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Abstract—Hyperspectral unmixing (HU) is an important task for
remotely sensed hyperspectral (HS) data exploitation. It comprises
the identification of pure spectral signatures (endmembers) and
their corresponding fractional abundances in each pixel of the
HS data cube. Several methods have been developed for (semi-)
supervised and automatic identification of endmembers and abun-
dances. Recently, the statistical dual-depth sparse probabilistic
latent semantic analysis (DEpLSA) method has been developed
to tackle the HU problem as a latent topic-based approach in
which both endmembers and abundances can be simultaneously
estimated according to the semantics encapsulated by the latent
topic space. However, statistical models usually lead to computa-
tionally demanding algorithms and the computational time of the
DEpLSA is often too high for practical use, in particular, when the
dimensionality of theHSdata cube is large. In order tomitigate this
limitation, this article resorts to graphical processing units (GPUs)
to provide a new parallel version of the DEpLSA, developed using
the NVidia compute device unified architecture. Our experimental
results, conducted using four well-known HS datasets and two
different GPU architectures (GTX 1080 and Tesla P100), show
that our parallel versions of the DEpLSA and the traditional pLSA
approach can provide accurateHU results fast enough for practical
use, accelerating the corresponding serial versions in at least 30x in
theGTX1080andup to 147x in theTeslaP100GPU,whicharequite
significant acceleration factors that increase with the image size,
thus allowing for the possibility of the fast processing of massive
HS data repositories.
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I. INTRODUCTION

OVER the past years, hyperspectral (HS) imaging has been
shown to be an excellent tool to deal with many different

remote sensing problems [1], [2]. From detailed Earth surface
classification [3]–[5], through fine-grained land cover mapping
[6], [7], to precise material identification and analysis [8], [9],
there aremultiple domainswithin the remote sensing fieldwhere
the spectral-spatial precision of air-borne and space-borne HS
data becomes particularly useful. In particular, one of the most
relevant research areas to uncover subpixel information fromHS
images is the so-called Hyperspectral unmixing (HU) task [10],
[11]. Specifically, HU pursues the objective of decomposing an
HS remotely sensed scene into the following two main constitu-
tive components: 1) endmembers; and 2) abundances.On the one
hand, endmembers represent the spectral signatures of the most
spectrally pure components contained in the scene. On the other
hand, fractional abundances provide the corresponding amount
of each spectrally pure component that is present at each image
pixel.
In the literature, extensive research work has been conducted

to effectively deal with the ill-posed nature of the HU problem
[10]. One of the most popular types of HU techniques is the ge-
ometrical approach, which makes use of the own data geometry
to estimate both endmembers and abundances. In this regard,
the vertex component analysis [12] considers that spectral sig-
natures describe a minimum volume simplex that contains the
data, hence, the HU task can be efficiently carried out using the
convex geometry discipline. Other geometricalmethods, such as
the minimum volume simplex analysis (MVSA) [13], introduce
some additional constraints on this convex scheme to improve
the model robustness. Another relevant group of HU techniques
is the statistical approach.More specifically, this kindofmethods
deals with the unmixing problem considering endmembers and
abundances as probability distributions. In the literature, it is
possible to find different statistical methods, such as [14] and
[15], which model the HU task using Dirichlet and Gaussian
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distributions, respectively. Additionally, there are other unmix-
ing techniques available that cope with the HU problem from
a matrix decomposition perspective, such as the nonnegative
matrix factorization (NMF) [16] and the robust collaborative
NMF (R-CoNMF) [17].
To some extent, all these methodologies have been shown to

be effective to unmix HS remote sensing data under specific
conditions [11]. Whereas geometrical approaches struggle at
uncovering spectral signatures on highlymixed scenarios, statis-
tical and decomposition techniques provide amore powerful HU
scheme since the HS data can be managed from a more general
perspective [10]. Furthermore, some recent research lines show
the advantages of using the so-called semantic representations
when processing HS data [18], being probabilistic topic models
an emerging statistical technology within the remote sensing
field [19]–[21]. In general, topic models are a kind of probabilis-
tic generative models that become particularly useful to repre-
sent visual data at a higher abstraction level by means of their
hidden semantic patterns [22]. As a result, these models have
been recently used to uncover complex spectral relationships
while providing competitive advantages in the HU domain [23].
More specifically, the work presented in [23] defines a novel

probabilistic topic model, called Dual-Depth Sparse probabilis-
tic Latent Semantic Analysis (DEpLSA)—inspired by the tradi-
tional pLSA [24]—which is specifically designed to effectively
uncover spectral signatures and fractional abundances from real
HS remotely sensed data. In fact, this seminal work shows
the potential of probabilistic generative models and also the
advantages of the DEpLSA with respect other state-of-the-art
unmixing techniques. However, there is a key factor that may
limit its practical usage in actual remote sensing operational
environments: the computational cost. Note that probabilistic
generative models, in general, and DEpLSA, in particular, have
a high computational complexity due to the NP-complete nature
of the Bayesian learning process [25], [26]. As a result, more
researchwork is still required to study the viability of integrating
these kinds of procedures in actual remote sensing production
environments.
Despite the fact that some works in the literature try to ex-

ploit different parallel techniques for some related probabilistic
generative architectures [24], [27], [28], the specific DEpLSA
nature together with the especial complexity of the HU field
generate particular demands that cannot be addressed from a
general purpose perspective. Concretely, the advances in the sys-
tems used to capture hyperspectral images have increased their
complexity. Such complexity makes traditional methods based
on single and multicore CPUs outdated, as they cannot cope
with the required computational needs in order to process large
volumes of data. In this situation, our implementation becomes a
reliable alternative, capable of processing large volumes of data
in a reasonable amount of time. Note that processing remotely
sensed data using parallel architectures faces some technical
challenges that are not present in other fields [29], besides the
inherent spatial-spectral intricacy of theHS domainmake neces-
sary to develop and test target-based efficient implementations.
Precisely, this is the gap that motivates this article.

In this scenario, the work presented here proposes a new
graphic processing unit (GPU)-based parallel implementation
of the HU method defined in [23], in order to enable the
use of the newly DEpLSA unmixing model in actual opera-
tional environments of different Earth observation programs and
missions. Specifically, we take advantage of the expectation–
maximization (EM) optimization algorithm employed in [23] to
integrate different parallel optimizations based on the compute
unified device architecture (CUDA)1 platform for GPU hard-
ware devices.Ourwork is largely driven by the success of several
available CUDA implementations of HS processing algorithms
onGPU devices. For instance, in [30], an automatic target detec-
tion and classification algorithm is accelerated. In [31], a highly
parallel GPU architecture for lossy hyperspectral image com-
pression is presented. The work in [32] presents a multi-GPU
implementation of the MVSA algorithm for spectral unmixing
purposes. A massively parallel GPU design is discussed in
[33] for target detection purposes. Other advanced algorithms
for HS data exploitation have been successfully accelerated
on GPUs using the CUDA architecture, including composite
kernels [34], iterative-constrained endmember extraction [35],
support vector machines [36], real-time unmixing [37], [38],
HS subspace identification [39], spatial-spectral preprocessing
[40], segmentation [41], linear unmixing chains [42], isometric
mapping [43], registration [44], or spatially adaptive classifica-
tion [45], among many others [46]. Note the wide acceptance of
GPU-based implementations of HS unmixing algorithms [47],
which led us to consider GPUs as a potentially efficient solution
for accelerating our DEpLSA algorithm.
In the experimental part of this article, we compare the pro-

posedGPUDEpLSA implementation forHSunmixing purposes
with a baseline single-core version and also a parallel multicore
implementation of the DEpLSA model. The obtained quantita-
tive and qualitative results, using four realHS datasets, reveal the
performance advantages of the proposed approach for real-life
remote sensing production chains.
The remainder of this article is organized as follows. Section II

describes the background behind the DEpLSA unmixingmodel.
Section III presents in detail the proposed GPU-based parallel
implementation. Section IV provides the experimental results
and discussion. Finally, Section V concludes this article with
some remarks and hints at plausible future research lines.

II. HU DEpLSA-BASED MODEL

The DEpLSA approach [23] can be considered a statistical
HU method based on the concept of latent topics [48], where
the unmixing problem is faced as a latent topic-based approach,
aiming at estimating endmembers and their corresponding frac-
tional abundances, according to the semantics encapsulated by
the latent topic space. In particular, it defines a semigenerative
HUmodel by considering two latent context variables, i.e., z and
z′, associated to different abstraction levels when conducting the
unmixing process over the input HS image. As it can be seen

1https://developer.nvidia.com/cuda-zone

https://developer.nvidia.com/cuda-zone
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Fig. 1. Original DEpLSA model and two-phase model relaxation. (a) DE-
pLSA. (b) DEpLSA-1. (c) DEpLSA-2.

in the DEpLSA model graphical representation [see Fig. 1(a)],
image pixels are represented by the observable random variable
d, the dual hierarchy of spectral patterns are described by the
hidden variables z′ (deep-topics, used to generate the semantic
representation of the input spectral data) and z (restricted topics,
used to learn endmembers and abundances in the semantic
space), and the input pixel spectra are encapsulated by the
observable randomvariablew. In addition,M is the total number
of input pixels and Nd represents the number of reflectance
activations within each pixel spectra. Considering that rd and rz
are two diverging regularization factors to guarantee a certain
sparsity constraint, fractional abundances are described by the
conditional probability p(z|d) and spectral signatures corre-
spond to the p(w|z) probability distribution.
From a practical point of view, the main advantage of the DE-

pLSA unmixing model is the utilization on the deep-topic space
(z′) to generate a high-dimensional semantic characterization
of the original data using K ′ components. Then, the restricted
topics (z) are applied to effectively infer the K endmembers
and the corresponding fractional abundance maps over this
semantic space. However, this dual-depth architecture implies
an important computational cost since an additional degree of
freedom is introduced when capturing the relationships between
z and z′ random variables. Therefore, it is necessary to apply the
DEpLSA unmixing model using the following two-step model
relaxation.
1) DEpLSA-1 [seeFig. 1(b)]where the deep-topic probability

distributions with K ′ components, λ′ ∼ p(z′|d) and θ′ ∼
p(w|z′), are estimated using the input HS data.

2) DEpLSA-2 [see Fig. 1(c)] where the deep-topic random
variable (z′) becomes observable being approximated by
the previous λ′ distribution. In this way, the fractional
abundances can be inferred as λ′ ∼ p(z′|d) and the K
spectral signatures can be computed using both θ′ and θ.

Note that this model relaxation reduces the original DEpLSA
unmixing model complexity since the dual hierarchy of patterns
is unfolded in two sequential steps by assuming an uniform
prior probability over deep topics. Specifically, both steps are
estimated by maximizing the complete log-likelihood using
the EM algorithm [49]. After applying the Jensen’s inequality
to the log-likelihood term, inserting the appropriate Lagrange
multipliers, computing the partial derivatives and isolating the
corresponding model parameters, it is possible to derive the
following equations for the EM-based optimization:

p(z′|w, d) = p(w|z′)p(z′|d)
∑

z′ p(w|z′)p(z′|d)
(1)

θ′ ∼ p(w|z′) =
∑

d n(w, d)p(d)p(z
′|w, d)

∑
w

∑
d n(w, d)p(d)p(z

′|w, d) (2)

λ′ ∼ p(z′|d) =
∑

w n(w, d)p(z′|w, d)
∑

z′
∑

w n(w, d)p(z′|w, d) (3)

p(z|z′, d) = p(z′|z)p(z|d)
∑

z p(z
′|z)p(z|d) (4)

θ ∼ p(z′|z) =
∑

d n(z
′, d)p(d)p(z|z′, d)− δz/K

′
∑

z′
∑

d n(z
′, d)p(d)p(z|z′, d) (5)

λ ∼ p(z|d) =
∑

z′ n(z
′, d)p(z|z′, d)− δd/K∑

z

∑
z′ n(z

′, d)p(z|z′, d) (6)

where (1)–(3) correspond to the E-step and M-step of the
DEpLSA-1, and (4)–(6) are the ones for the DEpLSA-2. Ad-
ditionally, K is the number of endmembers, K ′ represents the
number of component of the deep-topic space (K ′ >> K),
n(w, d) are the original reflectance pixel activations, andn(z′, d)
is approximated by λ′. Regarding the EM procedure itself,
it is performed as follows. Initially, the corresponding model
parameters are initialized. Then, E-step and M-step are alter-
nated until the model converges, whether using a 10−6 stability
threshold in log-likelihood or a maximum of 103 EM iterations.
Algorithms 1 and 2 show a more detailed description of the
procedures, summarizing their main computations.
After DEpLSA-1 and DEpLSA-2 models have been sequen-

tially applied and successfully converged, the final estimation for
the fractional abundances corresponds to parameter λ ∼ p(z|d)
and the endmembers can be factorized as

p(w|z) =
∑

z′

DEpLSA-1
︷ ︸︸ ︷
p(w|z′)

DEpLSA-2
︷ ︸︸ ︷
p(z′|z) = Θ′Θ. (7)

III. GPU PARALLEL IMPLEMENTATION FOR HU
BASED ON CUDA

In this section, we provide a detailed description of the de-
veloped parallel implementation of proposed algorithm. In par-
ticular, we will focus on providing a parallel implementation of



JARAMAGO et al.: GPU PARALLEL IMPLEMENTATION OF DEpLSA FOR HYPERSPECTRAL UNMIXING 3159

Algorithm 1: EM-Based Procedure for the DEpLSA-1.
Input n(w, d): Input reflectance pixel activations
InputK ′: High-dimensional semantic space
components
Output θ′: p(w|z′)
Output λ′: p(z′|d)

1: procedure DEpLSA1n(w, d), K ′
2: I = 0
3: T =∞
4: L = 0
5: λ′ ← Random initialization
6: θ′ ← Random initialization
7: while (I < 103) & (T > 10−6) do
8: p(z′|w, d)← Eq. (1)
9: p(w|z′)← Eq. (2)
10: p(z′|d)← Eq. (3)
11: �c ← Compute log-likelihood
12: T = �c − L
13: L = �c
14: I ++
15: end while
16: end procedure

Algorithm 2: EM-Based Procedure for DEpLSA-2.
Input n(z′, d): λ′
InputK: Number of endmembers
Input rd: Sparsity constraint for d
Input rz: Sparsity constraint for z
Output θ: p(z′|z)
Output λ: p(z|d)

1: procedure DEpLSA2n(z′, d),K, rd, rz
2: I = 0
3: T =∞
4: L = 0
5: λ′ ← Uniform initialization
6: θ′ ← Random initialization
7: while (I < 103) and (T > 10−6) do
8: p(z|z′, d)← Eq. (4)
9: p(z′|z)← Eq. (5)
10: p(z|d)← Eq. (6)
11: �c ← Compute log-likelihood
12: T = �c − L
13: L = �c
14: I ++
15: end while
16: end procedure

the most time-consuming operations of the DEpLSA algorithm.
The memory allocation and I/O transfer between the host (CPU)
and the devices (GPU) will also be optimized.
In this context, we will focus on the EM algorithm, which,

as mentioned previously, can be considered as the basis of the
dpLSA algorithm and represents its most computationally inten-
sive part. All the operations of this algorithm are computations

Fig. 2. Graphical illustration of CUDA 2-D grid and block hierarchy.

on probability matrices, and therefore, a simple yet efficient
strategy to parallelize this algorithm is to partition the matrix
operations across different cores of a many-core device, which
will also enable the redistribution of workloads at execution
time. Such runtime redistributions are possible thanks to the
way CUDA manages the computing threads. Specifically, the
CUDAcreates a two-layer hierarchy,where the first one contains
a grid that holds a per-kernel fixed number of blocks in a one-
dimensional (1-D), 2-D, or 3-D way. Inside of each block, there
is a pool of threads whose dimensionality can also be from one
to three dimensions; such dimensionality is also parameterized
per kernel. Since those dimensions are parameters of each kernel
call, they can be adjusted to fit the output matrix dimensionality,
guaranteeing per-thread complete atomicity. A visual example
of the hierarchical strategy adopted by the CUDA to manage
threads is provided in Fig. 2.

A. Optimization of the Memory Allocation and I/O Transfer

In the DEpLSA, the data computed across the EM algorithm
are stored inside three matrices: θ (endmembers), λ (abun-
dances), and the original pixel vectors. These matrices need to
be allocated inside the GPU (device). In this regard, there are
two possibilities, which are as follows: 1) making constant in-
put/output (I/O) transfers by holding only the necessarymatrices
inside the device memory, or 2) storing all data in video memory
across the entire computing process. While the first alternative
is intended to optimize memory management in massive data
scenarios, it can suffer from significant bottlenecks as a result of
massive data transfers, so strategy 2) has been adopted in order
to minimize the transfer time in our implementation.
It is also important to emphasize that our implementationmay

face challenges when handling extremely large hyperspectral



3160 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 9, SEPTEMBER 2019

Fig. 3. Device state while executing the kernel corresponding to the Expecta-
tion step. Grid hierarchy and memory states are shown in this diagram.

images that need to be stored in the device (GPU) memory.
Alternatively, there are some techniques that can alleviate this
situation, e.g., by keeping the I/0 transfers constant during the
analysis. This sacrifices some efficiency in terms of time, but
also allows larger datasets to be processed. Specifically, this
can be done by storing in device memory just the matrices that
are strictly required for the actual step executed by the kernel.
Another possibility is to use a batch-based procedure, in which
each iteration is split in terms of data and only a subset of
pixels are loaded in memory and processed at a given moment.
As said before, all these methods also have a cost in terms of
performance.

B. Parallel Optimization of the Expectation Step

As explained previously, the main goal of this step is to
generate a new probabilistic latent space, which is computed
based on the actual probabilities carried out by the matrices
λ (abundances) and θ (endmembers) and stored into a 3-D
structure called p, as shown in (1). Since this structure conveys
the computing results, atomicity over each index needs to be
guarantee. To achieve this, the kernel’s dimensions are set to
ensure each thread is the in charge of processing always the
same p value and store denominators in the per-block shared
memory, as Fig. 3 shows. Algorithm 3 shows the pseudocode
of our parallel implementation of the Expectation step. As it
can be seen, the thread index references the value of matrices
processed by this particular thread, and block index references
the per-block shared denominator.
As seen previously, the parallelization of the Expectation step

highly relies on computing each value of theP matrix in parallel.

Algorithm 3: Expectation Step Kernel.
1: procedure KERNEL
2: for Block in Grid[X,Y] do � In parallel
3: den← 0 � Per-block shared
4: for Thread in Block[Z] do � In parallel
5: P [thread]← λ[thread]× θ[thread]
6: den[block]← den[block]

+ P [thread] � Atomic
7: P [thread]← P [thread]/den[block]
8: end for
9: end for
10: end procedure

Algorithm 4: Endmembers (θ) Numerator Computing
Kernel.
1: procedure KERNEL
2: for Block in Grid[M,K] do � In parallel
3: for Thread in Block[1024]

do � In parallel
4: θ[block]← 0
5: for step in steps] do
6: aux← (X[step]× P [step])

− regularizer
7: if aux > 0 then
8: θ[block]← aux � Atomic
9: end if
10: end for
11: end for
12: end for
13: end procedure

In order to achieve this task, we use a simple kernel structure that
relies on the per-block shared memory to handle the common
block denominators that will divide the per-core computed value
of the P , based on λ and θ. This shared value is atomically
increased and computed as the sum of the computed core, P .

C. Parallel Optimization of the Maximization Step

Instead of a single step in the sequential implementation, our
CUDA implementation of the maximization step partitions the
entire process into a subset of kernels in order to change the grid
dimensions as needed to preserve the atomicity at runtime.
First, the endmember matrix (θ) is updated by chaining a

subset of kernels, dividing (2) into the following three main
steps.
1) The first step updates the fraction numerator (this is per-

formed by the kernel described in Algorithm 4). As this
value is computed using the full pixel information, and
the number of pixels exceeds the maximum number of
per-block cores, there needs to be a for loop inside the
kernel in order to compute theta.

2) The second step performs the sums on the denominator
(this is accomplished by the kernel in Algorithm 5). This
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Fig. 4. Full pipeline describing the endmember-related computations on the Maximization step. This diagram covers the entire process for computing the values
of the endmember matrix (θ) in the Grid #3 by dividing the returned values from Grids #1 and #2.

Algorithm 5: Endmembers (θ) Denominator Computing
Kernel.
1: procedure KERNEL
2: for Block in Grid[K] do � In parallel
3: for Thread in Block[M] do � In parallel
4: den[block.z]← den[block.z] + θ[thread]
5: end for
6: end for
7: end procedure

kernel just computes the denominator as a subset of the
per-column θ values.

3) The last step performs the division and assigns it into θ
(this is done by the kernel in the Algorithm 6). The last
step of this process consists of dividing the outputs of the
first two kernels atomically into each core.

In this case, the dependencies among the operands of the
denominator summatory happen above block-level, thusmaking
the use of shared memory impossible. In addition, the block
dimension is directly related to the total amount of pixels, which
is greater than the maximum number of available threads per
block that can be allocated (1024). Therefore, a for-loop inside
the kernel is needed, which has a slight effect on the final
performance of the algorithm. For illustrative purposes, Fig. 4
shows an overview diagram illustrating this process.
After the endmember-related computations are completed,

the Maximization step tries to find the best abundances from
the latent space computed in the Expectation step, in a very
similar way as the calculation for the endmembers. However,
as the kernel block size in charge of computing the abundances

Algorithm 6: Endmembers (θ) Division Computing Kernel.
1: procedure KERNEL
2: for Block in Grid[M, K] do � In parallel
3: if den[block.z] �= 0 then
4: θ[thread]← θ[thread]/den[block.z]
5: else
6: θ[thread]← 1/M
7: end if
8: end for
9: end procedure

depends on the number of bands of the input image, it is easier
to ensure atomicity in this case, creating a kernel stack that
performs the calculation of thewhole (3). In this case, each block
is considered as a matrix with dimensionsN ×K, containing a
vector ofM threads per block, as shown in Fig. 5. A pseudocode
for the kernel that implements this step is given in Algorithm 7.
As it can be seen, the operations are similar to those performed
by Algorithms 4–6. Here, as it was already the case for the
computation of the Expectation kernel, we rely on the per-block
shared memory to compute the new abundances. A subset of
image pixels is used to divide the newly computed λ values
among the cores, based on the iteration latent space.

IV. EXPERIMENTS

A. Environment

In order to evaluate the computational performance of the
DEpLSA-GPU implementation (and also of aGPU implementa-
tion of the traditional pLSA), serial versions (that will be used as
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Fig. 5. Full pipeline describing the abundance-related computations on the
Maximization. This diagram covers the entire process from computing the λ

values based on the input image data and the predicted latent space from the
Expectation step.

Algorithm 7: Abundances (λ) Computing Kernel.
1: procedure KERNEL
2: for Block in Grid[X,Z] do � In parallel
3: den← 0 � Per-block shared
4: for Thread in Block[Y] do � In parallel
5: aux←(X[step]×P [step])−regularizer
6: if aux > 0 then
7: λ[block]← aux � Atomic
8: end if
9: den← den+X[thread] � Atomic
10: if den �= 0 then
11: λ[thread]← θ[thread]/den
12: else
13: λ[thread]← 1/K
14: end if
15: end for
16: end for
17: end procedure

a baseline for the speedup calculations) have been implemented
and executed in a host hardware environment with a sixth
Generation Intel Corei7-6700Kprocessorwith 8MofCache and
up to 4.20 GHz (4 cores/8 way multitask processing), installed
over an ASUS Z170 pro-gaming motherboard. The available
memory is divided into 40GBofDDR4RAMwith a serial speed
of 2400 MHz and a Toshiba DT01ACA HDD with 7200 r/min
and 2TB of the storage capacity. The parallel implementations
of the pLSA-GPU and DDpLSA-GPU have been executed in
two different GPUs.
1) An NVIDIA GeForce GTX 1080, composed by 2560

CUDA cores, with 8-GB GDDR5X of video memory and

Fig. 6. Hyperspectral datasets considered in the experiments. (a) Samson.
(b) Jasper Ridge. (c) Urban. (d) Cuprite.

10 Gb/s of memory frequency (referred to hereinafter as
GPU1).

2) ATeslaP100GPU,with 3584CUDAcores, 16-GBHBM2
videomemory and 12Gb/s ofmemory frequency (referred
to hereinafter as GPU2).

In order to compare our GPU versions with a common CPU
implementation, experiments have been conducted against the
serial baselines, which run on the top of a C++ library that
allows tensor work called xtensor. This library optimizes all
matrix-related computations and assignment tasks. On this ver-
sion, the kernels in Algorithms 3–7 are implemented in a very
similar way, being the only difference that the tasks does not run
in parallel.
Two different serial versions have been carried out, both of

them compiled with the GNU C++ (g++) compiler. The first
one is a pure serial version, without any kind of optimization
and can be considered as the baseline implementation, while
the second one has been compiled using −O3 and −xAV X
in order to provide the automatic vectorization. We refer to
this optimized version hereinafter as OP-DEpLSA (with the
optimized pLSA-based version being referred to as OP-pLSA).
By running experiments against this full set of versions, we
are able to provide results for nonparallel, data-parallel, and
massively parallel versions of our algorithms.

B. Datasets

In this article, the following four real hyperspectral images
have been used in the experimental validation (see Fig. 6).
1) Samson [see Fig. 6(a)] [50] is a popular hyperspectral

dataset that contains 952× 952 pixels and 156 bands,
ranging from 380 to 2500 nm wavelengths. In particular,
a region of interest with 95× 95 pixels has been selected
from the (252 332)th coordinate, resulting in a final size
of 95× 95× 156. The Samson image includes three dif-
ferent endmembers: soil, tree, and water.

2) JasperRidge [seeFig. 6(b)] [50] is another commonhyper-
spectral image with 512× 614 pixels and 224 channels,
covering the spectral range from 380 to 2500 nm. Specif-
ically, we have considered a region of 100× 100 pixels
starting from the (105 269)th coordinate. Additionally,
channels 1–3, 108–112, 154–166, and 220–224 have been
removed due to atmospheric effects, obtaining a final size
of 100× 100× 198. The Jasper dataset contains four dif-
ferent spectrally pure signatures: road, soil,water, and tree.
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Fig. 7. Obtained spectral signatures of the available endmembers in the four considered datasets. (a) Samson. (b) Jasper Ridge. (c) Urban. (d) Cuprite.

3) Urban [see Fig. 6(c)] [50] is hyperspectral dataset that
comprises 307× 307 pixels and a total of 210 bands from
the400 to the 2500-nmwavelength. In order to avoid atmo-
spheric effects, bands 1–4, 76, 87, 101–111, 136–153, and
198–210 bands have been removed, obtaining a final size
of307× 307× 162. The consideredUrban scene includes
four different pure materials: asphalt, grass, tree, and roof.

4) Cuprite [see Fig. 6(d)] [50] is probably one of the most
popular and challenging images in the area of HU. The
original dataset contains 224 spectral channels.However, a
total of 188 bands have been considered in this article, after
removing the noisy channels (1, 2, and 221–224) and the
water absorption ones (104–113 and 148–167). In addi-
tion, the considered region of interest includes 250× 190
pixels, for a final size of 250× 190× 188. The number
of endmembers in the considered region of interest is 12:
Alunite, Andradite, Buddingtonite, Dumortierite, Kaolin-
ite1, Kaolinite2,Muscovite,Montmorillonite, Nontronite,
Pyrope, Sphene, and Chalcedony.

C. Experimental Assessment

In order to asses and quantify the accuracy of the proposedHU
technique, two different widely adopted metrics have been con-
sidered: spectral angle distance (SAD) and rootmean squared er-
ror (RMSE).Whereas SAD [see (8)] aims at quantitatively asses
theK spectral signatures by computing the average spectral an-
gle between the estimated endmembers (θ̃) and the ground-truth
ones (θ), RMSE [see (9)] evaluates the quality of the fractional
abundance maps by calculating the absolute difference between
the estimated abundances (λ̃) and the ground-truth ones (λ).

SAD(θ̃, θ) =
1

K

K∑

i

arccos
θ̃i · θi

||θ̃i|| ||θi||
(8)

RMSE(λ̃, λ) =

√
1

M

∑M

i
(λ̃i − λi)2. (9)

D. Results and Discussion

In this subsection, we evaluate the performance of our im-
plementations from the viewpoing of both unmixing accuracy
and computational performance. Fig. 7 shows the obtained
spectral signatures of the endmembers in the four considered
datasets, employing the proposed method. These signatures will
be considered as the ground-truth endmembers (θ) in the SAD
calculations, while their corresponding abundancemaps (λ) will

Fig. 8. Graphic diagram showing the percentage of time that each of the
executed kernels consume on NVIDIA GeForce GTX 1080 (left) and NVIDIA
Tesla P100 (right) when processing the Cuprite dataset. Is important to remark
that I/O transfers are executed once, meanwhile kernels are executed iteratively,
so the times in the diagrams have been weighted accordingly.

be used as the ground-truth abundance maps for the RMSE
calculations.
Table I shows the SAD-based and RMSE-based scores ob-

tained after comparing the true versus estimated endmembers
and abundance maps for each considered scene, respectively.
For each dataset, we report the scores obtained by the original
versions (pLSA and DEpLSA) and the GPU implementations
(GPUpLSA and GPUDEpLSA). As it can be seen in the table,
the value of the metrics depends on the complexity of the scenes
(given by the number of endmembersK). In all cases, the SAD
and RMSE values obtained by the original methods and their
corresponding GPU versions is very similar, which indicates
that the GPU versions provide almost the same results as the
original counterparts. It should be noted that, for the Cuprite
scene, the RMSE scores could not be computed as this scene
only has ground-truth endmembers available (obtained from
the well-known USGS library of mineral signatures), but there
are no ground-truth fractional abundance maps that can be used
for the calculation of the RMSE scores in this particular case.
For illustrative purposes, Fig. 9 shows the abundance maps

and the absolute distance scores obtained for one particular
dataset: the Samson scene in Fig. 6(a). Specifically, Fig. 9(a)–(c)
shows the ground truth abundances corresponding to the three
endmembers in Fig. 7(a). Fig. 9(d)–(f) shows the fractional
abundance maps obtained by the DEpLSA algorithm (executed
on theTesla P100GPU). Finally, Fig. 9(g)–(i) shows the absolute
distance between the estimated and real abundances for each of
the three considered endmembers, where dark colors indicate
lower errors. As it can be seen, the distances between the true
and estimated abundances are very low, being demonstrated
quantitatively in Table I where the RMSE scores are also very
low, indicating that the DEpLSA algorithm (executed in the
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TABLE I
ACCURACY EVALUATION OF THE SERIAL AND PARALLEL VERSIONS OF pLSA AND DEpLSA IN TERMS OF SAD AND RMSE ABUNDANCE ASSESSMENT

(DIFFERENT DATASETS ARE SHOWN IN ROWS AND UNMIXING METHODS IN COLUMNS)

TABLE II
EXECUTION TIMES (IN SECONDS) FOR THE SERIAL (WITH AND WITHOUT OPTIMIZATION FLAGS) AND PARALLEL (EXECUTED ON

THE TWO CONSIDERED GPUS) VERSIONS OF pLSA AND DEpLSA (DIFFERENT DATASETS ARE SHOWN IN ROWS)

Fig. 9. Fractional abundance maps for the Samson dataset. (a)–(c) Ground-
truth abundances for each of the three endmembers. (d)–(f) Fractional abundance
estimation for each of the three endmembers obtained by theDEpLSA algorithm
(executed on the Tesla P100 GPU). (g)–(i) Absolute distances between the
estimated and real fractional abundances for each of the three considered
endmembers, where dark colors indicate lower errors.

GPU) does a very good job in the task of estimating abundances
that are very close to the true ones in this particular scene.
In order to evaluate the computational performance of the

GPU implementations, Table II shows the execution times (in
seconds) for the serial versions (DEpLSA and pLSA), the opti-
mized versions (OP-DEpLSA and OP-pLSA), and the parallel
versions (implemented in both GPU1 and GPU2 architectures).
The speedups achieved in these two GPU architectures are

also displayed, together with the speedup obtained by the flag-
optimized versions with regards to the standard ones. As shown
by Table II, the optimization via flags already provides some
improvements in terms of the computational time. However, it
is the use of GPU architectures that leads to highly accelerated
performance in all the cases. While the speedups obtained in the
GPU1 architecture are around 30x (meaning that the code can
be executed in the GPU at least 30 times faster), the speedups
obtained in the GPU2 architecture can be up to 147x. These are
quite significant acceleration factors.At this point, it is important
to note that the times for the DEpLSA in the GPU1 architecture
could not be recorded for the Urban and Cuprite scenes, due to
limitations in the video memory of the GPU.
For illustrative purposes, Fig. 10 displays graphically the

speedups achieved by the GPU versions of pLSA and DEpLSA
in the two considered GPU architectures: GTX 1080 (GPU1)
and Tesla P100 (GPU2), for the different datasets considered
in the experiments. As Fig. 10 shows, the achieved speedups
are higher in the Tesla P100 architecture. This observation is
related to the number of available cores (3584 in GPU2 versus
2560 in GPU1) as well as to the available video memory (16
GB in GPU2 versus 8 GB in GPU1). The fact that the Urban
and Cuprite scenes cannot be processed in the GTX 1080 is
also related to this difference in video memory between the two
considered GPU architectures (8 GB versus 16 GB). By looking
at the results in the Tesla P100 GPU, one can infer that the
speedup increases with image size, which is a highly desirable
feature given the increasing size and dimensionality of remotely
sensed hyperspectral data repositories.
Also, to provide a visual and in-depth assessment of the

kernel performance, Table III illustrates how the kernels perform
individually. It is important to emphasize that the transfers from
the GPU to the CPU take more time in the GPU2 environment
(due to a CPU bottleneck), since those CPUs are ARM-based
and exhibit smaller bandwidth as compared with the GPU1
environment.
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Fig. 10. Speedups achieved by the (a) GPUpLSA and (b) GPUDEpLSA regarding their serial versions (pLSA and DEpLSA, respectively), for the four different
datasets considered in the experiments.

TABLE III
PER-KERNEL EXECUTION TIME FOR BOTH pLSA AND DEpLSA IMPLEMENTATIONS ON THE TWO CONSIDERED GPUS

TABLE IV
PER-KERNEL OCCUPANCY (TOTAL CORES USAGE) WHEN

ANALYZING THE CUPRITE DATASET ON GPU1

In order to test the robustness of ourGPU implementation, it is
also important to provide some in-depth performance indicators
extracted fromNVidia Visual Profiler. The obtained profiler data
(see Fig. 8) confirm our introspection, explained in Section III,
that (due to the use of 3-D computations instead of matrix
computations), the Expectation kernel consumes most of the
computing time, meanwhile the kernels devoted to computing
the endmembers (#2 and #3) haveminimal impact (i.e., kernel #1
performs themajority of the computations).We also note that, as
Table IV collects, our implementation takes advantage of almost
all GPU cores the majority of execution time. It is important to
remark that lower occupancies are not always related with lower
performances.

V. CONCLUSION AND FUTURE LINES

In this article, we have introduced a new parallel version of
the pLSA algorithm for efficiently conducting HU using the
DEpLSA model. Our newly developed implementation is able
to run in a many-core specific platform (GPU). As a result, the

presented approach provides an efficient and effective unmixing
solution for actual remote sensing production environments.
Our experiments, conducted over four real hyperspectral

datasets and two different GPU architectures, indicate that our
many-core implementation takes full advantage of core-level
parallelism, optimizing the heavy matrix computations involved
in the process, achieving very similar results as the serial coun-
terparts in terms of unmixing accuracy. It is also important to em-
phasize that our pLSA implementation fully exploits all theGPU
capabilities, becoming more efficient with the latest-generation
GPUs.
As with any new approach, there are some unresolved issues

that may present challenges over time. In this sense, future lines
will cover some relevant developments that were not included
in this article. Specifically, multi-GPU support may allow to
decrease the computing time even more. Besides, considering a
larger number of dimensions in the first step may help optimize
the DEpLSA results. Another future line worth considering is
to adopt other specific hardware accelerators, such as the Intel
Xeon Phi, or reconfigurable solutions like field-programmable
gate arrays, which are currently more suitable than GPUs for
onboard exploitation [1], [51].
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