aim of avoiding the misclassification of the samples (traditional “salt &
pepper” noise)– (Huang and Zhang, 2013).
To deal with these limitations, recent research has demonstrated the

benefits of exploiting the spatial arrangement of HSI data (Jiménez
et al., 2005; Zhang et al., 2012; Huang and Zhang, 2013), enhancing the
classification performance of standard pixel-wise HSI classification
procedures (Tarabalka et al., 2010; Mei et al., 2016) by analyzing the
contextual information around each pixel xi (Fauvel et al., 2008;
Tarabalka et al., 2009; Bioucas-Dias et al., 2013). With advances in
remote sensing technology, the spatial resolution has become gradually
better, making HSI data cubes able to represent target zones/objects
using finer spectral pixels and increasing the number of captured
samples for each type of coverage (which intrinsically increases the
intraclass variability), and improving the acquisition and observation of
certain spatial patterns present in particular land cover materials. These
classifiers operate under the assumption that adjacent pixels commonly
belong to the same land cover category (Mura et al., 2010; Ghamisi
et al., 2018), providing additional valuable information to the classifi-
cation task which helps to reduce the intraclass variance and the label
uncertainty. In the available literature, the contextual information
given by the spatial arrangement of the HSI data cube can be employed
by two kind of DNN classifiers: (i) those that only exploit the spatial
features, and (ii) those that combine both spatial and spectral features
to perform the final classification.
Focusing on spatial-based DNN classifiers, these models usually

process some spatial information extracted from the original data cube
X, learning only spatial feature representations from the data (Chen
et al., 2016). Although some spatial models may employ spatial

handcrafted features as input data, such as the minimum noise fraction
(MNF) (Zhang et al., 2019a) and covariance matrices (He et al., 2018),
Gabor filtering (Chen et al., 2017b; Kang et al., 2018), among others,
the most common and simple strategy to perform spatial HSI classifi-
cation is to feed the network with some features extracted by the
principal component analysis (PCA) method (Wold et al., 1987; Jolliffe,
2002; Fernandez et al., 2016), which reduces the spectral redundancy
and the number of dimensions while keeping the spatial information
intact (Yue et al., 2015; Haut et al., 2019a). In this context, although
there is no consensus on the number of bands to be reduced, a DNN
model is generally considered to be spatial when it applies PCA to the
input data and its architecture allows only spatial features to be ex-
tracted (Makantasis et al., 2015; Chen et al., 2016; Haut et al., 2018c).
Although spatial-based DNN models may overcome spectral

methods under some circumstances, in particular, in high spatial re-
solution HSI scenes with clear and distinctive spatial structures (and
with spectral signatures that are not mixed) (Chen et al., 2016), the
joint exploitation of both spatial and spectral features is more desirable,
as it not only comprises the analysis of spectral signatures but also the
associated contextual information (Paoletti et al., 2017a; Paoletti et al.,
2018a). In this regard, available DNN architectures are able to process
both features by including spatial information as concatenated in-
formation to the spectral vector (following the traditional ML vector
vision (Chen et al., 2014b; Chen et al., 2015)), or by processing the 3-
dimensional cube to maintain the original structure and contextual
information (Chen et al., 2016; Paoletti et al., 2017a; Paoletti et al.,
2018a; Paoletti et al., 2018c).

3.2. Type of layers

As mentioned before, the type of layer has a decisive influence on
the architecture of the model, allowing for the processing of different
features. Following the previous notation, DNN models divide the
global mapping function f (·, )c into hierarchically stacked submapping
functions f (·, )l l( ) ( ) . In this regard, each f l( ) performs a two-step stage,
composed by FE and detection, which are in turn implemented by
several types of stacked layers, being l( ) their parameters.
Contextualizing the evolution of DL methods, at early days, neural

models emerged within the fields of pattern recognition and signal
processing, inspired by the behaviour of the biological brain and im-
plementing a hierarchical structure where each part of the stack con-
forms a layer, being neurons (also perceptrons) the basic unit of each
layer (Ball et al., 2017). However, with the development of image
processing, traditional fully-connected structures became ineffective for
the analysis of 2-dimensional and 3-dimensional data cubes (LeCun
et al., 2015). To overcome this limitation, a fully-connected structure
was adapted to the behaviour of those neurons that compose the bio-
logical visual cortex, characterized by a local receptive field in which
they are activated or not in the presence of some specific visual stimuli,
creating a hierarchical structure in which deeper neurons are able to
respond to more abstract and higher level features. With this in mind,
DNN models can implement several types of layers, where the most
common ones are explained below.

3.2.1. Fully-connected layers
Also known as FC layers, they connect every neuron in the l-th layer

to every neuron in the subsequent layer +l 1, as it can be observed on
the leftmost model in Fig. 1, where a traditional feed-forward multi-
layer perceptron (MLP) (Collobert and Bengio, 2004) is represented.
These layers apply a linear transformation between the input layer data
X l( 1) and the layer parameters, weights W l( ) and biases b l( ), adapting
the original mapping function of Eq. (1) as follows:

= + bX W X·l l l l( ) ( ) ( 1) ( ) (2)

The main drawback of FC layers is the high number of connections,
imposing a large number of parameters that must be fine-tuned. In
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particular, the number of parameters can be calculated as the sum
of all the connections between adjacent layers =nparameters

+=
+n n( · 1)i

L
nodes

l
nodes

l
0
1 ( ) ( 1) , which involves the number of weights and the

bias. Also, both the input data that they need and the extracted features
are limited to a vector representation of the input data, losing to some
extent the potential of the spatial-contextual information (Chen and
Wang, 2014).

3.2.2. Convolutional layers
As we can observe in Fig. 1, the CONV layer defines a block of

neurons that operate as linear kernels (also called filter bank) connected
and applied over small pre-defined regions from the input data (input
volume hereinafter). The main idea lies on analyzing the statistical
properties of the HSI cube × ×X n n nbands1 2 , which can be considered as
a stationary source of spectral pixels in which data features are equally
distributed into the entire X in relation to spatial positions (Field,
1999). This suggests that the learned features at a certain position of X
can be successfully applied to other regions of X, which in the end can
be understood as the chance to employ the same features at all locations
of the input image.
In this sense, CONV layers can be interpreted as a traditional sliding

window method, where K l( ) fixed-size filters are overlapped over the
input layer data, sliding at certain intervals defined by the stride of the
layer s l( ). This can be observed in Fig. 2. In contrast with FC layers,
CONV layers offer a great versatility, since the size of these chunks or
windows is defined by the receptive field of the layer, indicated as

× ×k k ql l l( ) ( ) ( ), where k l( ) is applied over the two spatial axes and q l( ) is
applied over the spectral axis. This allows the CONV layer to accept 1-
D, 2-D and 3-D inputs, and to extract spatial, spectral or spatial-spectral
features.

= + × × ×bX W X( )l l l l
K k k q

( ) ( ) ( 1) ( ) l l l l( ) ( ) ( ) ( ) (3a)
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As Eq. (3a) indicates, the l-th CONV layer applies K l( ) linear 3D-
kernels over the input layer X l( 1), which performs a dot product be-
tween its weights and biases, W l( ) and b l( ), respectively, and small
chunks of the input volume data. As a result, an output volume X l( )

composed by K l( ) feature volumes is obtained. In particular, Eq. (3b)
indicates the general calculation of the feature i j t( , , ) for the z-th fea-
ture of the output volume, xi j t

l
, ,
( )z.

CONV layers exhibit some advantages over traditional FC layers
(Guo et al., 2016; Li et al., 2017b). In particular, the local connectivity
allows to learn spatial correlations among neighboring pixels, in-
troducing some invariance to the location of the feature. Also, the
sparse connectivity and the parameter sharing mechanism reduces the
number of parameters that must be fined-tuned.

3.2.3. Activation layers
Usually, the data transformations applied by FC and CONV layers

are considered the FE stage of the network, defining a linear operation
of element-wise matrix multiplication and addition over the data. In
this sense, those DNN models without activation layers (or with linear
activation ones) are essentially working as linear regressors. A non-
linear activation layer must be implemented behind FC and CONV
layers in order to learn non-linear representations of the data structure.
In fact, the activation layer is considered as the detector stage of DNN
models (Goodfellow et al., 2016), and is implemented by a non-linear,
element-wise activation function which allows to model a response
variable (i.e., a feature score) that varies non-linearly with the output
volume of the previous FC/CONV layer, giving as a result an output
volume containing the activations of each neuron of the previous layer,

=X X( )l l( ) ( 1) . In this regard, (·) can be implemented by several
activation functions, depending on the desired properties. Fig. 3 gives
the graphical visualization of some widely used functions. For instance,

Fig. 1. Comparison between the traditional fully-connected (left) and the convolutional architecture (right) of a DNN model. The first model is represented as a
conventional multilayer perceptron (MLP) with 3 hidden fully-connected (FC) layers, while the second model is represented as a convolutional neural network (CNN)
with 3 hidden convolution layers too. Focusing on the last one, neurons in the CNN create 3-dimensional blocks with local connectivity over one pre-defined window
of each layer input volume, known as receptive field. FC layers can be observed at the architecture tail, conforming the classifier network.

Fig. 2. Graphical visualization of the CONV layer from a 2D point of view (left) and 3D point of view (right). On the left we can observe how the 2D kernel is applied
over spatial regions of the input volume X l( 1) with a stride =s 2l( ) (the dark circle symbolizes the dot product between the window from the original data and the
kernel). On the right we can observe how the z-th kernel of size × ×k k ql l l( ) ( ) ( ) produces, for each region to which it is applied, a scalar value (represented as a smaller
rectangle) which is allocated into the z-th feature map, composing an output volume X l( ) of K l( ) feature maps.
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the sigmoid = +x( ) e
1

1 x presents a smooth and continuously differ-
entiable function, whose values range from 0 to 1 (not inflating the
neural activation values). However, as it only produces positive values
in the 0–1 range, it becomes hard and slow to optimize. The tanh
function = +x( ) e e

e e
x x

x is very similar to the sigmoid, being less smooth
and symmetric over the origin, as its values range from −1 to 1. This
makes its gradient steeper than that of the sigmoid.
Although these standard activations can operate properly with

shallow architectures, the smallest derivative terms tend to zero when
the model’s architecture is deep enough, leading to the vanishing gra-
dient problem. The rectified linear activation function (ReLU) (Nair and
Hinton, 2010) tries to overcome previous limitations by applying a
max(·) function between 0 and the input data x, setting the gradient to
0 if the data are equal or smaller than 0, and to x otherwise, i.e.

=x x( ) max(0, ), with an output range of +[0, ) (it is unbounded on
the positive side). This alleviates the vanishing gradient problem, as the
derivative of the positive x is always 1. Moreover, ReLU conducts a
sparsity activation function where not all the neurons are activated at
the same time, being more computationally efficient than the sigmoid,
for instance. However, if the gradient is set to 0, the influence of the
affected neurons is eliminated, so they cannot contribute to improving
the learning process (Pedamonti, 2018), leading to the dying ReLU
problem.
Other interesting functions are the softplus (Dugas et al., 2001) and

softmax activation functions, with equations = +x e( ) ln(1 )x and
=x( )i e

e
xi

j
xj , respectively. The first one produces values in the range

+[0, ), i.e. it is similar to a smoothed ReLU being differentiable into 0
and where its derivative is the sigmoid function, which makes it com-
putationally slower during the backward step. The second one is in-
spired by the sigmoid, squeezing the input layer data between 0 and 1

and dividing the obtained outputs by the sum of them. In this sense, the
softmax function works as a winner-take-all function that gives the
probability of the input data belonging to a particular class, and it is
usually employed as the final layer of a DNN model.
Despite the wide range of activation functions available in the

current DL literature (Agostinelli et al., 2014; Sonoda and Murata,
2017; Ramachandran et al., 2017), the vast majority of DNN models for
the analysis of HSI remote sensing data employ ReLU and softmax as
the principal activation functions, with few exceptions (Mei et al., 2016;
Paoletti et al., 2018).

3.2.4. Down-sampling layers
Also known as pooling or POOL layers, they are inspired by the

spatial processing of CONV layers. Particularly, POOL layers perform a
non-linear sub-sampling strategy with the aim of: (i) reducing the
spatial dimensions of the extracted feature maps, sumarizing them into
a reduced volume, (ii) contributing to the data with certain invariance
to small transformations, and (iii) reducing the computation time and
the complexity in terms of both, data size/dimensionality and network
parameters (Boureau et al., 2010). The POOL layer implements a
sample-based discretization process (see Fig. 4), applying some nu-
merical operation over a square window defined by the spatial re-
ceptive field ×k kl l( ) ( ) of the layer. The most usual operations are the
average-pooling, the sum-pooling or the max-pooling (Scherer et al.,
2010), although it should be noted that several alternative methods
have been also implemented, such as stochastic pooling (Zeiler and
Fergus, 2013), mixed pooling (Yu et al., 2014) or wavelet pooling
(Williams and Li, 2018). Also, several works have investigated the re-
placement of pooling layers by CONV layers with increased stride
(Springenberg et al., 2014).

3.3. Learning strategies

In addition to the type of features and layers used, DNN models also
allow the implementation of different learning strategies. Following the
previous notation, the classification function f (·, )c can be understood
as a particular DNN model. In this sense, the performance of fc will
depend on certain parameters that must be correctly fine-tuned.
Moreover, depending on how this parameter adjustment is carried out,
two main types of learning can be distinguished: unsupervised and su-
pervised learning

3.3.1. Unsupervised learning
Unsupervised learning performs the classification without a priori

knowledge about the given data, optimizing parameters by the in-
herent similarities present in the data structure (Xiaoli Jiao, 2007;
Romero et al., 2016; Hassanzadeh et al., 2018). In this context, an
unsupervised DNN performs a greedy layer-wise unsupervised pre-training
(Bengio et al., 2013), where each layer performs hierarchical un-
supervised FE for inferring the underlying structure of the data, being

Fig. 3. Graphical visualization of different activation functions that can be
implemented in a DNN model, including the linear function =x x( ) , the leaky
ReLU, and SeLU (Section 5.3.3 contains further details).

Fig. 4. Graphical visualization of the POOL layer
from a 2D point of view. Dark cells indicate the
selected value from the pooling operation (for in-
stance, if the max pooling has been implemented,
dark cells would represent the higher value of each
region from the volume), although the final value
also can be obtained as the average or sum value of
the entire region. In fact, the pooling layer can be
interpreted as a kernel of size ×k kl l( ) ( ).
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combined at the end to initialize another deep supervised or generative
model (Bengio et al., 2012) that will carry out the final regression or
classification task. In fact, unsupervised DNN models are usually em-
ployed for clustering (Xie et al., 2016; Tian et al., 2017; Shaham et al.,
2018; Min et al., 2018), anomaly detection (Penttilä, 2017; Ma et al.,
2018a) and data encoding (Li et al., 2014; Paul and Kumar, 2018; Kang
et al., 2018). In particular, there is a wide range of works about un-
supervised DL methods for HSI data pre-processing, being widely used
to perform dimensionality reduction (DR) (Lin et al., 2013b).

3.3.2. Supervised learning
In contrast to unsupervised learning, supervised learning needs to

learn those parameters that model the relationship between xi and yi
by performing an inference procedure based on previous knowledge
(Sabale and Jadhav, 2015; Qiu et al., 2017). In this way, it is needed to
split the original scene X into those training samples with known
identity = =yx{ , }train i i i

n
1

labeled that will be used during the training step to
categorize the rest of unlabeled pixels, which will be employed during
the inference = =x{ }test i i

n
1

unlabeled (Sabalel and Jadhav, 2014). Usually,
supervised DNNs models are able to achieve better performance than
their unsupervised counterparts, being the most widely used (Chen and
Wang, 2014; Sabale and Jadhav, 2015; Qiu et al., 2017; Paoletti et al.,
2017a; Paoletti et al., 2018a). However, this learning also imposes a
severe training constraint, whereby DNN models need to consume large
amounts of labelled data during the training to correctly fine-tune the
model parameters (Makantasis et al., 2015).

4. When HSI data meets DL: main classification models

To date, in addition to the traditional MLP (Roodposhti et al., 2019),
four DNN models have become the mainstream DL architectures for the
analysis of HSI data: autoencoders (AEs), deep belief networks (DBNs),
recurrent neural networks (RNNs) and CNNs. In the following we re-
view each model, pointing the most relevant works in the HSI litera-
ture, and then paying more attention to state-of-the-art models such
CNNs.

4.1. Autoencoders (AEs)

When dealing with HSI data classification tasks, the extraction of
accurate features becomes a critical preprocessing step to model the
internal structures and relationships of the data, helping to reduce the
Hughes effect and the curse of dimensionality. In this sense, auto-
associative neural networks (AANNs), also known as autoencoders
(AEs) (Hinton and Zemel, 1993; Bishop, 1995; Chen et al., 2014b;
Karhunen et al., 2015; Zhang et al., 2016c; Plaut, 2018) have been
widely used as deep models to perform unsupervised coding from HSI
data. Regarding its operational mode, the AE model does not carry out
classification tasks, but reconstructs the input data by reducing

X Xmin 2 (the distance between the obtained representation X and
the original data X). In fact, the main particularly of these networks lies
in their ability to project the original input samples into a new space,
generating compressed, extended or even equally-dimensioned outputs,
with the least possible amount of distortion. This projection is per-
formed by a traditional architecture implemented by encoder and de-
coder nets, both linked by a bottleneck layer that represents the latent
space (Baldi and Hornik, 1989; Hinton and Zemel, 1993), as it can be
observed in Fig. 5.
HSI-AEs emerged as typically pixel-wise methods, being usually

exploited to carry out dimensionality reduction (DR) and high-level
spectral FE due to the existing correlation between adjacent bands
(Ahmad et al., 2017). In this regard, the spectral pixel xi

nbands is
taken as input of the encoder, representing it in a new space nnew by
applying a hierarchical set of Lencoder recognition weights or encoder
components, as Eq. (4a) illustrates. Then, the obtained code vector or
code dictionary ci

nnew is sent as an input to the decoder, which

applies a set of Ldecoder generative weights over the code vector to re-
cover and/or obtain an approximate reconstruction of the original input
vector, xi, as Eq. (4b) indicates.

= ++l L bc x W xFor in : ( · )i encoder i
l l

i
l l( 1) ( ) ( ) ( ) (4a)

= ++ll L bx c W cFor in : ( · )i decoder i
ll ll

i
ll ll( 1) ( ) ( ) ( ) (4b)

Several AE models for HSI data analysis have been presented in the
literature. Focusing on spectral-based ones, Zhu et al. (2017a) propose
an unsupervised tied AE (TAE) for spectral FE, based on the maximum
noise fraction (MNF) (Green et al., 1988; Iyer et al., 2017) as pre-pro-
cessing DR step, and fine-tuning with classification via softmax. Fol-
lowing a simple architecture, Hassanzadeh et al. (2017) combine the
multi-manifold spectral clustering (MMSC) (Wang et al., 2010) with the
unsupervised contractive AE (CAE) (Rifai et al., 2011) to enhance the
HSI data classification by reinforcing the model’s learning through a
regularizer term, being less sensitive to small variations in the training
samples. A pixel-wise stacked AE (SAE) is proposed by Okan et al.
(2014), which implements a two-step training strategy with un-
supervised representation learning and supervised fine-tuning, before
the final supervised classification, performed by a logistic regression
layer. Furthermore, Wang et al. (2016) implement a stacked denoising
AE (SDAE), which stochastically corrupts the inputs in order to over-
come the identity-function risk present in deep AEs. Also, in order to
reduce the computational complexity of SAEs, Zabalza et al. (2016)
propose a segmented SAE (S-SAE) to comprise original features into
smaller data segments, being separately processed by smaller and in-
dependent SAEs.
Also, recent works combine AEs with spectral-spatial feature ex-

traction methods. For instance, Chen et al. (2014b) present three dif-
ferent AEs and SAEs to generate shallow and deep or high-level features
using spectral, spatial and spectral-spatial information, using a logistic
regression method to perform the final classification, while Lin et al.
(2013b) perform a comparison between spectral and spectral-spatial
AEs with shallow and deep architectures. In both cases, the spatial in-
formation is obtained via PCA reduction, obtaining nnew components
and flattening the × ×d d nnew cube that surrounds each pixel into a
vector. Mughees et al. (2016) also develop a SAE to perform spectral
processing, while spatial analysis is performed by an adaptive boundary
adjustment-based segmentation method. As a result, the spectral-based
classification map and the spatial-based single band segmented map are
combined by a majority voting based method. Wang et al. (2017b)
apply guided filtering (He et al., 2013) to exploit the spatial informa-
tion, flattening it to combine it with spectral information in a multilayer
fine-tuning SAE (FSAE). Li et al. (2015a) implement a SAE, which is
pre-trained in unsupervised fashion over 3D Gabor features extracted
from the HSI data cube, with an MLP performing the final classification.
Ma et al. (2016b) combine the FE performed by the SAE with a relative
distance prior in the fine-tuning process, in order to enhance the model
when the number of available labeled samples is not enough. Also, Ma
et al. (2016a) introduce a spatial updated deep auto-encoder (SDAE) to
improve the extraction of spectral-spatial information by adding a
regularization term in the energy function, and updating the features by
integrating contextual information. Paul and Kumar (2018) propose a
segmented stacked autoencoder (S-SAE) for spectral-spatial HSI data
classification as an improvement of the SAE, reducing its complexity
and computational times through the use of mutual information (MI), to
perform spectral segmentation, and morphological profiles (MPs) to
assimilate the spatial information contained in the HSI cube. Tao et al.
(2015) develop two stacked sparse AEs (SSAEs) to extract overcomplete
sparse spectral and spatial features, which are stacked and embedded
into a linear SVM for classification purposes. Wan et al. (2017) also
propose a SSAE to process different types of features, such as spectral-
spatial, multifractal and other higher-order statistical ones, while a RF
is employed for classification. Zhao et al. (2017a) exploit again the
SSAE with RF to extract and classify more abstract and deep-seated
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features from spectral, spatial and spectral-spatial sets. In contrast, Xing
et al. (2016) develop a SDAE to extract robust spectral features from
HSI data, using logistic regression to perform the supervised fine-tuning
and classification. Liu et al. (2015) also employ a SDAE to learn spectral
feature representations from the input data, while a superpixel tech-
nique is employed to generate the spatial constraints for refining the
spectral classification results. Recently, Zhou et al. (2019a) have pro-
posed a two-stage AE, called compact and discriminative SAE (CDSAE),
where the first one performs the training of a discriminative SAE
(DSAE, where each layer performs a local Fisher discriminant regular-
ization) to learn a feature mapping by minimizing the reconstruction
error, and the second one performs the classification of the data, up-
dating the DSAE’s parameters. Also, the extraction of spectral features
using AEs has been combined with neural models such as CNNs (to
extract spatial information), as Hao et al. (2018) discussed.
Although AE structures have demonstrated to be a powerful tool,

their performance is often hampered by the large number of parameters
that must be trained, learned and updated, which requires a large
number of samples to perform the fine-tuning process, a demand that
cannot be always satisfied. Although several new techniques have been
adopted to avoid this problem, such as the use of active learning (AL)
(Li, 2015), additional enhancements are needed. Furthermore, the
spatial processing step that AEs usually perform on the data implies the
use of DR methods followed by a flattening of the data into a vector,
neglecting the rich spectral-spatial structural information that HSI data
cubes contain (Chen et al., 2014a; Tuia et al., 2015).

4.2. Deep belief networks (DBNs)

DBNs combine probability and graph theory to implement a gen-
erative probabilistic graphical model (PGM) with the structure of a
directed acyclic graph (DAG) (Ball et al., 2017). In the literature,

several works address the implementation of DBNs as a stack of un-
supervised networks, such as restricted Boltzmann machines (RBMs)
(Smolensky, 1986; Larochelle and Bengio, 2008; Tan et al., 2019) with
a greedy learning algorithm as optimizer (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006).
In HSI data analysis, DBNs have been employed as a variant of the

AE model with greedy layer-wise training to perform FE. In this sense,
Li et al. (2014) implement a DBN for feature extraction and classifica-
tion, stacking spectral-spatial characteristics and using logistic regres-
sion for classification. Also, Chen et al. (2015) introduce three DBNs to
extract spectral, spatial and spectral-spatial high-level features from HSI
data in hierarchical fashion, and performing the final classification task
by means of logistic regression. There are also several efforts aimed at
improving the performance of this kind of DNN for HSI classification
purposes, for instance Le et al. (2015) review the hyper-parameters
used by the spectral and spectral-spatial DBNs of Chen et al. (2015),
while Zhong et al. (2017a) present a diversified DBN for HSI data
classification, which regularizes the pre-training and fine-tuning pro-
cedures by a diversity-promoting prior over latent factors to avoid the
co-adaptation of the latter. Guofeng et al. (2017) improve the standard
training process of DBNs in order to avoid the effect of a gradient dis-
appearance, using PCA and kernel PCA (KPCA). Inspired by DBNs, Zhou
et al. (2017) developed a group belief network (GBN), which considers
the characteristics of grouped spatial-spectral features from HSI data by
modifying the bottom layer of each RBM that composes the model ar-
chitecture.
Although DBNs are very promising DL methods for HSI data clas-

sification, as they often provide good results (and improve their per-
formance with the incorporation of spatial information), they suffer
from the same limitation as SAEs: these neural models are designed for
processing 1D-signals, so the rich spatial information contained in HSI
data cubes must be vectorized to be processed together with the

Fig. 5. Traditional representation of a tied autoencoder, composed by two main parts: an encoder and a decoder, linked by a bottleneck layer.
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spectral one, or even separately processed by other techniques in order
to be properly exploited. In the end, this kind of spectral-spatial pro-
cessing cannot fully incorporate the spatial-contextual information
present in HSI data cubes.

4.3. Recurrent neural networks (RNNs)

The architecture of RNN models (Williams and Zipser, 1989) is char-
acterized by loops in the connections, where node-activations at each step
depend on those of the previous step. This internal structure (similar to a
directed graph) makes the RNN an ideal model for learning temporal se-
quences, exhibiting a dynamic temporal behavior for a given data se-
quence, with an internal state or memory that allows for the association
between the current input data and the previous ones at each step (i.e.
remembering the context). This fact enables RNNs as a powerful tool for
predicting future events depending on the previously remembered ones,
being particularly interesting for remote sensing land-cover analysis,
which exhibits many changes in their reflective characteristics over time,
hampering the classification task (Rußwurm and Körner, 2017).
RNNs can be categorized into three main groups: vanilla RNNs, long

short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent unit (GRU) (Cho et al., 2014) architectures. The vanilla
RNN was the first recurrent model introduced as a DL framework, and
its operation is quite intuitive. Given an input data sample xt

n

captured at time t, the vanilla RNN computes its corresponding output
yt as a hidden state at time =t y h, t t, which represents the current
memory of the model, as Eq. (5) indicates:

= =
+ +

t
b th W x U h

0 if 0
( · · ) if 0t

h t h t h1 (5)

where (·) is a non-linear activation function (for instance, the sig-
moid), bh is the bias,Wh, is the weight matrix of the input, andUh is the
weight matrix of the recurrent connections.
Although vanilla is the easiest RNN model to implement, its simplicity

leads to a degradation of information when high dimensional input data
are processed. In this sense, the LSTM offers advantages when dealing with
the deficiencies of the original RNN by developing a recurrent unit com-
posed by a cell, which remembers values at arbitrary time intervals, and
three gates (input, output and forget gates), intended to regulate the flow
of information in and out of the cell. A schematic overview is presented in
Fig. 6. In this case the model stores, for each input at time t, two states: the
original hidden state, ht , and the cell state, ct, which removes or adds
information to the cell, depending on the gates. In particular, the input
gate it determines whether or not a new input is allowed to go inside the
cell, the forget gate ft deletes the irrelevant or unimportant information,
and the output gate ot allows the information to affect the network’s
output at time t. This mechanism allows the LSTM unit to learn which
information is important along time, as Eq. (6) indicates:
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where W U, and b are the weight matrices and biases for the different
gates or the cell (depending on ).
Finally, the GRU unit is a LSTM variant (see Fig. 6) in which the

input and forget gates are changed by update (zt) and reset (rt) gates,
removing the output gate (which implies less parameters):
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As any traditional pixel-based approach, the RNN exploits each HSI
pixel in band-to-band fashion, performing a similarity check between
temporary data and spectral bands, using a many-to-one scheme such as
the LSTM and GRU models for HSI data processing presented by Mou
et al. (2017). Also, Guo et al. (2018) propose a LSTM model with a
guided filter, taking into account three principal components extracted
by PCA, and Zhou et al. (2018a) combining spectral LSTM-classification
with PCA extracted spatial LSTM-classification via decision fusion. Lyu
et al. (2016) develop the REFEREE change rule for a LSTM-based model
in order to enhance the efficiency and performance when dealing with
change detection in multispectral and HSI data. Zhang et al. (2018b)
introduce the LSS-RNN, a RNN model with a local spatial sequential
method (LSS) that includes a low-level FE step, implemented using
Gabor filtering and differential morphological profiles (DMPs) (Huang
and Zhang, 2013), whose corresponding features are stacked together
and passed through the LSS to obtain higher-level features, which fi-
nally feed the RNN. Furthermore, Sharma et al. (2018) enhances the
pixel-based RNN by implementing a patch-based RNN (PB-RNN) with
LSTM units, which is able to process the multi-spectral, multi-temporal
and spatial information contained into the dataset.
Other interesting RNN models take advance of the flexibility offered

by CONV layers, including some stages of FE and detection with CONV
after applying the recurrent unit. For instance, Venkatesan and Prabu
(2019) employ a RNN to classify the features obtained by a spectral
CNN model (developing a CNN1D), while Luo (2018) proposed a
shortened spatial-spectral RNN with Parallel-GRU (St-SS-pGRU) with
the aim of improving performance, increasing efficiency and simpli-
fying the training procedure of standard band-by-band GRU models.
Zhou et al. (2018b) first perform a spatial FE with CNNs, and then send
the obtained features to a fusion network based on GRUs. Mou et al.
(2019) implement a multi-spectral-temporal-spatial model for change
detection by adopting an end-to-end network with several CONV layers
(at the beginning of the architecture) in order to extract spectral-spatial
features in a natural and structured way, enhancing the data re-
presentation before applying the LSTM unit and a FC layer to perform
the final classification. Moreover, Shi and Pun (2018) combine the
feature extraction performed by the spectral-spatial CNN model with a
multi-scale hierarchical recurrent neural network (MHRNNs) that cap-
tures the spatial relations of local spectral-spatial features at different
scales. Also, several convolutional RNNs (CRNNs) (Zuo et al., 2015)
have been implemented for HSI classification. For instance, Wu and
Prasad (2017) present a 1D-CRNN, where several 1D-convolutional
layers are used to perform spectral FE, sending the obtained features to
the recurrent layers, and finally integrating spatial constraints by
adding linear opinion pools (LOP) (Benediktsson and Sveinsson, 2003)
at the end of the flowchart in order to improve classification

Fig. 6. Architecture of RNN models: comparison between the internal archi-
tecture of a LSTM recurrent unit and a GRU one.
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performance. A similar model is used by Wu and Prasad (2018), where
a 1D-CRNN is trained in a semi-supervised way with labeled and un-
labeled data using pseudo labels. Yang et al. (2018) introduce the 2D-
CRNN and 3D-CRNN for HSI data classification, performing a direct
comparison with their CNN counterparts and demonstrating the su-
periority of the proposed RNN models. Finally, Liu et al. (2017d) in-
troduce a bidirectional-convolutional LSTM (Bi-CLSTM) to learn spec-
tral-spatial features from HSI data, while Seydgar et al. (2019) integrate
a CNN model with 3D-kernels and the CLSTM network to extract low-
dimensional and shallow spectral-spatial features that are recurrently
analyzed, focusing on the spatial information but also considering the
spectral one.

4.4. Convolutional neural networks (CNNs)

In contrast with the previous models, in which the FC layer is the
basis of their architectures, in the CNN model (Lecun et al., 1998) the
CONV layer is the basic structural unit, inspired by the natural vision
process to perform FE (LeCun et al., 2015; Goodfellow et al., 2016). In
this sense, CNN models elegantly integrate spectral features with spa-
tial-contextual information from HSI data in a more efficient way as
compared to previous DNN models. The large flexibility that this model
provides regarding the dimensionality of the operational layers, their
depth and breadth, and its ability to make strong assumptions about the
input images (Krizhevsky et al., 2012), have turned the CNN into one of
the most successful and popular DNN models, being the current state-
of-the-art in DL (Gu et al., 2018) and an extremely popular tool for HSI
data classification.
The architecture of a CNN is composed by two well-differentiated

parts that can be interpreted as two networks. These coupled networks
are trained together as an end-to-end model to optimize all the weights
in the CNN: (i) the FE-net, composed by a hierarchical stack of feature
extraction and detection stages that learns high-level representations of
the inputs, and (ii) the classifier, composed by a stack of FC layers that
performs the final classification task, computing the membership of
each input sample to a certain class (Ball et al., 2017).
Focusing on the FE-net, it is composed by several hierarchically

stacked extraction and detection stages, where the l-th stage defines the
l-th submapping function f l( ). Usually, these submapping functions are
composed by CONV, activation or ReLU, and POOL layers (Murugan,
2017). In this way, the CNN model is able to reveal the features that are
shared across the data domain via localized kernels, extracting the local
stationarity properties of X (Defferrard et al., 2016). In fact, the feature
extraction performed by the CNN is very similar to the ones adopted by
other DNN models, i.e. the first stages are able to detect recognizable
features, while the last stages combine all the features detected by the
previous layers, detecting more abstract features. However, the flex-
ibility when designing kernels allows for a more efficient and natural
extraction of spectral, spatial and spectral-spatial features, as Fig. 7
shows, while the locally-connected nature of the convolutional kernels,
coupled with the parameter-sharing across layers, permits to alleviate
the number of parameters that must be fine-tuned by the model, making
the computations more efficient as compared with traditional FC ar-
chitectures. Focusing on the classifier net, it performs the final classi-
fication taking into account the information obtained by the FE-net.
Usually, this part is implemented by several stages composed by FC and
ReLU layers, placing a softmax on the last FC layer. The resulting output
can be interpreted as the probability that each input data pattern be-
longs to a certain class, where the optimization function can be defined
as the difference between all the desired outputs yi (for each input data
sample xi) and the obtained ones, y i, which can be calculated as the
cross-entropy of the data:

= y ylog( )c
i

i i
(8)

Moreover, the classifier net can be implemented by a standard MLP

model, or by other classifiers such as SVM (Paoletti et al., 2017b) or
logistic regression (Zheng et al., 2017). Also, the classifier can be dis-
regarded, using the first part, i.e. the FE-net, for other purposes such as
unsupervised FE (Romero et al., 2016). In the current literature, three
kinds of CNN models can be found for HSI data classification, de-
pending on whether they perform spectral, spatial, or spectral-spatial
feature analysis. In the following, we review some available works in
each category.

4.4.1. Spectral CNN models for HSI data analysis
Regarding spectral models (top of Fig. 7), they consider the spectral

pixels xi
nchannels as the input data, where nchannels can either be the

number of original bands nbands or a reasonable number of spectral
channels nnew, extracted using PCA or other DR methods, to which 1D-
kernels are applied on each CONV layer, ×K ql l( ) ( ), obtaining as a result
an output X l( ) composed by K l( ) feature vectors.
Hu et al. (2015) and Salman and Yüksel (2016) present a deep CNN

with five 1-D layers that receive as input data the pixel vectors, clas-
sifying HSI data cubes only in the spectral domain, while Charmisha
et al. (2018) present a CNN1D architecture called vectorized CNN
(VCNN) to perform DR and classification of HSI data based on the to-
pology of Hu et al. (2015). Li et al. (2017a) propose a CNN1D model for
exploring spectral information correlated between pixels, extracting
pixel pair features (PPFs) from the original data, being the input a
combination of the center pixel and each of its surrounding neighbors
(exploiting the similarity between pixels). Similarly, Du and Li (2018)
develop subtraction PPFs, where the CNN1D model’s input is the
spectral difference between the central pixel and its adjacent pixels,
performing HSI target detection. Mei et al. (2016) train the model by
considering the spectrum of the pixel, the spectral mean of neighboring
pixels, and the mean and standard deviation per spectral band of the
neighboring pixels, introducing several improvements into the CNN1D
architecture, such as batch normalization layers (Xu et al., 2015b), a
dropout process (Krizhevsky et al., 2012) and a new nonlinear activa-
tion function known as Parametric ReLU (PReLU) (He et al., 2015).
Acquarelli et al. (2018) develop seven shallow CNN1D models with
spectral-locality-aware regularization (R), smoothing-based data aug-
mentation (S) and label-based data augmentation (L), to include some
kind of spatial information into the network, creating seven combina-
tions (CNN-R, CNN-S, CNN-L, CNN-RS, CNN-RL, CNN-SL and CNN-
RSL), although the spectral pixels are processed independently, i.e. one
by one. Finally, Ghamisi et al. (2017a) and Chen et al. (2016) present
standard CNN1D models for spectral processing.
In addition to 1-D architectures, the CNN2D architecture can be

adapted to work only with spectral information. For instance, Jia et al.
(2016) take into account only the pixel spectral array xi, which is folded
into a map matrix and sent to the CNN2D as input.

4.4.2. Spatial CNN for HSI data analysis
Regarding spatial models, they only consider spatial information

obtained from the HSI data cube. In this sense, it is usual to employ
CNN2D architectures to process the spatial information, where each
CONV layer applies × ×K k kl l l( ) ( ) ( ) kernels over the input data, ob-
taining as a result K l( ) feature maps.
The spatial information can be extracted from the original HSI data

cube by reducing the spectral dimension by employing some DR-
method, such as PCA, and cropping spatial patches of ×d d pixel-cen-
tered neighbors. For instance Chen et al. (2016) and Haut et al. (2019a)
train a CNN2D with one principal component (PC), while Liang and Li
(2016) employ three PCs to train the CNN2D and post-process the ex-
tracted spatial-features with sparse coding (SC) (Charles et al., 2011;
Song et al., 2014) to create a sparse dictionary of more representative
spatial features for classification. Xu et al. (2018) propose the random
patches network (RPNet) as a CNN2D model where input data is whi-
tened by PCA, taking into account only three PCs. Also, Zheng et al.
(2017) perform an end-to-end classification with a CNN2D that receives
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as input six PCs. Zhao et al. (2015) propose a a CNN2D architecture for
extracting deep spatial features using, on the one hand, a multiscale
convolutional AE based on the Laplacian pyramid and, on the other
hand, the PCA to extract three PCs. Then, the extracted spatial features
are concatenated together with the spectral information, using the lo-
gistic regression as a classifier. Furthermore, Ding et al. (2017) consider
the HSI cube as a collection of 2-D images (i.e.images from different
bands), which are cropped into patches to train a CNN2D model to
automatically learn the data-adaptive kernels from the data through
clustering.
In addition to introducing PCA-extracted spatial patches, some

works propose the use of spatial-handcrafted features. For instance,
Chen et al. (2017b) reduce the spectral domain to three PCs and extract
spatial features (edges and textures) by applying Gabor Filtering. These
features are sent to the CNN2D model, reducing the workload and ad-
dressing the overfitting problem. Another example is Romero et al.
(2016), which performs a study between shallow and deep CNN2D
models trained with the enforcing population and lifetime sparsity
(EPLS) algorithm (Romero et al., 2015) for unsupervised learning of
sparse multi/hyperspectral features.
Recently, a deformable HSI classification network model (DHCNet)

has been proposed by Zhu et al. (2018a), using PCA to extract the three
most informative PCs of the original HSI data cube and splitting the
image into neighborhood windows to feed a CNN2D model, composed
by deformable convolutions and downsampling that fuse the neigh-
boring structural information of each input data sample in an adaptive
manner.

4.4.3. Spectral-spatial CNN for HSI data analysis
Regarding spectral-spatial models, they consider both spectral

properties and spatial information from the HSI data cube. In this sense,
several strategies and architectures can be developed to perform the
spectral-spatial processing, mainly due to the great flexibility that CNN
models exhibit.
Following traditional pixel-wise methods, the CNN1D can be em-

ployed to perform spectral-spatial classification, rearranging the the
spatial information and concatenating it to the spectral features (Zhang
et al., 2016). For instance, Slavkovikj et al. (2015) integrate spatial and
spectral information by reshaping the spectral-spatial neighborhood
window to be processed by 1-D kernels, and Ran et al. (2017) improve
the contextual information of the CNN1D by developing spatial PPFs
(SPPFs), introducing the constraint that only the central pixel and its
immediate surrounding pixels are paired.
Focusing on CNN2D architectures, these models can perform spec-

tral-spatial processing in different ways. The most direct one is to feed
the model with 3-D neighboring regions of size × ×d d nchannels, where
nchannels can be certain number of PCs or the original nbands. In this re-
gard, some methods perform an initial DR in order to reduce the
spectral correlation and redundancy. For instance, Makantasis et al.
(2015) compose 3-D inputs with 10–13 PCs, applying the randomized
PCA (R-PCA) over the HSI data cube. Yu et al. (2017) develop a spec-
tral-spatial CNN with ×1 1 CONV layers, also called cascaded cross-
channel parametric pooling or CCCP layers (Lin et al., 2013a), and one
global average pooling (GAP) layer instead of the traditional FC layers,
to better analyze the HSI data information. Paoletti et al. (2017a)

Fig. 7. Traditional architectures of spectral, spatial and spectral-spatial convolutional models employed by CNN1D, CNN2D and CNN3D architectures (top to bottom).
The CNN1D architecture is commonly employed for spectral analysis, applying a hierarchical stack of L FE and detection stages, where each CONV layer exhibits kernels
of ×K ql l( ) ( ). The CNN2D model can perform both spatial and spectral-spatial analysis by accepting spatial patches with few principal components or spectral-spatial
patches with all (or most) available spectral bands, to which each CONV layer applies a kernel of × ×K k kl l l( ) ( ) ( ). Finally, the CNN3D model is employed for spectral-
spatial analysis, taking full advantage of the spectral signatures contained in the input data by applying CONV layers with × × ×K k k ql l l l( ) ( ) ( ) ( ) kernels.
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develop a spectral-spatial model that efficiently takes into account the
full spectrum, reaching competitive results, while Dong et al. (2019)
propose a spectral-spatial CNN2D with a band-attention mechanism to
improve the feature representation of the data.
The spectral-spatial processing can be performed by CNN2D archi-

tectures introducing spectral-spatial handcrafted features. For instance
He et al. (2018) train the CNN2D model with covariance matrices,
which encode the spectral-spatial information of different-sized neigh-
borhoods of 20 PCs, obtaining multiscale covariance maps. Aptoula
et al. (2016) use attribute profiles (APs) (Mura et al., 2010) as input to
the CNN2D model, taking advantage of the spatial information and
spectral properties that APs can capture in an image at various scales.
Yue et al. (2015) develop a CNN2D architecture to process spectral and
spatial features by composing the spectral information as three different
feature maps, and concatenating them to the spatial patches (reduced
by PCA to three PCs).
Moreover, several approaches combine the CNN2D with other dif-

ferent models to perform spatial and spectral feature extraction in se-
parated fashion; for instance, Zhao and Du (2016) propose a spectral-
spatial feature based classification (SSFC) approach that employs a
CNN2D to find spatial-related features, while the spectral feature ex-
traction is performed by a balanced local discriminant embedding al-
gorithm (BLDE). Yue et al. (2016) extract spectral features from a SAE,
while a multiscale spatial FE is performed by a CNN2D with spatial
pyramid pooling (SPP). Zhang et al. (2017) and Yang et al. (2016)
combine the hierarchical spectral and spatial-related features extracted
from a CNN1D and CNN2D, respectively, performing the final classifi-
cation with a softmax regression classifier. Ma et al. (2018b) introduce
a two-branch model, where the spatial branch is composed by a CONV-
DECONV architecture with skip connections, and the spectral branch is
implemented by a contextual DNN.
In addition to the CNN1D and CNN2D models, the CNN3D model is

usually adopted for spectral-spatial classification, where the 3-D filters
of size × × ×K k k ql l l l( ) ( ) ( ) ( ) are able to extract high-level spectral-spa-
tial features in a natural way, extracting as output K l( ) feature volumes.
For instance, Chen et al. (2016) review the three kinds of convolutional
models that use the full pixel vectors in the original HSI data cubes to
create the input blocks for their CNN3D model, and Li et al. (2017c)
perform an interesting comparison between the spectral-spatial CNN3D
model, two spectral-based methods (SAE and DBN), and the spatial
CNN2D for HSI data classification, demonstrating that the CNN3D-
based method is able to outperform these state-of-the-art methods.
Furthermore, the CNN3D model can be used as a simple AE in order to
obtain spectral-spatial features. For instance, Mei et al. (2019a) and
Sellami et al. (2019) perform the classification on the spectral-spatial
features obtained by a CNN3D model.
As with CNN1D and CNN2D models, the available literature offers

more complex and sophisticated procedures for HSI data processing
involving CNN3D architectures. For instance, Luo et al. (2018) develop
a hybrid CNN2D-3D architecture able to deal with overfitting problems,
using a 3-D kernel as the first layer of the network to extract feature
vectors from the original 3D inputs, which are characterized by a small
neighborhood window (only ×3 3 with the full dimensionality given by
nbands). Then, the procedure reshapes the obtained feature vectors into
one single matrix that is sent to the second 2-D kernel, and also to the
subsequent pooling and FC layers, performing an end-to-end classifi-
cation. With certain similarities, Leng et al. (2016) propose a cube-
CNN-SVM (CCS) architecture which extracts several feature vectors
from the original HSI data cube, performing the classification in an easy
and efficient way with an SVM classifier. Roy et al. (2019) also combine
a CNN3D with a CNN2D, where the CNN3D first extracts spectral-
spatial features that are then refined by the CNN2D. Li et al. (2018b)
follow a similar architecture, changing the final SVM by an RF. More-
over, Gao et al. (2018b) develop a CNN architecture with as many
“branches” as AP features extracted from the HSI data cube, extracting
independently the corresponding output volumes, which are

concatenated and computed by the rest of the network. Cao et al.
(2018) improve the performance of bayesian-inspired CNN3D model by
placing spatial smoothness prior on data labels extracted with Markov
random fields (MRFs) (Sun et al., 2015). Finally, Wang et al. (2019)
introduce the alternately updated spectral-spatial CNN (AUSSC) as an
end-to-end CNN3D with a recurrent feedback structure to learn refined
spectral and spatial features.

4.4.4. Residual learning
CNN models have revolutionized the image processing field, es-

tablishing themselves as the current state-of-the-art. In this sense, the
constant improvements in convolutional architectures, and their
adoption in HSI data processing problems, have made possible to
achieve performances never seen before in HSI classification (Khan
et al., 2018). However, like the rest of DNN models, very deep CNN
models must face some limitations related to the depth and the data
degradation, as pointed out in Section 2.2. To overcome these issues,
some works have focused on increasing the network’s depth by creating
short paths from low-level layers to high-level layers (i.e. residual
connections). The development of convolutional architectures with re-
sidual learning has been a crucial step in the implementation of VDNN
models, allowing the development of models with hundreds of layers.
The internal structure of residual neural networks (ResNets) (He

et al., 2016) is based on groups of FE and detection stages which
compose the basic building block, known as residual unit (Xie et al.,
2017). The inputs of such block are directly connected to the outputs
through an aggregation operation, as it can be observed in Fig. 8. Such
residual connection performs an identity mapping that helps to pro-
pagate previous information to the subsequent units, improving the
backward step by promoting the propagation of the gradient. In this
regard, the output volume X l( ) of the l-th residual unit is given by Eq.
(9), where (·) represents all the operations applied over the input data
X l( 1), which depend on all the parameters (weights l( ) and biases

l( )) of the layers that compose the l-th unit:

= +X X X( , , )l l l l l( ) ( 1) ( ) ( ) ( 1) (9)

Eq. (9) reveals that the previous knowledge, in terms of generated
features, is exploited once again in the current unit. The available lit-
erature gathers some works concerning the use of the ResNet in HSI
processing. For instance, Zhong et al. (2017b) develop an end-to-end
spectral-spatial ResNet (SSResNet) for HSI classification, outperforming
traditional CNN models even with small training sets (Zhong et al.,
2017c). Also, Paoletti et al. (2018c) present a pyramidal ResNet for
spectral-spatial HSI data classification, improving the results of Zhong
et al. (2017b). Lee et al. (2016) and Lee and Kwon (2017) propose the
contextual deep CNN, which employs residual learning to simplify the
training of the proposed network. Moreover, Mou et al. (2018) imple-
ment an unsupervised classification method based on the AE archi-
tecture with CONV-DECONV layers, following the ResNet architecture
for spectral-spatial HSI data classification. In addition, Xie et al. (2018)
and Yuan et al. (2019) employ the residual-based model as a spectral-
spatial denosing AE for HSI data restoration and classification. Song

Fig. 8. Graphical visualization of a residual unit. The architecture reinforces the
learning process of the model by reusing previous information.
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et al. (2018) implement the deep feature fusion network (DFFN),
composed by stages or branches of CONV layers connected with in-
ternal residual units, whose features are concatenated at the end (before
the final classification). Li et al. (2019b) develop the multiscale deep
middle-level feature fusion network (MMFN), an architecture that
combines CONV layers and residual blocks into two stages to extract
optimal multiscale features and to fuse and learn the complementary
information from the obtained features. Chen et al. (2019a) present two
DL ensemble methods based on CNNs and ResNets, implementing
transfer learning to make full use of the learned weights. Moreover,
recent works have focused on improving the performance of ResNets
through attention techniques, for instance Haut et al. (2019) improve
the spectral-spatial classification of the ResNet model including a visual
attention mechanism to enhance the analysis of features. Mei et al.
(2019b) develop a two-branch model, where the CNN’s branch contains
the spatial attention mechanism and the ResNet’s branch implements
the spectral attention mechanism. In addition to classification tasks, the
ResNet has been also tested for HSI data super-resolution by Wang et al.
(2017a), exhibiting good results.
The introduction of connections between different layers has in-

spired other models. Particularly, densely connected networks
(DenseNets) (Huang et al., 2017) follow and extend the ResNet idea,
reusing low-level, middle-level and high-level features by con-
catenating ( ) all the previous feature maps obtained in a dense block
(see Fig. 9). In this sense, the output of each dense block is calculated as
the concatenation of the inner blocks that compose it:

=X X X( , , ) ( , , )l l l l( ) ( 1) ( ) ( ) (1) (1) (1) (10)

In both cases, ResNets and DenseNets increase the number of con-
nections, which does not imply a growth of model parameters that must
be fine-tuned. Quite opposite, internal connections allow to reduce
their number due to the presence of redundant information. At the same
time, they reinforce the feature propagation along the network, per-
forming a kind of regularization. Several works have adapted the
DenseNet model to HSI processing tasks. For instance, Paoletti et al.
(2018a) implement a Deep&Dense CNN model for spectral-spatial
classification of HSI data, while Wang et al. (2018a) analyze spectral,
spatial and spectral-spatial DenseNets for HSI classification. In a similar
way to ResNet, the DenseNet can be combined with attention me-
chanims. For instance, Ma et al. (2019) propose the double-branch
multi-attention mechanism network (DBMA) to separately extract
spectral and spatial features, adopting (at each branch) an attention
mechanism to extract the most discriminative features and Fang et al.
(2019) propose an end-to-end 3-D DenseNet with spectral-wise atten-
tion mechanism for enhancing HSI classification. Also, the ResNet and
DenseNet can be combined to construct a joint network, known as dual-
path network (DPN) (Chen et al., 2017a), composed by bottleneck-
blocks whose output is split into two branches: the first branch is ele-
ment-wisely added to the residual path, and the second branch is
concatenated with the densely connected path. This model has been
successfully employed for HSI classification purposes; for instance,
Kang et al. (2018) reach very good accuracy in comparison with ResNet
and DenseNet, taking into account very small training sets (0.3%-0.5%)
and using PCA to extract 5–10 PCs.

4.5. Other improved convolutional-based networks

In addition to ResNets and DenseNets, some other convolutional-
inspired architectures have been developed for HSI data analysis. For
instance, Liu et al. (2018) implement a siamese CNN (S-CNN) (Koch
et al., 2015) for HSI data classification, which contains two branches of
identical sub-networks that share the same configuration and para-
meters. This implies less parameters to fine-tune, requiring less training
data and reducing the tendency to overfitting, helping to manage da-
tasets with high intraclass variability and interclass similarity, reaching

good performance with a small number of training samples.
Inspired by the inception architecture (Szegedy et al., 2015; Szegedy

et al., 2016), the work of Lee et al. (2016) introduces an inception
module at the beginning of their model, composed by n-parallel streams
with several layers and different kernel sizes, whose outputs are merged
by concatenation. Moreover, inspired by the network-in-network (NiN)
(Lin et al., 2013a) architecture, Shamsolmoali et al. (2018) train a RNN
with combined spectral-spatial features extracted by a CNNiN.
Based on the fully convolutional network (FCN) (Long et al.,

2015a), whose learnable layers rely only on CONV and DECONV layers,
Li et al. (2018a) implement an AE-based FCN for HSI-FE, using an ELM
to classify the obtained features. Following the CONV-DECONV archi-
tecture and adding skip connections, the hourglass CNN architecture
(Newell et al., 2016; Haut et al., 2018b) creates an encoder-decoder
structure where each block of CONV layers that compose the encoder is
connected to the corresponding DECONV layer at the decoder coun-
terpart. This architecture can be employed for HSI data denoising
(Sidorov and Hardeberg, 2019).
Recently, a new kind of network based on capsules and dynamic

routing has been implemented, called Capsule Networks (CapNets)
(Sabour et al., 2017). This architecture encodes the data internal re-
lationships into an activity vector (instead of a traditional scalar value).
Such data representation has demonstrated to be powerful in encoding
useful features from the data, solving the limitations exhibited by the
pooling layer. In this sense, Paoletti et al. (2018b) present a spectral-
spatial CapsNet for HSI classification that outperforms the accuracies
reached by traditional CNN models and the ResNet. Also, Deng et al.
(2018) present a HSI-CapsNet that provides good results when very few
training samples are employed.

5. Overcoming the limitations of DL in HSI Classification

The vast number of works discussing DNN models (in general) and
CNNs (in particular) for HSI data analysis reveals the great possibilities
that DL-based methods are able to offer in this context, not only in
terms of architectural modifications, but also regarding their combi-
nation with other methods and algorithms, as we pointed out on Section
3. This also includes a large variety of remote sensing image processing
techniques apart from data classification (FE, DR, unmixing, re-
construction, super-resolution, etc.) Convolutional-based networks such
as CNNs and ResNets represent the most groundbreaking advance in DL
in the last few years, allowing the implementation of VDNN models
with hundreds/thousands of layers and compelling performance, fol-
lowing the assumption that deeper models are able to extract more
complex and high-level relationships from the data (Srivastava et al.,
2015). In the end, this expected to lead to improvements in model ac-
curacy and performance (Krizhevsky, 2012; Yu et al., 2013). This has

Fig. 9. Graphical visualization of a dense block. Instead of CONV layers, the
DCNN is composed by dense blocks D l( ), where each one contains several inner
blocks Bi

l( ) composed by several CONV layers. The architecture of each D l( )

allows for the reutilization of the low, middle and top feature maps extracted by
each inner block.
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also placed CNNs and ResNets as the current mainstream technologies
in DL for HSI classification. However, these models must also face the
limitations listed on Section 2, related to intrinsic problems of HSI
analysis and the efficient management of depth. In order to deal with
the aforementioned issues, several techniques and mechanisms have
been developed in previous years to enhance the learning process and
improve the performance of deep architectures. In the following, we
provide a description of the available strategies to mitigate these issues.

5.1. Opening the black box

Regarding the “black box” nature of DNN models (in general) and
convolutional-based ones (in particular), several efforts have been
made to “open” the box and understand what are the filters actually
doing (Rauber et al., 2017). For instance, mNeuron (Wei et al., 2017a) is
a powerful Matlab plugin that allows the visualization of convolutional
neural network parameters, while t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008) and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018) are non-
linear dimensionality reduction techniques which are also employed to
visualize the models parameters in a simple way. Liu et al. (2017b)
propose to formulate the CNN model as a directed acyclic graph (DAG),
developing the CNNVis as a visual analysis system to better understand,
diagnose and refine CNN models.
Regarding parameter visualization, several works propose to un-

derstand how DL is working in step-by-step fashion. In this context, Lei
et al. (2018) present an ambitious dissertation, analyzing the DL-based
models as physical systems from a microscopic, macroscopic, and
worldview perspectives. Ravanelli and Bengio (2018) present a more
concrete proposal, developing the SincNet, a convolutional-based
model that exploits parametrized sinc functions in the first layer to
discover more significant filters. Also, the BagNet (Brendel and Bethge,
2019) employs a visual bag-of-local-features model to perform the
classification, extracting features that are easy to identify and interpret.
There is a wide variety of proposals to understand what networks do

(Mahendran and Vedaldi, 2015; Nguyen et al., 2015). However, in the
current literature about HSI-classification, little attention has been paid
to this issue. Qiu and Jensen (2004) propose a method for under-
standing the performance of a three-layer MLP in HSI classification, but
no relevant efforts have been reported with DL-architectures.

5.2. Reducing overfitting

In order to address the overfitting problem in convolutional-based
models, several strategies have been reported that can be classified into
four main categories: (i) those that affect the data, (ii) those that affect
the model, (iii) those that affect the training process, and (iv) new
learning paradigms to deal with the limited availability training data.

5.2.1. Data augmenting and noise inclusion
Gathering enough labeled samples to capture the high variability of

HSI data is complicated, time consuming and expensive. Several works
have focused on addressing this issue through the generation of virtual
samples to enhance the robustness of convolutional-based models
(Acquarelli et al., 2018). Following traditional methods, Yu et al.
(2017) enlarge the training set by rotating and flipping the input
spectral-spatial patches, while Lee and Kwon (2017) mirror the spec-
tral-spatial training patches four times, across the horizontal, vertical
and diagonal axes. On the other hand, Haut et al. (2019a) implement a
mechanism to add spatial-structured noise to the input HSI data by
randomly occluding some areas of the input patch in order to enhance
the performance and robustness of the CNN model. Chen et al. (2016)
present two methods to create additional training samples: the first one
changes the spectral radiation of the original training samples xi by
multiplying them by a random factor and adding random noise, and the
second one by mixing the spectral properties of two samples of the same

class with proper ratios. Also, Acquarelli et al. (2018) present two
methods: smoothing-based data augmentation, which takes advantage
of the spectra of neighboring pixels, and label-based data augmenta-
tion, which exploits the labels of neighboring pixels to favor those
classes with less samples, in addition to creating copies of the original
data by inserting random noise. Ghamisi et al. (2016) propose a dither
algorithm (Simpson, 2015) to suppress non-linear distortions and data
aliasing, generating new samples by adding random noise to the ori-
ginal training samples, in addition to using the fractional order Dar-
winian particle swarm optimization (FODPSO) to select the most in-
formative spectral bands. An interesting work has been recently
proposed by He and Chen (2019), who implement a transformation
network (STN) to obtain an optimal input of the CNN model for HSI
classification, which translates, rotates and scales the network’s input
until obtaining an optimized one.

5.2.2. Reducing the complexity of the model
The second strategy to reduce overfitting is focused on reducing the

computational complexity of deep CNNs (Maji and Mullins, 2018), for
instance, by optimizing the internal structures of the CONV layers,
pruning them to obtain a more simple and efficient network archi-
tecture (Cheng et al., 2017b). The thinning of the network (and the
subsequent parameter reduction) make the CNN model lighter, which
leads to faster training and execution, although not many efforts have
been made in this direction in the HSI arena. Recently, works focused
on designing optimal CNN architectures for HSI data processing have
been presented. Specifically, Chen et al. (2019b) propose a metho-
dology to automatically design efficient CNN1D and CNN3D archi-
tectures for HSI data classification. Given a number of operations (i.e.,
layers such as CONV, POOL or normalization), a gradient descent-based
search algorithm evaluates all possible configurations and selects the
best and optimal one.

5.2.3. Enhancing the training process
The methods for this purpose cover a wide range of techniques. For

instance, L1/L2 regularization methods insert a penalty into the loss
function in order to minimize the absolute value of the weights or the
squared magnitude of the weights (weight decay or Tikhonov regular-
ization), respectively (Murugan and Durairaj, 2017). The regularization
process forces the model to make compromises on its weights, making it
more general. In particular, the L1 regularization enforces the identi-
fication of the most relevant features in a dataset, while the L2 pursues
a regularization that is less aggressive, but more efficient in computa-
tional terms. For instance, Chen et al. (2016) use the L2 regularization.
In addition to these methods, dropout regularization (Hinton et al.,

2012; Srivastava et al., 2014) has also been proven to be a good solu-
tion to enhance the performance and robustness of the CNN model,
preventing complex co-adaptations on training data. The mechanism is
quite simple: it randomly deactivates a percentage of the activations in
order to improve the network generalization, forcing the neurons to
make more compromised assumptions. For instance, Paoletti et al.
(2017a) make use of dropout in the layers of the CNN. Based on
dropout, multiple regularization techniques have been developed (Ba
et al., 2013; Zhang et al., 2016a; Molchanov et al., 2017) such as its
generalization to large FC layers: the drop-connect (Wan et al., 2013),
which sets randomly selected connection weights to zero. However,
traditional dropout injects random single-pixel noise to the feature
maps, resulting in spatially unstructured noise, which makes it in-
effective in 2-D and 3-D models (Park and Kwak, 2017). In this sense,
spatial-dropout (Tompson et al., 2015) and dropblock (Ghiasi et al.,
2018) regularization techniques overcome the problem by dropping
spatial-regions of the feature maps.
Another interesting regularization technique for preventing over-

fitting is early stopping (Caruana et al., 2001), which saves at each
epoch those models that outperform the previous trained networks,
discarding the others and storing at the end the results of the best
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model. For instance Ran et al. (2017), Acquarelli et al. (2018), and
Wang et al. (2018a) employ this technique to assess the convergence of
their convolutional-based models.

5.2.4. Improvements on learning strategies
Overfitting in DNN models is intimately related to the number of

samples available for training, representing one of the main limitations
of supervised and very deep models. In this context, some improve-
ments on learning paradigms have been developed in the DL field that
can effectively improve the performance of DNNs when very few
samples are available. We describe four of such paradigms: (i) semi-
supervised and (ii) active learning (AL), (iii) transfer learning (TL), and
(iv) self-supervised learning.

Semi-supervised learning In-between unsupervised and su-
pervised learning, DNN models allow the implementation of hybrid
approaches. In particular, semi-supervised learning (Ratle et al., 2010)
provides a wide range of techniques to expand the training set train by
including unlabeled data during the training stage (Ratle et al., 2010;
Sabalel and Jadhav, 2014). For instance Ma et al. (2016c) present a
semi-supervised learning strategy based on multi-decision labeling
(local, global and self-decision levels), where unlabeled samples with
high confidence are selected to extent the training set. Kang et al.
(2019) extract pseudo-training samples from PCA and extended mor-
phological attribute profiles (EMAPs) (Dalla Mura et al., 2011), ap-
plying extended random walker optimizers to feed a spectral-spatial
convolutional-based deep feature fusion network (DFFN). Wu and
Prasad (2018) present a convolutional-based recurrent model fed by
pseudo training samples obtained by previous clustering. Fang et al.
(2018) adopt separated spectral and spatial residual architectures with
co-training, where the most confident labeled samples at each iteration
are included in train. A similar approach has been implemented by
Zhou et al. (2019b), in which two separated spatial and spectral SAEs
are co-trained, enlarging train by a region growing method. An inter-
esting trend is the adoption of the ladder network (Rasmus et al., 2015;
Pezeshki et al., 2016), a new DNN model based on hierarchichal latent
variable models, for semi-supervised classification of HSI data (Liu
et al., 2017a; Büchel and Ersoy, 2018).
In addition to the addition of unlabeled data to train, some semi-

supervised techniques are able to replicate new samples. In particular,
the DNN structure known as generative adversarial network (GAN)
(Goodfellow et al., 2014). For instance, Zhu et al. (2018b) propose
convolutional-based GAN1D and GAN3D architectures to learn the in-
trinsic characteristics of HSI data, enhancing the classification perfor-
mance achieved by the traditional CNN1D and CNN3D. Also He et al.
(2017b), Zhu et al. (2018b), and Zhan et al. (2018) present similar
approaches, while Zhang et al. (2018a) introduce a Wasserstein GAN to
perform unsupervised FE.

Active learning (AL) AL is a semi-supervised machine learning
algorithm (MacKay, 1992) that can easily deal with the availability of a
limited amount of labeled data by training the model with a small set of
labeled samples that is reinforced by the acquisition of new (re-
presentative and intelligently selected) unlabeled samples, reducing the
cost of acquiring large labeled training sets and the number of needed
training samples. In the literature, several works combining the DNN
and AL paradigms can be found. For instance, Haut et al. (2018c) dis-
cuss the use of Bayesian CNNs for spectral, spatial and spectral-spatial
HSI classification, providing robust classification results in comparison
with traditional CNN models. In addition to convolutional models, Liu
et al. (2017c) employ AL with a DBN, while Li (2015) develops an AL-
based SAE.

Transfer learning (TL) The TL paradigm (Yosinski et al., 2014;
Long et al., 2015b) is based on the assumption that learned features in
one task can be used for other tasks (Pan and Yang, 2010). Low-level
layers in convolutional-based architectures are able to learn generic
features that are less dependent on the final task, while the top-level
layers learn more specific knowledge, extracting features that are more

related with the final task. In this sense, TL-based algorithms usually
employ off-the-shelf pre-trained networks (i.e. models that were trained
on different datasets) to process the data of interest, tailoring them
slightly for the new task by removing some the last few layers of the
model and retraining again with some new final layers. As a result, the
amount of data used to pre-train the CNN can be leveraged, alleviating
the need for new data (this is useful when limited amounts of training
sets are available) and producing better results in a shorter amount of
time (Windrim et al., 2018). The most widely used off-the-shelf pre-
trained networks are trained with the ImageNet dataset, composed by
14 million images belonging to 1000 different classes. The most popular
topologies are the following ones:

• ResNet-50, composed by 50 residual layers,
• DenseNet121 (Huang et al., 2017), composed by 4 dense blocks
connected by transition layers,
• VGG-16 and VGG-19 (Simonyan and Zisserman, 2014), which in-
crease the depth by using many layers: 16 and 19, respectively,
using a simple architecture with small kernels (CONV layers of

×3 3) and reducing the volume size (through POOL layers of ×2 2),
• MobileNet (Howard et al., 2017), whose architecture is suitable for
onboard processing, maximizing the accuracy while taking into
account restricted resources for an integrated application,
• Xception (Chollet, 2017), based on inception networks, where the
original modules have been replaced with depthwise separable
convolutions in order to make a more efficient use of model para-
meters.

Several works adapt the TL paradigm to process HSI data (Mei et al.,
2017; Jiao et al., 2017; Windrim et al., 2018; Yang et al., 2017; Deng
et al., 2019; Zhang et al., 2019), visibly improving the training of deep
CNN models when limited amounts of labeled data are available for the
training stage.

Self-supervised learning This learning strategy emerges as an al-
ternative approach to supervised learning, being able to extract the
naturally available contextual information and embedded metadata as
supervisory signals, without an explicit need for =x y{ , }i i i

n
1

labelled pairs. This
does not mean learning the inherent structure of data in the form of
unsupervised learning (Liu et al., 2019; Jing and Tian, 2019). In HSI
data classification, Wang et al. (2018b) propose the HSINet, which
contains a three-layer DNN, a multi-feature CNN, and an embedded
conditional random field to achieve self-supervised feature learning,
extracting spatial, spectral, color, boundary and contextual informa-
tion. Also, Liang et al. (2018) combine TL with self-supervised learning,
developing a pre-trained VGG-16 to extract deep multi-scale spatial
information from the HSI data cube, whose spatial information is pro-
cessed together with the raw spectral information by a SAE.

5.3. Vanishing gradient problem

Apart from improvements based on architectures, such as ResNets
and CapsNets, those methods employed to deal with the vanishing
gradient problem (Srivastava et al., 2015) can be categorized into three
main groups: (i) implementing data normalization between each net-
work layer, (ii) developing better initialization strategies with proper
optimizers, and (iii) implementing better non-linear activation func-
tions.

5.3.1. Avoiding vanishing gradient through data normalization
During gradient descent training, the layer’s weights W l( ) and the

obtained data X l( ) distributions can vary (covariate shift effect), making
the learning very unstable and saturating the activations whose first
derivative tends to zero. This leads to the vanishing gradient problem.
In this sense, it is common to employ normalization methods to control
the magnitude and mean of the neurons’ activations located into one
layer (independently of the other layers of the model). This aims at
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performing the parameters’ optimization in an easier way (Santurkar
et al., 2018) while, at the same time, dealing with the unbounded
nature of certain activation functions (for instance, the ReLU), whose
outputs are not constrained within a bounded range (such as the tanh
function). Table 2 provides a summary of several relevant normal-
ization methods that have been adopted in this context.

5.3.2. Avoiding vanishing gradient through initialization and optimization
strategies
Classical DNNs initialize their parameters, setting small random

values to the weights and biases that compose the model, under the
assumption that this helps the stochastic optimization algorithm used to
train the model. In this sense, the selection of the optimization algo-
rithm becomes fundamental in order to obtain a proper performance of
the model. This selection must take into account the type of data to be
used, the task to be performed, and the features of the problem.
Several optimization methods with different strengths and weak-

nesses have been developed with the aim of improving the process of
minimizing an objective function: the traditional stochastic gradient
descent (SGD), which is faster than standard gradient descent (GD) but
harder to converge to the minimum due to frequent updates and fluc-
tuations; the minibatch SGD, which reduces the high variance in the
parameter updates; the momentum, which speeds SGD by descending
along the relevant direction, reducing oscillations; the preconditioned
SGD (PSGD) (Li, 2018), which adaptively estimates a preconditioner for
handling efficiently the gradient noise and non-convexity of a target
function at the same time, giving good results in deep neural models
optimization (Li et al., 2016); Adagrad (Duchi et al., 2011), a variant of
PSGD which adapts the learning rate based on the parameters, being
well-suited for dealing with sparse data although its learning rate can
suffer from constant decaying, producing the decaying learning rate
problem and hampering the optimization process; AdaDelta (Zeiler,
2012), which tries to avoid the decaying learning rate problem by
calculating different learning rates for each parameter and is often
combined with the momentum technique; and finally the adaptive
moment estimation (Adam) (Kingma and Ba, 2014), which is a com-
bination of Adagrad and AdaDelta, outperforming the previous opti-
mization techniques. It is based on processing adaptive learning rates
for each parameter and storing several past gradients to keep a de-
caying average of those past gradients, which makes it efficient, with
fast convergence and effective when dealing the vanishing learning
rate. The excellent results of Adam algorithm have positioned it as the
method that is most widely used for optimizing deep networks, being
employed in some HSI-related works as Paoletti et al. (2017a, 2018c).
In addition to the improvements implemented on the optimizers

(Martens et al., 2012; Sutskever et al., 2013; Dauphin et al., 2014),
recently new investigations have been made in order to improve the
initialization of model parameters (Bengio et al., 2007a; Glorot and
Bengio, 2010; Erhan et al., 2010; He et al., 2015; Koturwar and
Merchant, 2017; Guo and Zhu, 2018), for instance by performing un-
supervised pre-training (Romero et al., 2016; Li et al., 2015a), which
initializes the parameters near to a local minimum, allowing for a better
generalization via unsupervised FE.

5.3.3. Avoiding vanishing gradient through new non-linear activation
techniques
Currently, several efforts for preventing the vanishing-gradient

problem have been made based on developing effective non-linear ac-
tivation functions (·) (Xu et al., 2015a; Pedamonti, 2018). In parti-
cular, some rectified-based activation functions have been adapted to
overcome the problem by preventing the gradient from being zero. For
instance, in order to face the dying ReLU problem the leaky ReLU
(LReLU) (Maas et al., 2013) and parametric ReLU (PReLU) (He et al.,
2015) functions have been implemented with Eq. (11) (see Fig. 3).

=
>

x a x x
x x

( ) · if 0
if 0 (11)

In particular, the LReLU sets the gradient signal as a linear com-
ponent of the input layer data X l( ), employing a small and constant
negative slope (usually =a 0.001) when the data is equal or smaller
than 0. This avoids the dying ReLU problem, as the function will not
have zero-slope parts, making the LReLU more balanced and allowing a
faster learning. PReLU works similarly, being a learnable in this case. In
this context, the vanishing gradient depends on the slope a. Instead of
that, the scaled exponential linear unit (SeLU) (Klambauer et al., 2017;
Paoletti et al., 2018) derives two parameters: and from the inputs,
as we can observe in Eq. (12), allowing as the smallest gradient
value and mapping the means and variances from one layer to the next
one in order to minimize the covariate shift effect.
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6. Popular deep learning frameworks

The current trend in the literature is to implement deeper and more
complex networks, with new topologies, more branches and connec-
tions, and better optimizers and functions. In this sense, certain pro-
gramming frameworks have been deployed in order to provide tech-
nical and coding support to developers of DL methods. In particular,
these DL frameworks offer a black-box environment for training and
validating DNN models through a high level programming interface.
Furthermore, instead of ad hoc software, the framework provides
quality and maintainability of applications at low cost, allowing for the
model to better adapt to market standards. In terms of performance,
available frameworks are able to easily exploit computing tools, de-
veloped and supported by large communities, relying on well-known
high performance computing (HPC) libraries such as CUDA, CUDNN,
MKL, BLAS, AVX operations and Protobuf, among others.
Table 3 provides a summary of the main DL frameworks currently

available in public repositories, including a brief description, the pro-
gramming language that was used for coding purposes, and the avail-
able application interfaces (APIs). It is interesting to highlight the use of
Python as one of the main programming languages in the community to
implement DL frameworks, due to its versatility and flexibility. In ad-
dition, the number of stars and forks have been provided as indirect
evaluation metrics of those repositories (see Fig. 10), where stars
measure the degree of popularity of the repository, while forks measure
the number of copies that have been made of the original repository.
These data has been obtained on two different dates: July 16th, 2018
and September 8th, 2019, in order to compare the evolution of these
indicators. It can be observed that the most popular DL framework is
TensorFlow (Abadi et al., 2016a; Abadi et al., 2016b), tracked by more
than 120.000 followers and with more than 70.000 branches and forks,
being the framework that has grown the most from 2018 to 2019.
Concerning TensorFlow, the high-level library Keras (Ketkar, 2017) has
also experimented an increase in the number of followers, allowing for
the development of ANN models in an easy and simple way. Also, it is
interesting to note that the frameworks based on Torch (Collobert et al.,
2002), Pytorch (Fey and Lenssen, 2019) and Fast.AI have also sig-
nificantly grown, providing an easy-to-debug tool for the implementa-
tion of neural models.

7. Experimental results

7.1. Hyperspectral datasets

After reviewing the main models and frameworks, we perform a
comparison between the most popular DL-based architectures and tra-
ditional ML-based algorithms in order to quantify the improvements
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Table 2
Some examples of normalization methods for neural networks.

Method Description

Local response normalization (LRN) (Krizhevsky et al.,
2012)

It was introduced by the first time in the AlexNet model to enhance the lateral inhibition property of the neurons, i.e.
the ability of the neural nodes to reduce the activity of its neighbors by competition, modulating the feedback signals
and enhancing the visual contrast (i.e. performing an attention mechanism) (Wyatte et al., 2012). In this sense, the
LRN allows to diminish responses that are uniformly large for the neighborhood, making large activation more
pronounced within a neighborhood and creating higher contrast in activation maps in order to increase the sensory
perception. It has been successfully applied by (Lee et al., 2016; Lee and Kwon, 2017).

Batch normalization (BN) (Ioffe and Szegedy, 2015) Considering the output volume X l( ) of the l-th layer as the data to normalize, with nbatch data representations, where

each one comprises K l( ) feature maps of size × ×d d nl l
channels

l( ) ( ) ( ) , being nbatch the batch size, ×d dl l( ) ( ) the spatial

dimensions and nchannels
l( ) the number of spectral bands, the BN method normalizes the obtained features by computing

the mean µ and variance 2 respect to the feature maps (channel) dimension. It has been widely used by the HSI
community (Liu et al., 2017a; Zhong et al., 2017c; Gao et al., 2018a; Deng et al., 2018), being usually applied before
the activation function, to maintain the data distribution to zero-mean and unit variance, scaling and shifting the data
through the learnable parameters and , respectively. This allows to reach a more independent and high-speed
learning (with larger learning rates and high accuracy), although it is very sensitive to the batch size nbatch (Bjorck
et al., 2018).

Weight normalization (WN) (Salimans and Kingma,
2016)

It normalizes the weights of the l-th layer, reparameterizingW l( ) in terms of a parameter vector v (weights’ direction
v v/|| ||) and a scalar parameter g (weights’ norm, which is also obtained by a learnable log-scale parameter s as =g es)
and directly performing the backpropagation with respect to those parameters instead, in order to fix the Euclidean
norm of W l( ). This, coupled with the mean-only batch normalization, allows the scale of neural activations to be
approximately independent of the parameter v , as well as their mean (Gitman and Ginsburg, 2017).

Layer normalization (LN) (Ba et al., 2016) Similar to BN, LN normalizes the data computing the mean µ and variance 2 with respect to the batch dimension, in
order to avoid the limitations of the BN method. In this sense, LN does not employ batch statistics, being the
normalization of each sample independent of other samples. This enables a beneficial behaviour in networks such as
RNNs.

Instance normalization (IN) (Ulyanov et al., 2016b) Inspired by Huang and Belongie (2017) in neural style transfer tasks Ulyanov et al. (2016a), the IN normalizes across
each feature map dimension in the batch independently avoiding the dependency of the batch and normalizing the
constrast of the content image. It is commonly used to remove variance of images on low-level vision tasks (Pan et al.,
2018). Also, coupled with BN, IN has inspired the development of other methods, such as batch-instance normalization
(BIN) (Nam et al., 2018) that extends the handling of the variability introduced by visual styles (textures, lighting,
filters) to general recognition problems.

Group normalization (GN) (Wu and He, 2018) GN divides the feature map (channel) dimension into several groups, normalizing each group in the current batch,
exhibiting a behavior that straddles the layer and instance normalization methods depending on the number of groups
that it creates.

Batch re-normalization (BRN) (Ioffe, 2017) It extends the BN method in order to deal with small or non-independent and identically distributed (non-i.i.d)
batches, normalizing the activations through the combination of the batch’s mean and variance (µ and 2 ,
respectively) and the moving averages (µ and 2) in an affine transformation.

Decorrelated batch normalization (DeBN) (Huangi
et al., 2018)

BN is able to scale and shift the obtained activations through parameters and . In this sense, the DeBN extends the
BN method to perform data whitening, taking into account the zero-phase component analysis (ZCA) method (Kessy
et al., 2018) to decorrelate the neural activations.

Table 3
Some of the most widely used DL-based frameworks (data obtained on September 8th, 2019).

NAME DESCRIPTION APIs STARS FORKS

Tensorflow An Open Source Machine Learning Framework for Everyone C++, Go, Java, JavaScript, Python,
Swift

133322 77067

Keras Deep Learning for Humans Python 43786 16673
OpenCV Open Source Computer Vision Library C++, Java, Python 37798 27983
PyTorch Tensors and Dynamic Neural Networks in Python with Strong GPU Acceleration C++, Python 31416 7712
Caffe A fast open framework for deep learning CLI, Matlab, Python 29000 17530
MXNet Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware

Dataflow Deep Scheduler
C++, Clojure, Java, Julia, Perl, Python,

R, Scala
17647 6276

CNTK Microsoft cognitive toolkit (CNTK), an Open Source Deep-learning Toolkit C++, C#, Python 16394 4365
Fast.AI The Fast.ai Deep Learning Library, plus Lessons and Tutorials Python 15384 5517

Deeplearning4j Eclipse Deeplearning4j, ND4J, DataVec and more - deep learning & linear algebra for Java/Scala
with GPUs + Spark

Java/Scala 11130 4735

Paddle PArallel Distributed Deep LEarning Python 9851 2628
ConvNetJS Deep Learning in Javascript. Train CNNs (or ordinary ones) in your browser. Javascript 9787 1951
Theano Python library that allows to define, optimize, and evaluate efficiently mathematical expressions

involving multi-dimensional arrays
Python 8900 2504

Horovod Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet Python 7380 1130
Chainer A flexible Framework of Neural Networks for Deep Learning Python 5028 1327
BigDL BigDL: Distributed Deep Learning Library for Apache Spark Python/Scala 3152 797

MatConvNet CNNs for MATLAB MATLAB 1205 713
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and advantages that can be gained by DL models in terms of perfor-
mance and classification accuracy. To this end, four images widely used
in the field of hyperspectral image processing have been selected to
complete the experimental part of the work: the Indian Pines (IP) and
Salinas Valley (SV) scenes, collected by AVIRIS, the University of Pavia
(UP) scene, gathered by ROSIS and the University of Houston (UH)
scene, collected by CASI. Table 4 shows a brief summary of these HSI
datasets, including the number of labeled samples per class, as well as
the available ground-truth information:

• The IP dataset (Table 4) was captured in 1992 by the AVIRIS sensor
(Green et al., 1998) over the Indian Pines test site in NW Indiana, an
agricultural area characterized by its crops of regular geometry and
also irregular forest regions. The scene consists of ×145 145 pixels
with a spatial resolution of 20 mpp and with 224 spectral bands,
which have been collected in the wavelength range from 0.4 to
2.5 µm. From these bands, 24 were removed for being null or water
absorption bands (in particular [104–108], [150–163] and 220),
considering the remaining 200 bands for the experiments. The
ground truth available is divided into sixteen classes and about half
of the data (10249 pixels from a total of 21025) contains labeled
samples.
• The UP scene (Table 4) was acquired by the ROSIS sensor (Kunkel
et al., 1988) over the campus of the University of Pavia, in the north
of Italy. The dataset contains nine different classes that belong to an
urban environment with multiple solid structures, natural objects
and shadows. After discarding the noisy bands, the considered scene
contains 103 spectral bands, with a size of ×610 340 pixels with
spatial resolution of 1.3 mpp and covering the spectral range from
0.43 to 0.86 µm. Finally, about 20% of the pixels (42776 of 207400)
contain ground-truth information.
• The SV image (Table 4) was gathered by the 224-band AVIRIS
sensor over several agricultural fields of Salinas Valley, California,
and it is characterized by a spatial resolution of 3.7 mpp. The area
covered comprises ×512 217 spectral samples. As in the case of the
IP dataset, we discard 20 bands due to water absorption and noise.
• The UH scene (Xu et al., 2016a) was collected by CASI in June 2012
over the University of Houston campus and the neighboring urban
area. This scene forms a cube of dimension × ×349 1905 144, with
spatial resolution of 2.5 m and spectral information captured in the
range from 0.38 to 1.05µm, containing 15 ground-truth classes

divided in two categories: training (top UH map in Table 4) and and
testing (bottom UH map in Table 4). In this sense, the UH scene
provides an interesting benchmark dataset, which was first pre-
sented at the IEEE Geoscience and Remote Sensing Society (GRSS)
Image Analysis and Data Fusion Technical Committee during the
2013 Data Fusion Contest (DFC) (Debes et al., 2014).

These datasets, along with the training and test data, are all avail-
able online from the GRSS Data and Algorithm Standard Evaluation
(DASE) website (http://dase.grss-ieee.org).

7.2. Experimental settings

In order to make an exhaustive analysis of the main DL-based ar-
chitectures employed for HSI classification purposes, an extensive set of
experiments have been carried out.

1. The first experiment compares the performance of supervised stan-
dard ML and DL classification methods with different amounts of
training samples over the four considered HSI datasets, studying
how they are affected by the lack of information and the type of
samples. In particular 1%, 5%, 10%, 15%, 20% and 25% of the la-
beled samples per class have been randomly selected to compose the
training set on IP, UP and SV, while the full available training set for
UH has been considered. Also, some of the most popular classifi-
cation algorithms available in the literature have been considered:
(1) random forest (RF), (2) multinomial logistic regression (MLR),
(3) support vector machine (SVM) with radial basis function kernel
(Waske et al., 2010), (4) multilayer perceptron (MLP), (5) vanilla
recurrent neural network (RNN), (6) RNN with gated recurrent unit
(GRU), (7) RNN with long short term memory (LSTM), (8) spectral
CNN (CNN1D), (9) spatial CNN with 2-D kernels and one PC
(CNN2D), (10) spectral-spatial CNN with 2-D kernels and forty PCs
(CNN2D40), and (11) spectral-spatial CNN with 3-D kernels and also
forty PCs (CNN3D). Regarding the configuration of the experiment,
the available training set has been divided into batches of 100
samples, using Adam optimizer with learning rate of 0.0008 for SV
and UP and 0.001 for IP and UH. Regarding the number of epochs,
MLP, CNN1D, CNN2D and CNN2D40 have been trained using 300
epochs. The parameters of RNN, GRU and LSTM models have been
adjusted using 200 epochs. Finally, the parameters of CNN3D have
been trained using 100 epochs. Furthermore, the topology details of
each model are reported on Table 5. It must be noted that we follow
the convention that deep architectures have at least two or more
hidden layers, while shallow models are composed by single-hidden
layer architectures (Bengio et al., 2007b; Schmidhuber, 2015). In
addition, the inclusion of batch normalization (BN) in some layers of
the convolutional models intends to, on the one hand, avoid van-
ishing/exploding gradients and, on the other hand, maintain the
distribution of the layer’s inputs (internal covariate shift) (Ioffe and
Szegedy, 2015). We have empirically observed that, on some (but
not all) CNN models, BN stabilizes and accelerates the training
stage. In this sense, we noted that these configurations helped these
particular convolutional models. Furthermore, we also empirically
observed that a filter size of ×5 5 provided better results than tra-
ditional kernels of ×3 3 (widely used in VGG-16 and similar ar-
chitectures).

2. The second experiment performs a specific comparison between
CNN models with and without handcrafted features. In this sense,
the IP, UP and UH datasets have been considered, employing as
spectral-spatial model the CNN baseline, the CNN with extended
morphological profiles (EMP-CNN) and the CNN with Gabor fil-
tering (Gabor-CNN) proposed by Ghamisi et al. (2018), whose ar-
chitectures are composed by two feature extraction and detection
stages, where each one contains a stack of CONV-ReLU-POOL layers.
These have been fed with input patches of ×27 27 pixels, preserving

Fig. 10. Stars and forks of the most representative DL framework repositories.
The light blue and red bars refer to the number of stars and forks measured on
July 16th, 2018, while the dark blue and red bars correspond to the number of
stars and forks measured on September 8th, 2019 (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.).
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three PCs for EMP-CNN and Gabor-CNN models and the full spec-
trum for the CNN baseline. Also, 50 samples per class have been
considered (when using the IP scene) to train the models, and 548,
540, 392, 524, 256, 532, 375, 514, and 231 labels of each class (see
Table 4) have been employed for testing the UP scene, while for the
UH scene all available training samples have been considered.

3. The third experiment compares the performance of several im-
proved convolutional-based architectures, in particular residual and
capsule-based models, over two HSI datasets, using 20% and 10% of
the available labeled samples for IP and UP datasets, respectively.

We have considered five deep architectures: (1) the spectral-spatial
residual network (SSRN) (Zhong et al., 2017b), (2) the spectral-
spatial pyramidal residual network (P-RN) (Paoletti et al., 2018c),
(3) the densely connected CNN (DenseNet) (Paoletti et al., 2018a),
(4) the spectral-spatial dual-path network (DPN) (Kang et al., 2018),
and (5) the capsule network (CapsNet) (Paoletti et al., 2018b).
Moreover, with the aim of exploring the performance of these
methods with different levels of spatial information, four different
spatial neighborhoods have been tested: × × ×5 5, 7 7, 9 9 and

×11 11.

Table 4
Number of available samples in the Indian Pines (IP), University of Pavia (UP), Salinas Valley (SV), and the University of Houston (UH) datasets. The
samples for the latter scene are divided in two categories: training (top) and testing (bottom).
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4. The fourth experiment studies how semi-supervised techniques (in
particular, the AL paradigm) are affected by the amount of training
data available when combined with DL-models, in particular spec-
tral, spatial and spectral-spatial convolutional-based models, taking
into account four classifiers with Bayesian perspective (Haut et al.,
2018c): (1) AL-MLR, (2) spectral CNN (CNN1D), (3) spatial CNN
with 2-D kernels and input patches keeping one PC with PCA
(CNN2D) and (4) spectral-spatial CNN with 3-D kernels and input
patches keeping all the spectral bands of the original datasets
(CNN3D). The IP and SV datasets have been considered for this
experiment.

5. The fith experiment performs two comparisons to analyze the per-
formance of different TLapproaches. Specifically, the first one per-
forms a comparison between five off-the-shelf deep models,
studying their classification accuracies over three HSI datasets: IP,
UP and SV, and employing the TL paradigm. In this sense (1) VGG16
(Simonyan and Zisserman, 2014), (2) VGG19 (Simonyan and
Zisserman, 2014), (3) ResNet50 (He et al., 2016), (4) MobileNet
(Howard et al., 2017), and (5) DenseNet121 (Huang et al., 2017)
have been considered. These models have been pre-trained with the
ImageNet, followed by a general training using IP, UP and SV da-
tasets in order to fit their BN layers, using Adam optimizer, a
learning rate of 0.0001 and 5 epochs. Then, a hidden FC layer with
256 neurons and an output FC layer with nclasses neurons have been
added at the end of these models, which were fine-tuned employing
several training percentages (1%, 5%, 10%, 15%, 20% and 25%).
This fine-tuning is carried out with Adam optimizer, a learning rate
of 0.001 and 50 epochs. In addition, a second comparison is carried
out, comparing the performance of the CNN1D, CNN2D, CNN2D40
and CNN3D models implemented in our first experiment (see
Table 5) employing the TL paradigm. In this sense, IP and SV have
been considered because of their spectral similarities, as the two
scenes were collected by the same spectrometer (AVIRIS). First,
these models have been pre-tained using the IP scene, because of its

spectral complexity, and then tested over the SV scene. The model
parameters are adjusted with 2, 4, 8, 16, 32, 64, 128 and 256
samples per SV class.

6. All previous experiments have been developed by randomly se-
lecting the training data from the available set of labeled samples
(with the exception of UH scene, which employs its own set of fixed
training samples). In this context, new trends suggest that the high
correlation between neighboring pixels can affect the performance
of the network, in the sense that the test set will be very close to the
train set, allowing the model to obtain too optimistic results, which
are not adjusted to the real generalization power of the model.
Regarding this, our sixth experiment compares the performance of
the models considered on the first experiment (i.e. RF, MLR, SVM,
MLP, RNN, GRU, LSTM, CNN1D, CNN2D, CNN2D40 and CNN3D)
trained with spatially disjoint samples of IP and UP datasets (these
training and test sets are available from the GRSS DASE website at
http://dase.grss-ieee.org).

In order to assess the results of these experiments, three widely used
quantitative metrics are used to evaluate the classification performance:
(i) the overall accuracy (OA), that computes the number of correctly
classified HSI pixels divided by the number of samples, (ii) the average
accuracy (AA), that computes the mean of the classification accuracies
of all classes, and (iii) the Kappa coefficient, that measures the agree-
ment between the obtained classification map and the original ground-
truth map.
All our experiments have been conducted on a hardware environ-

ment composed by a 6th-generation Intel R Core TM i7-6700 K pro-
cessor, with 8MB of Cache and a processing speed of 4.20 GHz with 4
cores/8 way multi-task processing. It includes 40 GB of DDR4 RAM with
2400MHz serial speed and a Toshiba DT01ACA hard disk with
7200RPM and 2 TB capacity. The environment is completed with a
NVIDIA GeForce GTX 1080 graphics processing unit (GPU) with 8 GB
GDDR5X video memory and 10 Gbps memory rate, and an ASUS Z170

Table 5
Neural network base model topologies considered in our experiments, emphasizing the input, hidden and output layers in order to demonstrate the depth of each
architecture. In this sense, the term “linear input” refers to the input layer of each model, while the last densely-connected layer with sofmax function is the output
layer. Regarding the input layer, spectral models receive pixel-vectors of nbands elements, while spatial and spectral-spatial methods employ an input patch size of

× × n19 19 channels, being =n 1channels for CNN2D and =n 40channels for CNN2D40 and CNN3D. Finally, the term “recurrentLayer”(†) indicates that this layer has been
implemented by a RNN/GRU/LSTM layer, depending on the kind of neural network. The number in the parentheses indicates the number of units (i.e. the di-
mensionality of the layer).

Model Main layer Norm. Ac. Function Downsampling

MLP Linear input(nbands) – – –

FC( +n · 10bands
2
3 ) – ReLU –

FC(nclass) – Softmax –

RNN Linear input(nbands) – – –
GRU recurrentLayer†(64) – Tanh –
LSTM recurrentLayer†(64) – Tanh –

FC(nclass) – Softmax –

CNN1D Linear input(nbands) – – –
CONV( ×20 24) – ReLU POOL(5)
FC(100) BN ReLU –
FC(nclass) – Softmax –

CNN2D Linear input( × × n19 19 channels) – – –
CONV( × ×50 5 5) – ReLU –
CONV( × ×100 5 5) – ReLU POOL( ×2 2)

CNN2D40 FC(100) BN ReLU –
FC(nclass) – Softmax –

CNN3D Linear input( × × n19 19 channels) – – –
CONV( × × ×32 5 5 24) BN ReLU –
CONV( × × ×64 5 5 16) BN ReLU POOL( × ×2 2 1)

FC(300) BN ReLU –
FC(nclass) – Softmax –
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pro-gaming motherboard. The software environment consists of the
Ubuntu 18.04.1 x64 operating system with CUDA 9.0 and cuDNN 7.1.1
and Python 2.7 as the programming language.

7.3. Experimental discussion

7.3.1. Comparison between standard supervised HSI classifiers and DL-
based networks
Our first experiment intends to compare different supervised clas-

sifiers, analyzing how the training percentage affects their performance.
In this sense, the considered methods can be separated into two broad
categories: traditional ML-based methods (RF, MLR, SVM, MLP) and
DL-based networks (RNN, GRU, LSTM, CNN1D, CNN2D, CNN2D40 and
CNN3D). Also, a second categorization can be made by dividing the
proposed methods into spectral classifiers (RF, MLR, SVM, MLP, RNN,
GRU, LSTM, CNN1D), spatial classifiers (CNN2D), and spectral-spatial
classifiers (CNN2D40 and CNN3D).
Fig. 11 gives the obtained results for IP, UP and SV datasets after the

execution of five Monte-Carlo runs. It is interesting to analyze the be-
havior of traditional ML methods when few labeled samples are avail-
able: they are highly affected by the lack of training data, being the
MLP the one exhibiting the best performance and RF the worst, in
general. Also, the pixel-based DL classifiers: vanilla RNN, GRU, LSTM
and CNN1D are highly affected by the limited availability of training
samples, exhibiting a similar behavior with regards to SVM and MLP,
with slightly higher accuracy when enough training data are employed.
In this case, we highlight the more stable performance of the CNN1D.
Regarding the spatial classifier (CNN2D), it presents the worst accuracy
when few samples are used in the training stage, even below traditional
ML methods, although the spatial information when using patches of
size ×19 19 seems to be sufficient to reach a remarkably good accuracy
with 15%-25% of training. Although the use of spatial information is
highly effective (with a suitable training percent), the conjunction of
spatial and spectral information achieves the best classification results.
In this sense, the CNN2D40 and the CNN3D are able to achieve an OA
near 100% with only 5% of training data in the considered datasets,
being the IP the hardest scene to classify in our opinion. If we compare
CNN2D and CNN2D40, we can observe how the spectral information is
able to reduce the uncertainty of the classifier when few training data is
available. In addition, the 2-D kernels of CNN2D40 classifier allows to
reduce the overfitting in comparison with the 3-D kernels of the
CNN3D, reaching similar results when enough training data are avail-
able.
Figs. 12–14 and Tables 6–8 present detailed classification maps and

accuracy measures for IP (15% of training), UP (10%) and SV (10%)
scenes. As we can observe, the spectral classifiers exhibit the familiar
salt and pepper noise (significantly less in the DL-based methods), be-
cause they ignore spatial-contextual information when providing a
pixel prediction. On the contrary, spatial and spectral-spatial classifiers
exhibit more regular results, with less noise at the edges. However, the
spatial CNN2D results often degrade some object and material shapes, a

problem that is considerably reduced with the spectral-spatial CNN3D,
providing classification results that are more similar with regards to the
corresponding ground-truth maps for IP, UP and SV datasets. In addi-
tion, Tables 6–8 indicate the runtime of each considered method, being
the standard ML-based classifiers the fastest ones (in particular, the
SVM) although the consumed time during their parameter search has
not been reflected, and the CNN-based algorithms the slowest ones due
to the computational complexity of the CONV layers. Moreover, we can
observe the number of parameters that each neural model needs to
adjust during the training phase, being the MLP the model with fewest
parameters and the CNN3D the one with the most parameters to fit.
Also, in order to provide a detailed comparison with a HSI bench-

mark, Table 9 and Fig. 15 show the classification results of considered
methods over the UH dataset, employing the available training data to
adjust the parameters of each supervised model. As we can observe in
Table 9, spectral classifiers (RF, MLR, SVM, and MLP, RNN, GRU, LST
and CNN1D) are able to reach good accuracies: between 73–87% of OA,
with the CNN1D being the best pixel-wise classifier, because its kernel
is able to process the spectral signatures in a more robust way than
tradidional ML models and FC architectures of neural-inspired models.
However, if we focus on the spatial classifier (CNN2D), we can see that
it exhibits the worst OA, AA and Kappa values. This behaviour may be
due to the fact that the reduction of the spectrum to a single band can
generate samples that are very mixed and difficult to discriminate. In
this sense, the available training samples are less descriptive for setting
the parameter values, and they become insufficient for the 378015
parameters of the spatial model. In this sense, the spectral information
is the key to discriminate correctly the samples of the UH dataset, as it
can be observed in the spectral-spatial CNN2D40. Although this model
has 48750 parameters more than its spatial counter-part, the CNN2D40
is able to take into account the original spectral information in its
spatial features, obtaining feature maps that are more representative of
the input data and being 1.86 times better than those provided by the
spatial CNN2D. Furthermore, the 3-D kernels of the spectral-spatial
CNN3D model are able to process these spectral features, combining
them with the spatial information in order to obtain the output vo-
lumes. The classification maps in Fig. 15 demonstrate that spectral
classifiers are very noisy, being in general unable to classify the area
hidden by the cloud in the UH scene, while the CNN3D reaches a better
result in general (see the parking areas, for instance) and showing some
spatial structures of the hidden area under the cloud, such as buildings
and parking lots.

7.3.2. Comparison between convolutional models, with and without
handcrafted features
Our second experiment compares the performance of: (i) a classic

spectral-spatial CNN for HSI classification (Ghamisi et al., 2018), which
receives as input data patches of size × × n27 27 bands extracted from the
original cube, (ii) a spatial CNN that processes extended morphological
profiles (EMP-CNN) obtained from the HSI data (Ghamisi et al., 2018)
(using input patches of × ×27 27 3), and (iii) a spatial CNN that

Fig. 11. OA evolution (y-axis) of each considered classifier with different training percentages (x-axis) over IP, UP, SV datasets. The standard deviation is also shown
around each plot.
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processes the Gabor filtered data (Gabor-CNN) (Ghamisi et al., 2018),
also employing input patches of size × ×27 27 3, in order to observe the
effects of extracting deep features directly from the data or from
handcrafted features.
The results obtained over three HSI datasets: IP, UP and UH, are

reported on Table 10. If we focus on the CNN baseline, the obtained
results are in line with those shown in Tables 6, 7 and 9. Comparing the
baseline with EMP-CNN and Gabor-CNN models, it is easy to confirm
that the Gabor-CNN model exhibits the best performance for all the
considered datasets, with the EMP-CNN being slightly worse. In this
context, the CNN-baseline appears to provide the worst results in this
particular case, with two to four percentage points below the Gabor-
CNN. With these results in mind, we highlight that spatial-based pro-
cessing of the data by powerful pre-processing methods, such as EMPs
and Gabor filters, can significantly improve the performance of con-
volutional models. Particularly, Gabor filters exhibit optimal localiza-
tion properties in both the spatial and frequency domains, allowing for
the successful combination of spatial and spectral information for the
extraction of edges and textures, while EMPs are also quite effective in
the task of modelling the spatial-contextual information contained in
the HSI data cube. This confirms and extends the obtained results of
previous works, such as the one by Anwer et al. (2018), where explicit
texture descriptors (local binary patterns) are used to improve classi-
fication results on several pre-trained models and aerial remote sensing
benchmarks with RGB images.

7.3.3. Comparison between improved convolutional-based architectures
Our third experiment performs a study about the performance of

improved convolutional-based models, considering different levels of

spatial information. In this sense, it must be noted that these archi-
tectures have been particularly developed to efficiently exploit their
depth, to obtain deeper and more abstract features, while avoiding the
problems associated with the depth through communication mechan-
isms that reuse the data of the model, such as residual connections or
dynamic routing. Table 11 shows the obtained results. As we can ob-
serve in the table, these methods are able to reach good accuracy, with
small-sized patches being able to reach the 99% of OA using patches of
size ×7 7. In addition, although the SSRN and the P-RN use the same
residual learning approach, the selection of the topology and the re-
sidual block architecture can substantially improve the performance of
the network. In particular, the SSRN implements two networks (both
with two residual units): one spectral network with all its kernels of size

× ×1 1 7, and one spatial network with all its kernels of size
× ×3 3 128. This reduces the number of parameters but prevents the
efficient extraction of spectral-spatial information. However, the P-RN
introduces only one network with three pyramidal residual modules,
each one composed by three pyramidal bottleneck residual units, im-
plementing its CONV layers of kernels × ×1 1, 7 7 and ×8 8. Although
the P-RN is more complex and deep than the SSRN, its performance is
significantly better. At the end, the topology allows the P-RN to achieve
significant precision gains, especially with smaller input spatial sizes.
Also, it is interesting to highlight the standard deviation of both clas-
sifiers, which is lower in the P-RN model. The residual block archi-
tecture of P-RN is able to extract additional feature maps (as the re-
sidual units become deeper) in comparison with the SSRN, exploiting
better the information contained within HSI input patches. In the end,
this improves the OA results and reduces the standard deviation, i.e. the
uncertainty.

Fig. 12. Classification maps for the IP dataset with 15% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 6. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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Looking at the results obtained by DenseNet and CapsNet, these
classifiers exhibit very similar behavior, reaching accuracy values be-
tween those obtained by the SSRN and P-RN when small spatial patches
are used as input data (maintaining significant quantitative improve-
ments with respect to the other HSI classifiers in the previous experi-
ment), and even outperforming the results obtained with a high amount
of spatial-contextual information. Finally, if we compare the residual
models (SSRN and P-RN) and the DenseNet with the DPN model, we can
observe that the DPN is able to outperform the results obtained by the
SSRN with few training samples, while its accuracy is normally between
that achieved by the P-RN and the DenseNet.

7.3.4. Comparison between semi-supervised and AL models
Our fourth experiment explores the use of labeled data during the

training stage in AL models, with the aim of analyzing how the amount
of training data affects their performance. In this context, the con-
sidered models follow a Bayesian perspective (Haut et al., 2018c),
where each one extracts probabilistic information about the samples, in
order to select those samples that provide more information to the
model while, at the same time, reducing the number of training sam-
ples.
The obtained results over IP and SV datasets are shown in Table 12.

As we can observe, the AL-CNN3D is able to reach 99% OA with ap-
proximately 3.92% of labeled data from IP and 0.53% of labeled data

Fig. 13. Classification maps for the UP dataset with 10% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 7. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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from SV, which is in line with the results obtained in previous experi-
ments: IP exhibits higher complexity compared with SV, whose pixels
are spectrally less mixed and the spatial distribution is more geometric,
with bigger areas made up of crops. On the contrary, the AL-MLR and
AL-CNN1D are unable to reach such high OAs. For instance the AL-
CNN1D is not able to improve 90% OA with the IP dataset, and it also

cannot reach 99% OA with the SV scene. Furthermore, although the AL-
CNN2D classifier is able to reach 99% OA in all the considered HSI
scenes, it generally needs more labeled data than its spectral-spatial
counterpart. These results strongly support the fact that joint spectral-
spatial features are more useful than separate spatial and spectral fea-
tures, making the AL-CNN3D model ideal for the extraction of highly

Fig. 14. Classification maps for the SV dataset with 10% of training data. Images from (a) to (j) provide the classification maps corresponding to Table 8. The
corresponding overall classification accuracies (OAs) are shown in brackets.
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discriminative features for classification purposes.

7.3.5. Comparison between transfer learning approaches
In the first test of our fifth experiment, we compare the performance

of five off-the-shelf DL-based models, which have been pre-trained over
the ImageNet and fine-tuned with different training percentages for the
IP, UP and SV datasets.
The obtained results are given in Fig. 16. Focusing on the IP dataset,

it can be observed that, with only 1% of labeled samples, the best OA is
reached by the DenseNet121, which achieves 67.80% OA, being closely
followed by the MobileNet. In this regard, it must be noted that IP
dataset exhibits higher complexity than the UP and SV scenes, where
the best results with 1% of the available labeled samples used for
training are achieved by DenseNet121 with 94.37% and 98.02%, re-
spectively. However we must highlight that, although these deep and
very deep models have not been specifically developed for HSI analysis,
they are able to reach interesting results in comparison with those
obtained by the specially-designed CNN models in the first experiment
(see Section 7.3.1). For instance, if we focus on the IP scene, VGG16,
Resnet50, MobileNet and DenseNet121 models are able to outperform
the CNN2D model with 1% of training data, while MobileNet and

DenseNet121 outperform the results obtained by CNN1D and
CNN2D40. With the UP dataset, VGG16, Resnet50, MobileNet and
DenseNet121 models outperform the OA of CNN1D and CNN2D
models, while with the SV dataset all pre-trained models outperform
the CNN2D’s results, and VGG16, Resnet50, MobileNet and Den-
seNet121 improve the classification accuracy of the CNN1D.
When more labeled samples are used for training, the OA increases

quite fast. For instance, with 5% of training data, the vast majority of
classifiers are able to reach at least 90% OA in the IP scene, and 99% in
the UP and SV scenes, with few exceptions (for instance the VGG19
with the IP scene). Compared with the previous results reported on
Section 7.3.1 we can observe that, in general, pre-trained models are
slightly worse than the CNN2D40 and the CNN3D. In addition to the
architectural design of the models, it must be highlighted that the
spatial size and the spectral resolution of the input patch is decisive in
improving the behavior of these deep networks. In this case, all the TL-
based models have been fed with patches of size × ×32 32 3, which are
then scaled to the original inputs of the networks (for instance, the
VGG16 employs patches of × ×224 224 3). This limitation forces us to
reduce the spectral dimensionality with PCA, which leads to a reduced
capacity for spectral discrimination (while employing an excessively

Table 6
Classification results for the IP dataset using 15% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Alfalfa 20.00 32.82 62.05 50.77 36.92 57.43 80.51 44.61 75.38 95.39 96.92
Corn-notill 61.53 75.07 81.45 78.90 73.49 80.17 82.19 81.04 91.54 98.73 98.91
Corn-min 53.62 57.96 70.55 66.27 58.04 70.33 70.16 70.69 86.95 98.95 98.84
Corn 35.12 45.67 72.93 61.19 44.28 66.47 53.83 60.10 88.56 99.50 97.71

Grass/Pasture 84.39 86.98 93.17 89.61 86.98 88.83 89.76 92.34 86.05 98.58 99.32
Grass/Trees 96.10 96.36 97.32 96.55 96.97 95.84 96.77 97.29 96.13 99.06 99.74

Grass/pasture-mowed 29.57 47.83 84.35 75.65 53.91 75.65 81.74 69.57 82.61 93.91 93.04
Hay-windrowed 96.11 99.16 98.32 97.54 98.67 98.67 98.52 98.18 97.88 100.00 100.00

Oats 1.18 18.82 51.76 61.18 27.06 68.23 62.35 44.70 65.88 98.82 100.00
Soybeans-notill 65.96 66.54 77.87 78.18 67.41 78.86 76.78 78.67 89.85 99.15 99.15
Soybeans-min 89.13 79.53 85.10 86.10 80.09 81.87 83.13 83.42 95.28 99.62 99.23
Soybean-clean 46.59 58.25 79.09 78.85 65.56 81.11 80.75 83.97 88.65 97.14 97.86

Wheat 92.18 98.51 98.39 98.74 97.93 98.51 98.62 98.62 97.82 99.77 99.89
Woods 94.53 95.31 95.59 94.55 92.11 95.35 93.58 94.51 98.40 99.87 99.59

Bldg-Grass-Tree-Drives 40.55 63.90 61.28 65.55 65.18 64.21 67.44 67.44 89.21 99.45 98.48
Stone-steel towers 83.54 85.06 87.60 89.37 86.08 86.58 82.78 87.59 82.53 96.20 95.70

OA 75.31 77.76 84.48 83.50 77.87 83.34 83.48 84.02 92.69 99.14 99.08
AA 61.88 69.24 81.05 79.31 70.67 80.51 81.18 78.30 88.29 98.38 98.40

K(x100) 71.41 74.46 82.26 81.13 74.65 80.98 81.13 81.75 91.65 99.02 98.95

Parameters 31047 217296 242640 255248 72616 378116 426866 1805196
Time (s.) 1.29 6.05 0.25 26.46 63.59 47.22 53.36 53.91 59.28 103.76 185.07

Table 7
Classification results for the UP dataset using 10% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Asphalt 91.63 92.39 94.29 93.81 92.33 94.33 93.02 95.85 98.01 99.97 100.00
Meadows 97.71 96.09 97.49 97.58 97.08 96.98 97.01 98.13 99.41 99.98 100.00
Gravel 66.88 73.27 80.84 78.11 75.43 77.63 78.18 81.48 93.90 99.43 99.35
Trees 89.10 86.90 94.21 93.59 91.89 94.04 94.14 94.15 98.14 99.32 99.74

Painted metal sheets 98.60 99.59 99.22 99.52 99.49 99.44 99.54 99.82 99.57 100.00 100.00
Bare Soil 64.35 77.83 90.91 91.64 87.2 88.14 86.4 91.71 98.08 99.99 100.00
Bitumen 77.66 56.34 87.35 85.53 82.07 84.88 86.77 87.52 89.72 99.80 99.98

Self-Blocking Bricks 88.52 86.68 87.47 88.92 84.38 88.37 87.27 85.68 98.28 99.61 99.74
Shadows 99.74 99.67 99.86 99.53 99.7 99.67 99.79 99.88 98.87 98.33 99.60

OA 89.37 89.73 94.10 94.04 92.32 93.39 93.0 94.61 98.27 99.83 99.92
AA 86.02 85.41 92.40 92.02 89.95 91.5 91.35 92.69 97.11 99.60 99.82

K(x100) 85.67 86.27 92.17 92.09 89.79 91.22 90.7 92.84 97.71 99.78 99.89

Parameters 8823 71817 97161 109769 33909 377409 426159 1803089
Time (s.) 4.29 8.63 0.44 68.22 150.06 113.07 128.09 139.58 139.82 226.22 448.32
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large spatial size).
At this point, it is important to note that the use of TL-based ap-

proaches in image processing tasks has two main benefits: the ability to
achieve good results with few training samples extracted from the
target scene and the reduction of runtime in the training procedure.
However, although TL-based approaches are fairly reliable when few
labeled samples are available, the models employed for HSI classifica-
tion are based on those trained by the DL community over RGB data-
sets, such as ImageNet. In this sense, the effectiveness of TL methods
depends mostly on the source application with which the models were
pre-trained, and on the relationship with the final target application in
which they will be used (Patricia and Caputo, 2014). In such case, the
Imagenet dataset is not related with the employed HSI data and, hence,
it was expected that these models would not be able to exhibit their full
potential in HSI classification.
To overcome this limitation, in our second test we study the per-

formance of the proposed CNN1D, CNN2D, CNN2D40 and CNN3D

models implemented on the first experiment (see Table 5) employing
the TL paradigm over two HSI datasets: IP and SV. In this context, the
pursued goal is to take advantage of TL’s ability to learn general
knowledge from other datasets and then apply such knowledge to a
specific task, polishing it on the target scene. Regarding this goal, we
take advantage of the most spectrally mixed and difficult samples from
IP to later recognize more precise characteristics in SV, employing
100% of the labeled data from IP scene (i.e. 10249 samples) to perform
the pre-training stage, while extracting 2, 4, 8, 16, 32, 64, 128 and 256
samples from SV scene to adjust the considered models. The obtained
results are given in Fig. 17. As we can observe, the behaviour is very
similar for each model. In other words, pre-training with IP labels al-
lows the considered models to achieve better accuracy when they are
inferring the SV samples with very few training samples. However, the
improvement is less significant when additional labeled samples from
SV are added to adjust the model parameters, which demonstrates that
(broadly speaking) TL is only recommended when there are very few

Table 8
Classification results for the SV dataset using 10% of the available labeled data.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Brocoli green weeds 1 99.46 99.47 99.63 99.57 99.48 99.67 99.42 99.88 99.45 99.90 100.00
Brocoli green weeds 2 99.83 99.94 99.91 99.87 99.91 99.94 99.9 99.96 99.51 99.96 100.00

Fallow 99.15 98.60 99.68 99.44 99.1 99.58 99.65 99.85 99.62 100.00 100.00
Fallow rough plow 99.42 99.28 99.31 99.25 98.36 99.52 99.39 99.57 99.89 99.84 99.86
Fallow smooth 97.87 99.12 99.35 99.09 98.56 99.33 99.37 99.05 99.88 99.88 99.95
Stubble 99.68 99.92 99.80 99.85 99.8 99.86 99.89 99.85 99.78 100.00 100.00
Celery 99.39 99.89 99.54 99.57 99.71 99.75 99.7 99.84 99.64 100.00 100.00

Grapes untrained 84.42 87.98 90.51 86.88 87.22 89.83 90.79 90.98 95.60 99.96 99.97
Soil vinyard develop 99.07 99.73 99.92 99.73 99.77 99.79 99.76 99.83 99.54 100.00 100.00

Corn senesced green weeds 91.56 95.79 97.71 96.56 96.49 97.56 96.63 98.03 98.45 99.94 99.99
Lettuce romaine 4wk 94.13 95.90 98.88 97.81 97.59 98.52 98.86 98.33 98.73 99.94 100.00
Lettuce romaine 5wk 98.79 99.63 99.79 99.65 99.46 99.87 99.63 99.96 99.58 99.99 99.99
Lettuce romaine 6wk 97.86 99.03 98.88 99.03 98.45 98.66 99.05 99.17 99.13 100.00 99.98
Lettuce romaine 7wk 91.34 96.03 97.65 96.80 96.82 98.09 97.61 97.34 97.53 99.88 99.98
Vinyard untrained 60.46 66.63 70.54 77.81 76.79 80.98 79.59 79.52 95.01 99.96 99.95

Vinyard vertical trellis 97.06 98.89 99.18 99.08 98.95 99.07 98.7 99.00 97.00 99.94 99.94

OA 90.12 92.35 93.67 93.73 93.59 94.93 94.85 95.01 97.94 99.96 99.98
AA 94.34 95.99 96.89 96.87 96.65 97.5 97.37 97.51 98.65 99.95 99.98

K(x100) 88.98 91.47 92.94 93.02 92.86 94.35 94.27 94.44 97.71 99.96 99.98

Parameters 32282 221392 246736 259344 74616 378116 426866 1805196
Time (s.) 2.85 65.21 0.94 86.63 191.62 152.44 163.35 177.78 177.29 282.69 551.72

Table 9
Classification results for UH dataset using the fixed training set available.

Class RF MLR SVM MLP RNN GRU LSTM CNN1D CNN2D CNN2D40 CNN3D

Grass healthy 82.49 82.62 82.34 81.58 82.19 82.24 82.05 81.75 61.12 80.48 81.79
Grass stressed 83.36 83.93 83.36 81.67 83.44 81.35 81.56 95.04 50.08 85.49 87.20
Grass synthetic 97.82 99.80 99.80 99.64 99.84 99.88 99.76 99.88 29.35 88.99 94.73

Tree 91.74 98.01 98.96 88.69 94.64 96.14 91.89 89.45 46.61 83.66 84.74
Soil 96.80 97.16 98.77 97.08 97.99 97.12 97.56 98.63 41.36 100.00 99.81
Water 99.16 94.41 97.90 94.41 95.24 99.3 96.5 95.94 44.06 92.59 97.76

Residential 75.28 74.25 77.43 76.79 81.05 77.76 78.1 80.88 61.14 74.65 76.56
Commercial 33.01 65.15 60.30 55.82 42.72 48.4 39.79 80.32 32.95 80.85 81.06
Road 69.40 69.12 76.77 69.91 79.28 74.96 77.94 77.09 59.43 81.34 88.46
Highway 43.86 54.44 61.29 49.71 48.86 61.64 48.17 72.57 32.45 63.69 78.30
Railway 70.36 76.09 80.55 75.67 74.84 80.91 77.53 86.36 44.42 93.74 96.28

Parking lot1 54.77 73.39 79.92 77.16 74.99 81.73 81.4 91.91 33.68 96.96 98.91
Parking lot2 60.14 68.42 70.88 72.21 69.61 69.4 71.02 74.74 84.00 82.88 72.56
Tennis court 98.87 98.79 100.00 99.03 100.0 99.92 99.43 99.36 68.67 98.79 97.90
Running track 97.50 95.98 96.41 98.31 97.29 97.76 97.25 98.14 15.69 97.34 96.36

OA 73.09 79.53 81.86 77.98 78.44 80.39 78.11 86.66 45.80 85.18 87.95
AA 76.97 82.10 84.31 81.18 81.46 83.23 81.33 88.14 47.00 86.76 88.83

K(x100) 71.09 77.89 80.43 76.29 76.75 78.79 76.46 85.53 41.53 83.90 86.91

Parameters 16975 150735 176079 188687 50515 378015 426765 1804895
Time (s.) 2.68 21.25 0.37 46.09 105.81 78.45 88.90 94.41 81.69 165.33 311.56
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samples in the target scene and there is another (larger) dataset with
similar characteristics that can help to model the parameters of a
classification network in a reasonable way.

7.3.6. Training and testing with spatially disjoint samples
As it can be observed on Figs. 18 and 19, given a particular HSI

scene, spectral-spatial DL-based classifiers have been traditionally
trained by extracting randomly selected samples (from the available
ground-truth) over the whole image, and cropping spectral-spatial
patches of × ×d d nchannels pixel-centered neighbors. In this sense, it is
likely that the test set is very close to the train set, or even that part of
the test is used in the train set as part of the neighboring region ×d d

Fig. 15. Classification maps for the UH dataset. Images from (a) to (j) provide the classification maps corresponding to Table 9. The corresponding overall classi-
fication accuracies (OAs) are shown in brackets.

Table 10
Classification results for the IP, UP and UH datasets considering the CNN models with EMP and Gabor handcrafted features (Ghamisi et al., 2018).

IP dataset UP dataset UH dataset

Class CNN EMP GABOR Class CNN EMP GABOR Class CNN EMP GABOR
CNN CNN CNN CNN CNN CNN

Alfalfa 79.25 85.02 84.44 Asphalt 88.43 95.87 87.75 Grass healthy 82.33 87.49 87.47
Corn-notill 90.14 73.45 91.53 Meadows 91.64 99.50 97.25 Grass stressed 84.30 80.99 86.01
Corn-min 98.77 100.00 98.77 Gravel 75.95 61.12 70.92 Grass synthetic 95.84 87.72 78.22
Corn 90.94 92.8 94.70 Trees 96.53 94.81 97.09 Tree 92.60 90.43 85.02

Grass/Pasture 98.85 98.70 99.28 Painted metal sheets 98.56 95.15 98.83 Soil 99.90 100.00 99.89
Grass/Trees 100.00 100.00 100.00 Bare Soil 57.87 64.84 64.62 Water 93.00 97.90 89.44

Grass/pasture-mowed 95.10 93.13 95.84 Bitumen 80.43 80.63 76.66 Residential 80.39 90.48 90.19
Hay-windrowed 91.20 92.25 90.94 Self-Blocking Bricks 98.10 97.26 99.05 Commercial 70.42 58.51 74.44

Oats 94.34 94.85 88.59 Shadows 96.84 96.08 98.36 Road 77.77 79.77 84.42
Soybeans-notill 100.00 100.00 100.00 Highway 56.08 64.28 63.61
Soybeans-min 95.54 99.34 99.34 Railway 75.59 78.37 80.06
Soybean-clean 89.66 89.53 89.66 Parking lot1 86.55 78.29 87.30

Wheat 100.00 100.00 100.00 Parking lot2 84.21 76.84 85.06
Woods 100.00 100.00 97.37 Tennis court 93.11 99.19 100.00

Bldg-Grass-Tree-Drives 100.00 100.00 100.00 Running track 88.37 77.04 56.95
Stone-steel towers 100.00 100.00 100.00

OA 91.53 92.40 92.84 OA 87.01 91.37 91.62 OA 82.75 84.04 84.12
AA 95.24 94.94 95.65 AA 87.15 87.25 87.83 AA 84.04 83.33 82.94
K 90.08 91.05 91.61 K 83.08 88.67 89.14 K 80.61 82.54 82.51
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selected around the training pixels. Some works (Hänsch et al., 2017)
point out that the random sampling strategy has a great influence on
the reliability and quality of the obtained solution, because this may
significantly facilitate the subsequent classification of the test samples
during the inference stage (as they have been previously processed in
some way by the network during the training step). As a result, the
performance obtained by the model may not be realistic, as artificially
optimistic results can be obtained. In order to avoid this important
issue, several works (Zhou et al., 2015; Hänsch et al., 2017; Liang et al.,
2017; Lange et al., 2018) support the strict spatial-separation between
train and test sets, allowing for the acquisition of more realistic accu-
racy results and a more accurate measurement of the real general-
ization-power of the model.
In this context, the aim of this experiment is to compare the results

obtained by the spectral (RF, MLR, SVM, MLP, RNN, GRU, LSTM and
CNN1D), spatial (CNN2D), and spectral-spatial (CNN2D40 and CNN3D)

methods using, on the one hand, the traditional random sampling
technique adopted by the methods discussed before in this paper and,
on the other hand, a sampling strategy based on selecting spatially
separated samples. To pursue this, spatially disjoint training and test
sets for the IP and UP datasets (available from the GRSS DASE website
(http://dase.grss-ieee.org) have been considered, as depicted on
Figs. 18 and 19. For spatial and spectral-spatial methods, neighboring
regions of × × n19 19 channels have been cropped from the scenes, setting
nchannels to 1 and 40 spectral bands for spatial and spectral-spatial
methods, respectively, while the spectral-based methods only process
the original spectral pixels. The obtained results (in terms of OA) are
reported on Table 13. As we can observe, there is a significant perfor-
mance gap between the obtained results considering randomly selected
training samples and spatially disjoint training samples, not only in the
spatial and spectral-spatial methods [which is relatively expected due
to the aforementioned aspects, as demonstrated by Ham et al. (2005)),
but also on purely spectral-based models (which are not really affected
by spatial correlations).
Focusing on the IP dataset, it can be noticed that the CNN2D,

CNN3D, CNN2D40 and RF are the methods that suffer the most from
this phenomenon. While the spectral-spatial methods’ performance is
significantly affected (reaching OA results in line with those obtained
for the UH dataset in the first experiment, whose training and testing
samples are spread over a larger area, preventing the possible over-
lapping effects between the test and train sets), the spectral-based RF is
also suffering from a drastic performance drop due to another factor:
the suitability of the selected samples. As it was pointed out on Section
2.2, HSI scenes generally suffer from high intraclass variability and
interclass similarity, resulting from uncontrolled phenomena such as
variations in illumination, presence of areas shaded and/or covered by
clouds, and noise distortions, among others. In this sense, the selection
of training samples must be carried out very carefully, to avoid situa-
tions in which the training and testing samples that belong to the same

Table 11
Overall accuracy (%) achieved by different DL-based approaches when considering different sizes of the input spatial patches. Also, for each model a parameter
estimation has been conducted in order to provide an overview of the different architectures.

Spatial Size SSRN P-RN DenseNet DPN CapsNet

IP dataset
×5 5 92.83 ± 0.66 98.80 ± 0.10 97.85 ± 0.28 97.53 ± 0.15 97.79 ± 0.40
×7 7 97.81 ± 0.34 99.26 ± 0.06 99.24 ± 0.14 99.29 ± 0.06 99.30 ± 0.11
×9 9 98.68 ± 0.29 99.64 ± 0.08 99.58 ± 0.09 99.64 ± 0.10 99.67 ± 0.06
×11 11 98.70 ± 0.21 99.82 ± 0.07 99.74 ± 0.08 99.67 ± 0.06 99.74 ± 0.09

UP dataset
×5 5 98.72 ± 0.17 99.52 ± 0.05 99.13 ± 0.08 99.21 ± 0.11 99.13 ± 0.08
×7 7 99.54 ± 0.11 99.81 ± 0.09 99.71 ± 0.10 99.70 ± 0.07 99.75 ± 0.03
×9 9 99.57 ± 0.54 99.79 ± 0.11 99.73 ± 0.15 99.88 ± 0.04 99.73 ± 0.10
×11 11 99.79 ± 0.08 99.92 ± 0.02 99.93 ± 0.03 99.94 ± 0.03 99.93 ± 0.02

Parameters 360 K. 2.4 M. 1.7M. 370 K. 9.0M.

Table 12
Number of samples that the AL-based MLR, CNN1D, CNN2D and CNN3D need
to reach a given % of OA for the IP and SV datasets.

Algorithm Overall Accuracy

70% 75% 80% 85% 90% 95% 99%

IP dataset
AL-MLR 342 522 – – – – –
AL-CNN1D 252 352 502 662 – – –
AL-CNN2D 222 252 292 352 402 512 662
AL-CNN3D 72 82 112 152 172 232 402

SV dataset
AL-MLR 32 32 52 132 412 – –
AL-CNN1D 32 32 42 62 232 – –
AL-CNN2D 72 92 122 162 272 412 622
AL-CNN3D 32 32 32 52 72 112 292

Fig. 16. OA evolution (y-axis) of each considered TL-based classifier with different training percentages (x-axis) over IP, UP and SV datasets. Standard deviation is
showed as shaded areas.
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class could be spectrally quite different due to the presence of shadows
or noise, for instance. This particularly affects spatial and spectral-
spatial convolutional networks (Su et al., 2019).
Focusing on the UP dataset, the same gap between models trained

and tested with randomly selected and spatially disjoint samples can be
observed. Here, all methods, including the spectral ones (except
CNN1D), reduce their OA values in more than 10 percentage points
when spatially disjoint training samples are used. In particular, the
CNN2D is the most significantly affected method, followed by the RF
method. In this sense, it can be concluded that spatial and spectral-
spatial methods are significantly affected by the spatial correlation
between the training and test sets, which calls for the development of
advanced sampling strategies to properly address the high variability of
HSI data.

8. Conclusions and future lines

DL methods have revolutionized image analysis and proved to be a
powerful tool for processing high-dimensional remotely sensed data,
adapting their behavior to the special characteristics of HSI data. In this
paper, we have provided an exhaustive review of DL models in the HSI
arena. Models based on the CNN architecture have been found to be
particularly effective, due to their capacity to extract highly dis-
criminatory features and effectively leverage the spatial-contextual and
spectral information contained in HSI data cubes. Traditional and
hierarchical structures, composed by chains of blocks concatenated one
after another, demonstrate a great generalization power that can be
improved through new connections and paths. In fact, the use of stan-
dardization techniques, together with the reusability of the information
contained in HSI data via residual connections (such as ResNet and
DenseNet) and the concatenation of different paths, such as inception
modules, have allowed to overcome important problems such as over-
fitting and the vanishing gradient when few training samples are
available, or when very deep structures are implemented. Also, tech-
niques such as AL and TL can help to improve the final performance of
very deep neural models in training scenarios dominated by limited

training samples, by employing semi-supervised strategies and pre-
trained models. In the latter case, additional efforts need to be made in
order to perform a more adequate training and adapt the available
networks to the special characteristics of HSI data.
One of the main aspects preventing the full adaptation of the dis-

cussed paradigms to practical problems is that most of the considered
models are highly demanding in computational terms, particularly
when applied to complex HSI scenes. However, advances in computer
technology and hardware platforms are rapidly allowing to increment
the complexity and depth of the networks, making the required fine-
tuning processes feasible in a reasonable amount of time. In this sense,
there have been several efforts in the field of hardware accelerators that
have made possible to implement deep models into embedded pro-
cessors, GPUs and field programmable gate arrays (FPGAs), which can
effectively parallelize the workload of DL-based networks (Randhe
et al., 2016; Dong et al., 2017; Zhao et al., 2017b; Haut et al., 2018a). In
addition, some research efforts are being carried out to distribute such
high computational workloads among various cores using big data
strategies, in particular, cloud computing techniques offer great flex-
ibility and scalability, leading to a natural solution for the management
of large and complex data HSI datasets. In this regard, we note that
more efforts are needed in the remote sensing community in order to
deploy cloud computing models, although there are already some works
dealing with the exploitation of processing algorithms on cloud archi-
tectures (Wu et al., 2016; Haut et al., 2017a; Haut et al., 2017b; Quirita
et al., 2017; Haut et al., 2019b). In summary, HPC is an attractive future
research direction which can provide efficient mechanisms to address
the enormous computational requirements introduced by DL-based HSI
data processing, since the acquisition ratios of imaging spectrometers
and the volume of future available repositories are expected to be ex-
tremely large (Bioucas-Dias et al., 2013), calling for the implementation
of complex but faster and more efficient DL-based architectures. Last
but not least, another important aspect worth being investigated in
future developments is the design of new sample selection methods able
to avoid any overlapping between the training and the testing set due to
the patch size used by spatial-based methods in the training stage.

Fig. 17. Transfer learning experiment from IP to SV datasets, employing (from left to right) the CNN1D, CNN2D, CNND240 and CNN3D models of Table 5.

Fig. 18. Comparison between the random selection method and the selection of spatially disjoint samples on the IP dataset, considering the same number of samples
per class.
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