
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 4, APRIL 2019 2145

Capsule Networks for Hyperspectral
Image Classification

Mercedes E. Paoletti , Student Member, IEEE, Juan Mario Haut , Student Member, IEEE,
Ruben Fernandez-Beltran , Javier Plaza , Senior Member, IEEE, Antonio Plaza , Fellow, IEEE,

Jun Li, Senior Member, IEEE, and Filiberto Pla

Abstract— Convolutional neural networks (CNNs) have
recently exhibited an excellent performance in hyperspectral
image classification tasks. However, the straightforward CNN-
based network architecture still finds obstacles when effectively
exploiting the relationships between hyperspectral imaging (HSI)
features in the spectral–spatial domain, which is a key factor
to deal with the high level of complexity present in remotely
sensed HSI data. Despite the fact that deeper architectures
try to mitigate these limitations, they also find challenges with
the convergence of the network parameters, which eventually
limit the classification performance under highly demanding
scenarios. In this paper, we propose a new CNN architecture
based on spectral–spatial capsule networks in order to achieve a
highly accurate classification of HSIs while significantly reducing
the network design complexity. Specifically, based on Hinton’s
capsule networks, we develop a CNN model extension that
redefines the concept of capsule units to become spectral–
spatial units specialized in classifying remotely sensed HSI data.
The proposed model is composed by several building blocks,
called spectral–spatial capsules, which are able to learn HSI
spectral–spatial features considering their corresponding spatial
positions in the scene, their associated spectral signatures, and
also their possible transformations. Our experiments, conducted
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using five well-known HSI data sets and several state-of-the-
art classification methods, reveal that our HSI classification
approach based on spectral–spatial capsules is able to provide
competitive advantages in terms of both classification accuracy
and computational time.

Index Terms— Capsule networks (CapsNets), convolutional
neural networks (CNNs), hyperspectral imaging (HSI).

I. INTRODUCTION

THE constant development of spectral imaging acquisition
technologies, together with the increasing availability of

remote sensing platforms, provides plenty of opportunities to
manage the detailed spectral–spatial information of the earth’s
surface [1]–[3]. As a result, the classification of remotely
sensed hyperspectral images has become one of the most
active research fields within the remote sensing community,
because it is able to provide highly relevant information for a
wide range of earth monitoring applications, such as ecological
science [4], [5], precision agriculture [6], [7], and surveillance
services [8], among others.

Many different classification paradigms have been success-
fully adopted by the remote sensing community in order to
build effective hyperspectral imaging (HSI) classifiers [9],
[10]. In particular, some of the most noteworthy approaches
rely on support vector machines (SVMs) [11], k-means clus-
tering [12], Gaussian process [13], random forest (RF) [14],
extreme learning machines [15], and deep neural network
classifiers [16]. Despite all the extensive research work con-
ducted in the aforementioned areas, the complex nature of HSI
data still makes the classification problem a very challenging
one and also motivates the development of more powerful
and accurate classification schemes [17]. Basically, there are
two main aspects that HSI classification models need to deal
with: 1) high data complexity and 2) limited amount of
labeled data for training purposes. On the one hand, the high
spectral resolution of HSI imaging sensors (typically with
hundreds of spectral bands) generates unavoidable signal per-
turbations as well as spectral redundancies that eventually limit
the resulting classification performance. On the other hand,
the availability of labeled HSI data for training is usually rather
limited, because obtaining accurate ground-truth information
is expensive as well as time-consuming. This contrasts with
the requirement of large amounts of training sets in order to
mitigate the so-called Hughes effect [1].

Among all the different HSI classification methodologies
presented in the literature, deep learning-based strategies
deserve special attention, because they have exhibited particu-
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larly relevant performance over HSI data due to their potential
to effectively characterize spectral–spatial features [18], [19].
From regular stacked autoencoders (SAEs) [16], through
sparse autoencoders [20], to deep belief networks [21], sev-
eral kinds of deep learning models have been proposed
and successfully adopted to classify HSI data. However, the
2-D nature of all these early models typically generates an
important spatial information loss, which eventually leads
to a limited classification performance (especially under the
most challenging scenarios) [22]. Precisely, the most recent
approaches try to relieve this constraint by managing the HSI
data as a whole 3-D volume in order to capture features rep-
resenting the spectral–spatial domain. For instance, this is the
case of the spatial-updated deep autoencoder presented in [23],
which improves the regular SAE approach by integrating
contextual information. Nonetheless, one of the most relevant
improvements was achieved when convolutional neural net-
works (CNNs) were successfully adapted by Chen et al. [24]
to classify remotely sensed HSI data, achieving the current
state-of-the-art performance.

Since Chen et al. [24] adopted the CNN approach for HSI
classification purposes, different CNN-based extensions have
also been proposed in the literature to learn enhanced spectral–
spatial features. For instance, Li et al. [25] propose the use of
pixel-pair features under a CNN-based classification scheme
in order to increase the number of training samples and, hence,
the resulting classification performance. Zhao and Du [26]
also propose a classification approach that merges CNN-based
spatial features and the spectral information uncovered by
the balanced local discriminant embedding algorithm. Other
important works make use of several independent CNN-based
architectures to combine spectral and spatial features, such as
[28] and [29]. Despite the fact that all these methods have
shown to obtain certain performance benefits, they still strug-
gle at facing the two aforementioned issues when dealing with
remotely sensed HSI data, that is, the high data complexity and
the limited availability of training samples, mainly because
they fuse different data components using independent CNN-
based procedures. In this sense, the work presented in [29]
defines a novel CNN architecture, which is able to jointly
uncover improved spectral–spatial features that are useful to
classify HSI data.

In general, CNNs have exhibited a good performance in
HSI classification due to the fact that convolutional filters
provide an excellent tool to detect relevant spectral–spatial
features present in the data. That is, initial convolutional
layers are able to learn simple HSI features, while deeper
layers combine these low-level characteristics to obtain higher
level data representations. However, under this straightforward
CNN-based scheme, the capability of exploiting the relation-
ships between features detected at different positions within
the image is rather limited. Although the insertion of pooling
layers and the gradual reduction of the filters’ spatial size allow
detecting higher order features in a larger region of the HSI
input image (by achieving translation invariance), the internal
data representation of a regular CNN does not take into
account the existing hierarchies between simple and complex
features. Note that the pooling operation is based on down-

sampling the feature space size to a manageable level and,
logically, this introduces an unavoidable loss of information;
specifically, pooling methods are unable to capture information
about the positional data, which may be a key factor when
classifying HSI data. As a result, CNNs may exhibit poor
performance if the input data present rotations, tilts, or any
other orientation changes, being incapable of identifying the
position of one object relative to another in the scene because
they cannot model properly and accurately such spatial rela-
tionships. Several methods have been implemented in order
to encode the invariances and symmetries that exist in the
data, including the transformation of the original input samples
during the training phase via data augmenting [24], [30].
However, this method fails to capture local equivariances in
the data and does not ensure equivariance at every layer within
the CNN [31].

Another way to address this problem is to conduct architec-
ture improvements, e.g., by developing deeper networks with a
large number of filters. Even though this practice can improve
the resulting performance, it requires a significant amount
of data to obtain good generalization coupling, which may
become an important limitation in some specific scenarios. The
rationale behind this effect is based on the vanishing gradient
problem [32], which can result in poor propagation of acti-
vations and gradients in deep CNNs that ultimately degrades
the classification performance. In this sense, the improvements
brought to CNN filters (kernels) via the development of resid-
ual connections [33]–[35] (ResNet) and dense skip connec-
tions [36], [37] (DenseNet) open new and interesting paths to
uncover highly discriminative spectral–spatial features present
in HSI data. On the one hand, the ResNet defines a CNN
extension based on processing blocks (residual units [38]),
used as fundamental structural entities to allow learning rel-
evant spectral–spatial HSI features from substantially deeper
layers. On the other hand, the DenseNet defines an architecture
in which each layer concatenates all feature maps coming
from the preceding layers as input. Another potential way of
encoding complex properties present in the HSI data is defined
by Sabour et al. [39], where they introduced the concept of
capsule networks (CapsNets) to encode the data relationships
into an activity vector (rather than a scalar) whose length and
orientation represent the estimated probability that the object
is present and the object’s pose parameters, respectively.

With the aforementioned ideas in mind, in this paper,
we develop a new CNN architecture based on Hinton’s
CapsNets [39] that achieves highly accurate HSI classifica-
tion results while significantly reducing the complexity of
the network. Specifically, the HSI classification model pro-
posed in this paper is composed by several building blocks,
called spectral–spatial capsules, which are able to learn HSI
spectral–spatial features considering their corresponding phys-
ical positions, their associated spectral signatures, and also
their possible transformations. That is, each capsule estimates
the probability that a specific spectral–spatial feature is present
within the input HSI data and, besides, it provides a set of
instantiation parameters that model the transformations suf-
fered by the observed spectral–spatial feature with respect to
its corresponding canonical spectral and spatial counterparts.
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As a result, the proposed network is able to characterize the
HSI input data at a higher abstraction level, which eventually
allows us to substantially reduce the number of convolutional
layers and the inherent model complexity. The proposed
network architecture has been accelerated with graphics
processing units (GPUs) to further optimize performance. Our
experimental results, obtained over five well-known HSI data
sets, reveal that the proposed approach exhibits potential to
extract highly discriminative spectral–spatial features with a
limited amount of training data, providing competitive perfor-
mance advantages over the spectral–spatial CNN classifier and
other relevant state-of-the-art classification methods.

The remainder of this paper is organized as follows.
Section II discusses some advantages and limitations of
CNNs for HSI classification which motivate the development
of our new approach. Section III describes the proposed
method. Section IV validates the proposed model by per-
forming comparisons with other state-of-the-art HSI classifi-
cation approaches over five well-known HSI data sets. Finally,
Section V concludes this paper with some remarks and hints
at plausible future research lines.

II. ADVANTAGES AND LIMITATIONS OF

CNNS FOR HSI CLASSIFICATION

Let us denote by X ∈ R
H×W×C an HSI data cube, where H

is the height, W is the width, and C is the number of spectral
bands. Each hyperspectral pixel in X is a vector of C spectral
measures, forming a unique spectral signature for each land-
cover material. In deep learning methods, X can be represented
as a vector of H · W elements, where each pixel is denoted
as xt ∈ R

C or as a matrix of H ×W dimensions, where each
pixel is described as xi, j ∈ R

C , being i = 1, 2, . . . , H , j =
1, 2, . . . , W and k = 1, 2, . . . , H ·W . The relationship between
both representations can be expressed as t = (i − 1) ·W + j .
This is an interesting point, because traditional standard neural
networks are pixelwise methods that understand the HSI data
cube as a list of spectral vectors, for which they define
complex, nonlinear hypotheses of parameters W (weights)
and B (biases) by applying one or more layers of feature
detectors in order to produce the corresponding scalar outputs
that summarize the activities of these layers [40].

In this sense, these models assume that each xt contains
the pure spectral signature of the captured surface material,
disregarding the information from surrounding pixels and com-
puting the pixels in isolated fashion [29], [41], [42]. This fact
may limit the performance of the classifiers, which becomes
strongly dependent on the number (Nlabeled) and quality of
the available labeled samples that compose the training data
set Dtrain = {xt , yt }Nlabeled

t=1 , where yt is the corresponding
category of sample xt . However, hyperspectral pixels are
often highly mixed, introducing high intraclass variability and
interclass similarity into X that is very difficult to avoid, which
often results in characteristic interferences in the obtained
classification results (see Fig. 1). Specifically, the CNN model
can work as a traditional pixelwise method, taking each
pixel xt as an input feature and applying spectral processing
(i.e., the so-called 1-D CNN model [24], [29], [42]). However,
the 1-D CNN cannot always manage the complexity of spectral

Fig. 1. Characteristic introduced in the classification results obtained by
CNN models. Here, we show the examples of (Left) “salt and pepper”
noise (1-D CNN), (Center) misclassified patches (2-D-CNN), and (Right)
mixed regions (3-D CNN). The examples correspond to an area of an HSI
scene collected over the SV in California, which will be described in detail
in Section IV.

features, introducing “salt and pepper” noise in the obtained
classification [see Fig. 1 (left)]. In this sense, it is desirable
to incorporate spatial information, i.e., by processing the 2-D
regions of X, usually centered on pixel xi, j , as input features
(i.e., the 2-D CNN model, which exploits the idea that adjacent
pixels are intimately related and often belonging to the same
class). Combining the information contained in such spatial
patches with the spectral signatures (i.e., the 3-D CNN model)
can reduce the intraclass variability and improve the final
performance. In fact, the potential of CNNs lies in the model
architecture, composed by several layers that can be grouped
in two well-separated categories: 1) the feature extractor net,
composed by a stack of layers of artificial neurons (i.e., a con-
volutional layer followed by a nonlinear function and, often,
by a subsampling or pooling layer) and 2) the classifier, which
can be implemented as a stack of fully connected layers,
forming a multilayer perceptron (MLP) or alternatively given
by some known technique, such as an SVM or LR classifier.
The first one obtains high-level representations (feature maps),
and the second one actually labels the data.

Focusing on the feature extractor net, the convolutional layer
is the key block of the CNN. Instead of feedforward neural
networks such as the MLP, where the group of neurons that
compose the lth layer is fully connected with the neurons of
the l − 1th and l + 1th layers, the lth convolutional layer is
composed by a filter or kernel. The idea behind kernels is
related with the statistical properties of images, considered as
a stationary source of pixels, where data features are equally
distributed into X in relation to positions [43], suggesting
that learned features at one position of X can be applied to
others into X too, allowing to use the same features at all
locations of X. This fact is translated in a convolutional layer
by applying its kernel (also called learned feature detector)
anywhere in X in order to obtain a different feature-activation
scalar value at each position in the data. In this sense, the lth
layer’s kernel is connected and applied over small regions
(whose size is defined by the local receptive field) of the
input data, called input volume X(l) (which can be the output
volume of the previous layer, i.e., X(l) = O(l−1), or the
original input image, i.e., X(l) = X), via local connections and
tied weights. This allows reducing the number of connections
between layers and, hence, the number of parameters that need
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to be learned and fine-tuned in the entire CNN. In addition,
this architecture assumes that elements (such as pixels in an
HSI data cube) that are spatially close often belong to the same
class, and they collaborate in the task of forming a specific fea-
ture of interest, providing additional and valuable information
to the classification task and reducing the label uncertainty
and intraclass variability due to a better characterization of
contextual features. In essence, each kernel of the lth layer
computes the dot product (·) between its own weights W(l)

and a predefined region of the provided input volume to which
it is connected as follows:

o(l)z
i, j,t = (X(l) ∗W(l))i, j,t

=
k−1∑

î=0

k−1∑

ĵ=0

q−1∑

t̂=0

x (l)
(i·s+î),( j ·s+ ĵ),(t ·s+t̂)

· w(l)
î, ĵ ,t̂
+ b(l) (1)

where o(l)z
i, j,t corresponds to the (i, j, t) element of the zth

feature map that composes the output volume O(l) of the lth
convolutional layer, x (l)

i, j,t is the (i, j, t) element of the input

volume X(l), w
(l)
î, ĵ ,t̂

is the (î , ĵ, t̂) weight of W(l), b(l) is the
bias, and finally, s and k × k× q are the stride and the kernel
size of layer l, respectively. As a result, the obtained O(l) will
be an array of scalar values composed by K 1-, 2- or 3-D
feature maps depending on the kernel’s dimension.

One mechanism to avoid the degradation that the model
can suffer because of the vanishing gradient problem is based
on adding a batch normalization layer after the convolutional
layer. This kind of layer reduces the covariance shift by means
of which the hidden unit values shift around, allowing a more
independent learning process. It regularizes and speeds up the
training process, imposing a Gaussian distribution on each
batch of feature maps as follows:

BN(O(l)) = O(l) −mean[O(l)]√
Var [O(l)] + �

· γ + β (2)

where γ and β are learnable parameter vectors and � is a
parameter for numerical stability.

As convolution layers define a linear operation of element-
wise matrix multiplication and addition, a detector stage [19]
needs to be added after the convolutional and batch nor-
malization layers in order to learn nonlinear representations,
composed by a nonlinear activation function O(l) = f

(
O(l)

)
,

where f(·) defines an elementwise function such as the sig-
moid, the tanh, or the widely used rectified linear unit (ReLU)
[44]–[46], which computes f(O(l)) = max(0, O(l)), allowing
the network to train faster due to its computational efficiency,
which also helps to alleviate the vanishing gradient problem
without introducing significant differences in the accuracy
compared with other activation functions such as the sigmoid.
In this sense, the volume O(l) will host the neural activations,
which is usually interpreted as the likelihood of detecting a
certain feature. Those layers closer to the input of the network
commonly learn and detect simple features, whereas those
layers closer to the output of the CNN combine the previous
simple features to learn and detect more complex ones, until
combining and learning highly abstract features to produce the
final classification.

Finally, following the nonlinear activation layers, a down-
sampling strategy is normally implemented in order to reduce
and summarize the dimensionality of each feature map con-
tained in the output volume O(l) applying a max, aver-
age, or sum operation (among other recent methods, such
as mixed pooling [47], stochastic pooling [48], or wavelet
pooling [49]) over a neighborhood window [50]. Nonlinear
downsampling works independently of the volume’s depth,
resizing it spatially. For instance, the well-known max pooling
examines a window of the output volume O(l), taking the max-
imum activation into the region. This working mode reduces
the number of parameters, which helps to control overfitting,
and provides the network with some kind of invariance to
small distortions and transformations that are present in the
training data (particularly translation invariance).

Although pooling provides an efficient and simple tool for
detecting whether a certain feature is present in any region
of the volume O(l) (looking at the neural activations values),
it also implies a certain loss of spatial information concerning
the features, which can hamper the classification performance.
This effect may lead the CNN model to disregard how different
features in the volume O(l) are related to each other, a piece of
information that can be very useful for the final classification
results. In such cases, it is common to observe in HSI
images that several wrongly classified patches appear near
to or even inside well-defined classes, as we can observe in
the center and right of Fig. 1, where patches belonging to an
agricultural field (e.g., the grapes-untrained class in yellow) are
misclassified into another class (e.g., the vineyard-untrained
class in blue) and vice versa. These misclassifications are
observed in both kinds of models, 2-D CNNs and 3-D CNNs,
which indicate that the incorporation of spatial information
cannot fully address these problems. This situation could be
solved by looking at the logical spatial relationship between
both land-cover materials: it seems obvious that in the case
of crop fields, these are arranged in geometric forms, defining
clear frontiers between one crop and another. In the case of
urban environments, we can also consider how the elements
are spatially organized, for example, roads could be better
defined by assuming that parked cars, sidewalks, ornamental
vegetation, and buildings will be normally be placed on both
sides of the road and not inside. Precisely, the exploitation of
this kind of high-level spatial information is one of our main
motivations to introduce a new CNN model for HSI remote
sensing data classification based on capsules [39], which
presents the potential to intelligently exploit both spectral and
spatial features from HSI data.

III. PROPOSED METHOD

The neural network architecture that we introduce in this
paper is based on a new convolutional model inspired by the
working mode of capsules, with the objective of efficiently
preserving the spatial–spectral details of the features present
in HSI data cubes and taking advantage from the information
obtained at the neuron outputs, which contain vectors of
instantiation parameters instead of the classical scalar out-
puts. In addition, in order to provide accurate classification
results, our proposal exploits both the spectral and the spatial



PAOLETTI et al.: CAPSNETS FOR HYPERSPECTRAL IMAGE CLASSIFICATION 2149

Fig. 2. Proposed neural network architecture. The neural model is composed by an encoder network (in blue) and a decoder network (in green).

information contained into the data cube X, implementing a
3-D model.

At this point, we emphasize that CNN models have been
traditionally employed for remote sensing scene classification
in which the full image X represents a target. This assumes
that the CNN model is fed with a full normalized image
prior in order to perform data classification. In our context,
we focus on an HSI data cube X ∈ R

H×W×C , which can be
understood as a collection of H×W pixel vectors, where each
pixel xi, j ∈ R

C contains the spectral signature of a specific
land-cover class (usually highly mixed within the image).
That is, each xi, j represents a target. Our newly proposed
neural network model exploits spectral–spatial information,
extracting 3-D neighboring blocks around each xi, j (called
patches and denoted by pi, j ∈ R

d×d×C ), where d×d is the size
of the spatial patch and C is the number of spectral channels.
These patches are labeled with the same category as the central
pixel xi, j and sent to the model as the input data, following a
border mirroring strategy described in detail in [29].

The proposed architecture is shown in Fig. 2, where two
main parts are clearly differentiated. The HSI data introduced
into the model are first processed by an encoder network
composed by three layers, which works as a feature extractor
and classifier. Then, the resulting processed data is introduced
into a decoder network, which improves the classification by
performing data reconstruction. In the following, we provide
the specific details of both parts.

A. Encoder Network

Let us first focus on the encoder network, which is located
at the beginning of the neural model. This network aims at
extracting those relevant features from the HSI data that will
help in the classification tasks, providing the most accurate and
useful information that increases the reliability of the network.
It is composed by three kinds of layers.

1) First Layer: The first layer, denoted as L(1), is composed
by a classical convolutional layer, which receives the patches
pi, j ∈ R

d×d×C extracted from the original HSI data cube
as input features. Its goal is to arrange the HSI data into
features that are fed to the subsequent capsule layers, applying
a convolution filter of size k(1)× k(1)× q(1) (being q(1) = C ,
i.e., it takes into account all the pixel spectrum), followed
by a batch normalization step and using the ReLU activation
function to obtain an output volume O(1) ∈ R

H (1)×W (1)×K (1)
,

composed by K (1) feature maps (or channels) of size H (1)×
W (1). This first layer of the encoder prepares the data to obtain
the activity vectors of highest capsule-based layers.

2) Second Layer: The second layer L(2) (called primary
capsule layer) can be understood as a matryoshka doll, where
L(2) is composed by K (2) convolutional capsules, which in
turn are composed by Z (2) convolutional neurons or units
with kernel size k(2) × k(2) × q(2) [being q(2) = K (1)]. The
working mode is similar to CNN kernels; in fact, the mth
capsule will apply its Z (2) units over a region of the volume
O(1), obtaining as a result the output vector u(2)

m ∈ R
Z (2) =

[u(2)
m,1, u(2)

m,2, . . . , u(2)
m,Z (2)]. These output vectors provide a data

structure that is more versatile when storing additional details
about the features, such as their orientation, pose, or size
(in addition to their likelihood), allowing to preserve more
detailed information about the spatial relationships observed in
the HSI data than standard CNN models. In fact, each element
of u(2)

m represents different properties of the same entity [51].
Here, the concept of entity can be understood as the target
object or the object’s part of interest (in the HSI domain,
the land-cover type) and its associated properties, expressed
as the instantiation parameters. In this sense, capsules can
be interpreted in the opposite way as rendering in computer
graphics, where given an object and its instantiation parame-
ters (such as the pose and the orientation), an image X is
obtained by applying rendering. In our context, the scenario
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Fig. 3. Given an input image X with several objects, such as buildings with
different shapes, the output of each capsule will be an activity vector whose
length and orientation give the likelihood of the object and its instantiation
parameters. In this sense, each capsule is in charge of finding some specific
object in X, instead of calculating a feature map (as in the traditional CNN).
In this example, focused on an urban area in the UP scene that will be
described later in experiments, the network has 48 capsules, where the black
ones try to find buildings with circular shape and the red ones try to find
buildings with rectangular shapes.

is opposite since, given the image X, the capsule works as an
“inverse rendering” unit whose aim is to detect the object and
extract the vector of instantiation parameters, called activity
vector (see Fig. 3).

In the end, the second layer is performing an inverse
rendering process, extracting the lowest level of multidimen-
sional entities present in the HSI data and grouping them
into a 4-D output composed by K (2) feature maps of size
W (2)×H (2), where each element is the activity vector obtained
by each capsule of dimension Z (2). An important aspect is
that these groups of neurons allow the mth capsule not only
to detect a feature but also to learn and detect its variants,
providing the network with equivariance properties. In that
way, the orientation of the mth capsule’s activity vector u(l)

m

in any layer L(l) represents the instantiation parameters, while
its length represents the probability that the feature that the
capsule is looking for is indeed contained and exists in the
input data. In order to properly represent such properties,
the length of activity vectors is often scaled down via a
nonlinear squashing function expressed by (3), which can be
understood as the nonlinear activation function of the network
model instead of the classical ReLU or sigmoid, for instance,
until reaching a magnitude between 0 and 1, leaving their
orientation unchanged

ũ(l)
m =

∥∥u(l)
m

∥∥2

1+ ∥∥u(l)
m

∥∥2 ·
u(l)

m∥∥u(l)
m

∥∥ . (3)

3) Third Layer: After computing the outputs of the primary
capsule layer and applying the nonlinear squashing function
of (3) over each u(l)

m , the model connects the K (2) capsules in
layer L(2) to every capsule in the third layer of the encoder,
L(3), denoted as dense capsule layer. In this case, L(3) is
composed by nclasses capsules, which groups Z (3) dense units
each one, being nclasses the number of different land-cover
categories present in the original HSI data cube. For each class,
we thus obtain its corresponding activity vector, whose module
will encode the probability of each input patch of belonging
to that class. In this sense, a special mechanism has been
implemented between layers L(2) and L(3), known as routing
by agreement [39], which connects the current dense capsule
layer with the previous primary capsule layer. Its goal is to

design a better learning process in comparison with traditional
pooling methods, not only routing the information between
capsules but also capturing part–whole data relationships by
reinforcing connections (also understood as contributions) of
those capsules allocated at different layers that obtain a high
grade of agreement or similarity, while avoiding or deleting the
weakest connections. In the following, we provide the details
of this mechanism.

The nth capsule in the current layer L(l) takes as the input
data all the output vectors of the K (l−1) capsules located at
the previous layer L(l−1), obtaining for each one a prediction
vector û(l)

m , with m = 1, 2, . . . , K (l−1), calculated as the
weighted multiplication between the mth capsule’s output

ũ(l−1)
m and the corresponding weights W(l)

m,n (understood as
a transformation matrix) that connect the mth capsule in layer
L(l−1) with the nth capsule in layer L(l), as shown in the
following equations:

û(l)
n|m =W(l)

m,n ũ(l−1)
m + B(l)

n (4)

where B(l)
n are the biases of capsule n. This equation can be

interpreted as a transformation where the output volume from
the previous primary capsule layer is transformed into K (l)

vectors of Z (l) items by applying the transformation matrix
W(l)

m,n between the mth capsule in layer L(l−1) and the nth
capsule in layer L(l).

Moreover, the obtained prediction vectors can be interpreted
as the vote of each capsule of L(l−1) in the output of the
nth capsule of L(l), i.e., we can observe each û(l)

n|m as a prior
prediction of capsule m about the output activity vector of
capsule n. This processing allows that capsules at inferior
levels can make predictions for capsules at superior levels,
increasing the abstraction of the features at each layer. At the
end, when multiple predictions agree at different levels, con-
nections between them are strengthened, producing that one
higher level capsule will become active for a more complex
and abstract feature. This idea of “agreement” is reinforced
by introducing, for each prediction vector û(l)

n|m , a dynamic

routing element known as coupling coefficient c(l)
m,n , which

relates capsules m and n by calculating the final input s(l)
n

of capsule n as the weighted sum of the previous outputs of
the K (l−1) convolutional capsules in the L(l−1)th layer

s(l)
n =

K (l−1)∑

m

c(l)
m,n û(l)

n|m (5)

which must be squashed by (3) in order to obtain the final
activity vector v(l)

n , whose length represents the probability
that the feature target is contained into the data and must be
between 0 and 1

v(l)
n =

∥∥s(l)
n

∥∥2

1+ ∥∥s(l)
n

∥∥2 ·
s(l)

n∥∥s(l)
n

∥∥ . (6)

Focusing again on coupling coefficients, c(l)
m,n measures the

probability that capsule m activates capsule n, and thus, all the
coupling coefficients of capsule m must sum 1. This parameter
is initialized with equal probability for all connections between
capsule m in L(l−1) and the K (l) capsules in L(l), and it is
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Fig. 4. Dynamic routing between capsules: the inferior-layer capsule activity
vector is the current input vector ũ(l−1)

m of the higher layer capsule n. After a
matrix transformation given by (4), ũ(l−1)

m is transformed into the prediction
vector û(l)

n|m . The weighted sum [see (5)] of all the prediction vectors gives as

a result the input capsule data s(l)n which, after passing through the activation
function given by (6), gives the nth capsule activity vector v(l)

n .

obtained by the routing softmax expressed by the following
equation:

c(l)
m,n =

exp (bm,n)
∑K (l)

i exp (bm,i )
with

K (l)∑

i

c(l)
m,i = 1 (7)

where bm,n denotes the log prior probability that capsule m
will activate capsule n, that is, the degree of relationship
between both capsules, a measure that is initialized to zero
and then refined in each iteration of the network model as
follows:

(i)bm,n ←(i−1) bm,n +(i−1) am,n

= (i−1)bm,n +(i−1)
(
v(l)

n · û(l)
n|m

)

= (i−1)bm,n +(i−1)
(∣∣v(l)

n

∣∣∣∣û(l)
n|m

∣∣ cos(θ)
)

(8)

where (i) and (i − 1) are the current and previous iterations
and (i−1)am,n is the degree of agreement between the prior
prediction or vote û(l)

n|m and the final output v(l)
n , obtained

at iteration (i − 1). When û(l)
n|m and v(l)

n are in agreement,
we can observe that cos(θ) = cos(0) = 1, and thus, am,n =
|v(l)

n ||û(l)
n|m | from a geometrical viewpoint. During the training

phase, the network model learns not only the transformation
matrices W(l)

m,n , encoding the part–whole relationships of the
data, but also the coupling coefficients c(l)

m,n for each pair
of capsules m and n in layers L(l−1) and L(l), respectively.
Conceptually, this means that capsules of one layer can make
predictions over capsules of the superior layer, grouping those
capsules with similar results via dynamic routing in order
to obtain clearer outputs, i.e., reinforcing their connections,
whereas connections between capsules whose predictions are
not related are reduced. Fig. 4 shows a graphical illustration
of the dynamic routing process.

We highlight at this point that the main goal of layer L(3)

is to obtain as many activity vectors v(l)
i as the number of

objects or land-cover classes present in the image, in such a
way that l = 3 and i = 1, 2, . . . , nclasses). In this sense, for
each input data set, the proposed neural network obtains a
collection of nclasses activity vectors, where each v(l)

i is the
capsule for class i , being �v(l)

i � the probability of belonging
to class i . The goodness of the network’s output with regard
to the desired output can be calculated by the loss function

Lmargin =
nclasses∑

i

(
Ti max

(
0, α+ − ∥∥v(l)

i

∥∥)2

+ λ(1− Ti ) max
(
0,

∥∥v(l)
i

∥∥− α−
)2) (9)

where Ti is set to 1 if class i is present in the data and
0 otherwise. We can observe two well-differentiated parts
(addends) in (9). The first one is “activated” when the asso-
ciated class i is present in the scene (setting Ti = 1), while
the second one is “activated” in the opposite case, that is,
when the associated class i is not present (setting Ti = 0).
In addition, parameters α+ and α− work as boundaries, forcing
the length of the activity vector �v(l)

i � (i.e., the probability)
in (9) to lie into a small interval of values in order to
avoid maximizing or collapsing the loss. In particular, these
boundaries force v(l)

i to have a length in the range [0.9, 1] if
the associated class is present (α+ = 0.9) and in the range
[0, 0.1] in the opposite case. Moreover, λ = 0.5 works as
a regularization parameter to stop the learning, shrinking the
impact of those activity vectors whose corresponding classes
are not present. This expression can be extended in order to
improve the final classification accuracy by adding a typical
reconstruction loss Lrecon = �X−X��, where X is the original-
desired output data and X� is the network’s reconstructed-
obtained output data. This reconstruction is performed by
the second part of the proposed network, the decoder net, with
the aim of improving the fine-tuning process of the parameters
employed in the proposed network.

B. Decoder Network

The decoder network is composed by several fully con-
nected layers that use the output activity vectors of the dense
capsule layer to reconstruct the input image, encouraging the
capsules to encode the most relevant instantiation parameters
of the input data. At the end, the proposed model optimizes
the loss function given by (10) employing the Adam opti-
mizer [52] with a learning rate equal to 0.001 and 100 training
epochs

Lfinal = Lmargin + θ Lrecon (10)

where θ is a regularization factor to balance the weight
between both loss measures that has been fixed to θ =
0.0005 ·C after a grid search in order to assign an appropriate
weight to the reconstruction loss. Finally, Table I summarizes
the layers that compose the proposed model, indicating their
configuration parameters, which have been demonstrated a
good performance with tested HSI data sets.
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Fig. 5. Number of available samples in the IP, UP, and SV HSI data sets.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Data Sets
Five real hyperspectral data sets have been considered in

our experiments (see Fig. 5). These are the Indian Pines (IP),
Salinas Valley (SV), Kennedy Space Center (KSC), and the
full version of the IP scene, referred hereinafter as the big
IP scene (BIP), all captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor [53], and the Univer-
sity of Pavia (UP) image, acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor [54]. In the

following, we provide a description of the aforementioned
data sets.

1) IP: The IP data set covers an area comprising different
agricultural fields in Northwestern Indiana, USA, and
it was gathered by the AVIRIS sensor in 1992. This
image contains 145×145 pixels with a spatial resolution
of 20 m/pixel (mpp) and 224 spectral bands in the
wavelength range from 400 to 2500 nm. In our experi-
ments, 4 null bands and other 20 bands corrupted by the
atmospheric water absorption effect have been removed.
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TABLE I

SUMMARY OF THE PARAMETERS IN EACH LAYER OF
THE TOPOLOGY OF THE PROPOSED NETWORK

The IP data set contains a total of 16 mutually exclusive
ground-truth classes.

2) SV: The SV image was captured in 1998 by the AVIRIS
sensor over the SV, CA, USA. The data comprise
512 × 217 pixels with a spatial resolution of 3.7 mpp.
As for the IP data set, the water absorption
bands, i.e., channels from 108th to 112th and from
154th to 167th, together with the 224th band, have been
discarded. A total of 16 classes are included in the SV
ground-truth data.

3) KSC: The KSC image was also collected by the AVIRIS
instrument (1996) over the KSC in Florida, USA. After
removing the noisy bands, the KSC scene contains
176 bands (ranging from 400 to 2500 nm) with 512×614
pixels (20-mpp spatial resolution) and 13 ground-truth
classes.

4) UP: The UP data set was gathered by the ROSIS
sensor (in 2001) over the UP, Northern Italy. This image
contains 103 spectral bands (from 0.43 to 0.86 μm) after
several noise-corrupted bands have been discarded, and
it comprises 610×340 pixels with 1.3-mpp spatial reso-
lution. The available ground-truth contains nine different
class labels.

5) BIP: The BIP image comprises the full flight line of
the IP data set captured by the AVIRIS sensor in 1992.
This image contains 2678 × 614 pixels (20 mpp) and
220 spectral bands ranging from 400 to 2500 nm. The
available ground-truth information consists of 58 land-
cover categories (some of them spectrally very similar)
according to the information provided in Table V. This
data set is one of the most challenging scenes pub-
licly available to conduct HSI classification due to its
considerable size, the very high number of classes,
and the imbalanced nature of such classes with very
different numbers of available samples. We emphasize
that some classes in the BIP scene have more than 104

pixels, but others only contain several tens of samples,
which poses important challenges for HSI classifiers.
As a consequence of the memory restrictions and the
large size of this scene, we have reduced the number

of spectral bands after applying principal component
analysis (PCA)—we retain the first 120 components
after PCA. Although fewer PCA components can explain
the variance in the original scene, we have decided to
retain a large number of components to illustrate the
performance of methods in a challenging scenario from
a computational viewpoint.

B. Experimental Settings

A total of eight different classification methods have been
selected to conduct the experimental validation in this paper.
Specifically, the SVM with radial basis function kernel [55],
the RF classifier, the MLP as well as a deep MLP version with
four layers, the 2-D CNN, the 3-D CNN [24], the spectral–
spatial residual network (SSRN) [34], and the deep fast
CNN (DFCNN) [29] have been compared with the proposed
approach. Note that the SVM, RF, and MLP are spectral
classifiers, while the 2-D CNN is a spatial-based technique
and the SSRN and DFCNN (together with the proposed
approach) are all spectral–spatial methods. In the case of the
2-D CNN, the PCA has been used to reduce the number
of HSI bands to a single principal component. In addition,
all the hyperparameters of the considered methods have been
optimally fixed for the experiments.

Regarding the considered classification assessment protocol,
three widely used quantitative metrics have been considered
to evaluate the classification accuracy: overall accuracy (OA),
average accuracy (AA), and kappa coefficient. All the experi-
ments have been conducted in a hardware environment consist-
ing of a 6th Generation Intel Core i7-6700K processor with 8M
of Cache and up to 4.20 GHz (four cores/eight way multitask
processing), 40 GB of DDR4 RAM with a serial speed
of 2400 MHz, an NVIDIA GeForce GTX 1080 GPU with
8-GB GDDR5X of video memory and 10 Gb/s of memory
frequency, a Toshiba DT01ACA HDD with 7200 RPM and
2 TB of capacity, and an ASUS Z170 pro-gaming mother-
board. Regarding our software environment, it is composed
by Ubuntu 16.04.4 x64 as an operating system, CUDA 9 and
cuDNN 7.0.5, PyTorch framework [56], and Python 3.5.2 as
the programing language.

C. Experiments and Discussion

1) Experiment 1: Our first experiment pursues to validate
the performance of the proposed approach with respect to
some of the most well-known HSI classification techniques
available in the literature. Tables II–V provide a quantitative
classification assessment using the IP, UP, SV, and BIP data
sets, considering the SVM, RF, MLP, 2-D CNN, and 3-D CNN
classifiers together with the proposed approach. In Tables II–V,
class results and global metrics are arranged in rows, whereas
the considered classifiers are presented in columns. In all these
experiments, 15% of the available labeled samples have been
used for training, and a spatial size of 11 × 11 pixels for
the input patches was considered for 2-D CNN, 3-D CNN,
and the proposed method. It should also be mentioned that
each table contains the corresponding average and standard
deviation values after five Monte Carlo runs.
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TABLE II

CLASSIFICATION RESULTS FOR THE IP DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

TABLE III

CLASSIFICATION RESULTS FOR THE UP DATA SET USING 15% OF

THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

TABLE IV

CLASSIFICATION RESULTS FOR THE SV DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11 × 11 INPUT PATCH SIZE

From the results reported in Tables II–V, it is possible
to observe that the proposed approach reaches a consistent
performance improvement with respect to SVM, RF, MLP,
2-D CNN, and 3-D CNN classification methods, in global
sense and also for the individual classes of the IP, UP, SV,
and BIP data sets. Among all the competitors considered in
this initial experiment, the spectral–spatial classifier 3-D CNN
obtains the second best result. This is expected, as this method
also involves joint spectral–spatial features, which provide
more useful information to classify HSI data than the single
spectral or spatial features considered by SVM, RF, MLP, and
2-D CNN classifiers. Nonetheless, the proposed approach is

TABLE V

CLASSIFICATION RESULTS FOR THE BIP DATA SET USING 15% OF
THE AVAILABLE LABELED DATA FOR TRAINING

AND 11× 11 INPUT PATCH SIZE

able to consistently outperform the 3-D CNN with an average
improvement of +1.93, +3.84, and +2.46 for OA, AA,
and kappa metrics, respectively. Among all these quantitative
results, the experimental comparison conducted over the BIP
scene deserves special attention because of the complexity of
this data set. As it can be observed in Table V, the proposed
approach obtains the best classification result in all the BIP
classes except for Grass/Pasture-mowed and Orchard where
it obtains the second best result despite the reduced number
of samples of these two classes. Nonetheless, the proposed
method achieves a remarkable precision improvement for other
small classes, such as Grass-runway and BareSoil, while also
maintaining an important quantitative gain with respect to the
other HSI classifiers.

For illustrative purposes, Figs. 6–8 present some of the
classification maps corresponding to the experiments reported
in Tables II–IV. As it is possible to qualitatively observe in
these figures, the classification results obtained by the SVM,
RF, and MLP techniques tend to be rather noisy, mainly
because these methods only consider the spectral information
contained in the HSI data. In addition, the 2-D CNN tends to
introduce some artifacts in class boundaries. This is due to the
fact that it only considers the spatial information to provide a
pixel prediction, which makes the method quite sensitive to the
spatial size of the input patches. Regarding the classification
maps produced by the spectral–spatial classifiers, we can
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Fig. 6. Classification maps for the IP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table II [SVM (86.24%), RF (78.55%), MLP (85.27%), 2-D CNN (83.59%), 3-D CNN (97.81%), and proposed (99.45%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 7. Classification maps for the UP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table III [SVM (95.20%), RF (92.03%), MLP (94.82%), 2-D CNN (94.77%), 3-D CNN (98.54%), and proposed (99.95%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 8. Classification maps for the SV data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table IV [SVM (94.15%), RF (90.76%), MLP (93.87%), 2-D CNN (92.31%), 3-D CNN (97.44%), and proposed (99.81%), respectively].
Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

observe that the 3-D CNN generates better results than the
SVM, RF, MLP, and 2-D CNN in terms of class consistency.
However, the proposed approach produces better results in
terms of border delineation and OA. For instance, we can see
that the classification map produced by the proposed approach
[see Fig. 7(h)] exhibits less misclassified pixels than the
corresponding map generated by the 3-D CNN [see Fig. 7(g)].
Another important observation is related to the generalization
capability of the proposed approach. Specifically, if we look
at the unlabeled image areas (i.e., those that are not covered
by the ground truth), the proposed method appears to provide
more consistent classification results (with less potential out-
liers and artifacts) in those areas than the other considered
methods.

2) Experiment 2: In a second experiment, we conduct a
specific comparison between the proposed approach and two
recent state-of-the-art spectral–spatial HSI classification net-
works, i.e., SSRN [34] and DFCNN [29]. Table VI compares
the proposed approach with the SSRN when considering
multiple spatial sizes for the input patches, i.e., 5× 5, 7× 7,
9 × 9, and 11 × 11, using the IP, KSC, and UP data sets.
Note that the tested spatial sizes are presented in rows and
the considered data sets are arranged in columns to show
the average OA result and also the corresponding standard
deviation in brackets (after five Monte Carlo runs). In this
experiment, we have selected 20% of the available labeled
data for the IP and KSC scenes and 10% of the available
labeled data for the UP scene.
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TABLE VI

OVERALL ACCURACY (%) ACHIEVED BY THE SSRN METHOD [34] AND
THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT

SPATIAL SIZES FOR THE INPUT PATCHES

TABLE VII

QUANTITATIVE COMPARISON OF THE 3-D CNN [24], DFCNN [29], AND
THE PROPOSED APPROACH WITH THE IP DATA SET USING

DIFFERENT SPATIAL SIZES FOR THE INPUT PATCHES

From the results reported in Table VI, the proposed network
architecture consistently outperforms the SSRN for most tested
configurations. More specifically, the average OA improve-
ments achieved by the proposed approach are +2.12, +0.51,
+0.39, and +0.45 for 5× 5, 7× 7, 9× 9, and 11× 11 input
spatial sizes, and +2.12, +0.25, and +0.23 for the IP, KSC,
and UP data sets, respectively. In addition, it is also possible
to observe that the standard deviation in the experiments with
the proposed method is substantially lower than that in the
experiments with the SSRN. This fact, together with the higher
OA results, indicates that the proposed architecture is able
to effectively reduce the uncertainty when classifying HSI
data. The proposed architecture aims at learning spectral–
spatial features considering their spatial locations, their spec-
tral signatures, and also their possible transformations in a
more efficient way in comparison with SSRN. Precisely, this
is the fact that enhances the generalization ability of the
network, because the corresponding spectral–spatial features
are complemented with important information about character-
istic data transformations as a set of instantiation parameters,
which eventually allows characterizing the HSI data at a higher
abstraction level.

In addition, Tables VII and VIII give an experimental
comparison among the 3-D CNN [24], DFCNN, [29] and
the proposed approach using the IP and UP data sets and
considering multiple input spatial sizes. In particular, the first
column shows the class labels, the second row indicates the
number of training samples, and the last three rows provide the
OA results for 3-D CNN, DFCNN, and the proposed approach,
respectively, with different spatial sizes.

Some important observations can be made from
Tables VII and VIII. In general, in these tables, it is
possible to see that larger spatial sizes for the input patches

TABLE VIII

QUANTITATIVE COMPARISON OF THE 3-D CNN [24], DFCNN [29], AND
THE PROPOSED APPROACH WITH THE UP DATA SET USING

DIFFERENT SPATIAL SIZES FOR THE INPUT PATCHES

Fig. 9. Classification maps obtained by (Left) DFCNN [29] and (Right)
proposed approach for the UP data set. A visual comparison of both maps
indicates that the proposed method provides better class delineation and
definition of urban features, for instance, in classes such as self-blocking
bricks (blue) or bitumen (dark green), containing both circular and rectangular
urban features.

generally result in higher accuracy values (the larger the input
size, the more spatial information is considered to complement
the spectral data). However, it can also be observed that
the proposed approach requires substantially smaller input
patches to generate similar or even better accuracy results
than the other methods. Precisely, this point reinforces
the aforementioned observations concerning the higher
generalization capability of the proposed approach. In the
case of the IP data set, 3-D CNN and DFCNN obtain an OA
of 97.56 and 97.87 using 27 × 27 and 29 × 29 input spatial
patches, respectively. In turn, the proposed network is able to
achieve a remarkable performance improvement, reaching a
98.69 value, using only a 9× 9 input spatial patch. A similar
trend can also be observed in the experiments with the UP
data set. This suggests that the proposed approach is able
to uncover more descriptive features than the 3-D CNN and
DFCNN techniques.

For illustrative purposes, Fig. 9 shows the classification
maps obtained by the DFCNN [29] and the proposed approach
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Fig. 10. Evolution of the test accuracy (in %) of (Left) proposed approach
(y-axis) versus epochs and (Right) computational time in seconds for the
experiments with the IP, UP, and SV data sets.

for the UP data set. A visual comparison of both maps
indicates that the proposed method provides better class delin-
eation and definition of urban features. Specifically, class
boundaries are noticeably more precise and defined. This is
particularly the case for classes representing typically urban
features, such as self-blocking bricks (in blue), which appears
better delineated in the classification map provided by the
proposed approach. In addition, the bitumen class (in dark
green) contains circular and rectangular urban features that
appear better delineated in the map produced by the proposed
approach than in the one produced by the DFCNN. In addition,
the classification results obtained by the proposed approach
over unlabeled image areas appear more visually consistent
and with better delineated features, which also suggests the
higher generalization ability of the proposed network.

3) Experiment 3: In a final experiment, we evaluate the
convergence of the proposed network architecture. In this
context, it is important to note that the proposed network
architecture makes use of several innovative building blocks
that are able to estimate the probability that a specific spectral–
spatial feature occurs in the input HSI data and also its
corresponding instantiation parameters, that is, the potential
transformations suffered by the corresponding constituent fea-
ture on the observable input data. As a result, the HSI features
can be intrinsically managed at a higher abstraction level
throughout the network, because traditional convolutional fea-
tures are decomposed into canonical spectral–spatial features
and their possible transformations, which eventually leads to
a significant reduction of the architecture complexity and,
therefore, to a good model convergence. To illustrate this point,
Fig. 10 displays the evolution of the proposed approach test
accuracy per epoch (left) and computational time in seconds
(right). As it can be seen in Fig. 10, the proposed network
only requires a reduced number of epochs and a very short
time to reach almost optimal performance, which highlights
the remarkably fast convergence of the proposed architecture.

In summary, the experiments reported in this section sug-
gest that the proposed approach provides the quantitative
and qualitative advantages over traditional HSI classifiers
(see Tables II–IV and Figs. 6–8) and also over some of
the most relevant state-of-the-art spectral–spatial classification
techniques, i.e., 3-D CNN [24], SSRN [34], and DFCNN [29]
(see Tables VI–VIII and Figs. 9 and 10). The proposed method
is able to achieve the best global performance in all the consid-
ered experimental scenarios, exhibiting relevant performance

improvements when considering reduced input patch spatial
sizes. The proposed approach seems to provide the most robust
behavior with different input patch spatial sizes, which sug-
gests that it is able to generalize more discriminative features
to effectively classify HSI data. Unlike other established deep
learning models such as 3-D CNN, SSRN, and DFCNN,
the constituent units of the proposed architecture (capsules)
are designed to uncover canonical spectral–spatial features
and their corresponding instantiation parameters, which allow
characterizing the HSI data at a higher abstraction level while
reducing the overfitting phenomenon inherent to complex and
deep networks.

V. CONCLUSION

In this paper, a new deep learning architecture based on
the concept of capsules is presented to effectively classify
remotely sensed HSI data. Specifically, the proposed network
is composed by a set of spectral–spatial capsule units that
characterize the input data at a higher abstraction level by
expressing the HSI features as a collection of canonical
spectral–spatial patterns and their corresponding instantiation
parameters. In this way, the features uncovered by the net-
work become more informative, which eventually leads to
a reduction of the architecture complexity and, therefore,
to a more accurate model convergence. The experimental
comparisons conducted in this paper, which consider five well-
known HSI data sets and eight established methods, reveal that
the proposed approach exhibits competitive advantages with
respect to state-of-the-art classification methods.

An important characteristic of the proposed approach is its
potential to deal with the inherent complexity of HSI data
sets generated by their high spectral resolution. In general,
experimental results have shown that the proposed model is
able to extract a more relevant and complete information
about HSI data cubes by managing spectral–spatial features
at a higher abstraction level. Specifically, the spectral–spatial
capsule units model the different transformations present in
the HSI domain by means of a neuron hierarchy which
disentangle the spectral–spatial canonical features from the
data transformation parameters. Therefore, the activation of
higher level spectral–spatial features can be conducted by
agreement between lower level features in order to intrinsically
model complex connections to better characterize the HSI data,
obtaining consistently high classification performance with a
limited amount of training data.
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D. Ślȩzak, G. Peters, Q. Hu, and R. Wang, Eds. Cham, Switzerland:
Springer, 2014, pp. 364–375.

[48] M. D. Zeiler and R. Fergus. (2013). “Stochastic pooling for regular-
ization of deep convolutional neural networks.” [Online]. Available:
https://arxiv.org/abs/1301.3557

[49] T. Williams and R. Li, “Wavelet pooling for convolutional neural net-
works,” in Proc. Int. Conf. Learn. Represent., 2018. [Online]. Available:
https://openreview.net/forum?id=rkhlb8lCZ

[50] Y. T. Zhou and R. Chellappa, “Computation of optical flow using a
neural network,” in Proc. IEEE Int. Conf. Neural Netw., vol. 2, Jul. 1988,
pp. 71–78.

http://dx.doi.org/10.1016/j.isprsjprs.2017.11.021
http://dx.doi.org/10.1109/TGRS.2018.2860125
http://dx.doi.org/10.1109/TGRS.2018.2838665


PAOLETTI et al.: CAPSNETS FOR HYPERSPECTRAL IMAGE CLASSIFICATION 2159

[51] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM
routing,” in Proc. Int. Conf. Learn. Represent., 2018. [Online]. Available:
https://openreview.net/forum?id=HJWLfGWRb

[52] D. P. Kingma and J. Ba. (2014). “Adam: A method for stochastic
optimization.” [Online]. Available: https://arxiv.org/abs/1412.6980

[53] R. O. Green et al., “Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ.,
vol. 65, no. 3, pp. 227–248, Sep. 1998.

[54] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, H. van der Piepen, and
M. Schroder, “ROSIS (Reflective Optics System Imaging Spectrometer)-
A candidate instrument for polar platform missions,” in Optoelectronic
technologies for remote sensing from space, vol. 868. International
Society for Optics and Photonics, 1988, pp. 134–142.

[55] B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert,
“Sensitivity of support vector machines to random feature selection in
classification of hyperspectral data,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 7, pp. 2880–2889, Jul. 2010.

[56] A. Paszke et al. (2017). Automatic Differentiation in PyTorch.
[Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ and
https://nips.cc/Conferences/2017/Schedule?showEvent=8779

Mercedes E. Paoletti (S’17) received the B.Sc.
and M.Sc. degrees in computer engineering from
the University of Extremadura, Cáceres, Spain,
in 2014 and 2016, respectively, where she is cur-
rently pursuing the Ph.D. degree under the Univer-
sity Teacher Training Programme from the Spanish
Ministry of Education.

She is currently a member of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. Her research interests include remote

sensing and analysis of very high spectral resolution with the current focus
on deep learning and high-performance computing.

Juan Mario Haut (S’17) received the B.Sc.
and M.Sc. degrees in computer engineering from
the University of Extremadura, Cáceres, Spain,
in 2011 and 2014, respectively, where he is cur-
rently pursuing the Ph.D. degree under the Univer-
sity Teacher Training Programme from the Spanish
Ministry of Education.

He is currently a member of the Hyperspectral
Computing Laboratory, Department of Computers
and Communications, University of Extremadura,
His research interests include remote sensing and

analysis of very high spectral resolution with the current focus on deep
learning and cloud computing. https://mhaut.github.io/.

Ruben Fernandez-Beltran received the B.Sc.
degree in computer science, the M.Sc. degee in intel-
ligent systems, and the Ph.D. degree in computer
science from Universitat Jaume I, Castellón de la
Plana, Spain, in 2007, 2011, and 2016, respectively.

He has been Visiting Scientist with the Univer-
sity of Bristol, Bristol, U.K. Since 2017, he has
been a Visiting Post-Doctoral Researcher with the
Hyperspectral Computing Laboratory, University of
Extremadura, Cáceres, Spain. He is currently a
Post-Doctoral Researcher with the Computer Vision

Group, Universitat Jaume I, where he is also a member of the Institute of New
Imaging Technologies. His research interests include multimedia retrieval,
spatiospectral image analysis, and pattern recognition techniques applied to
image processing and remote sensing.

Dr. Fernandez-Beltran is a member of the Spanish Association for Pattern
Recognition and Image Analysis, which is part of the International Association
for Pattern Recognition. He received the Outstanding Ph.D. Dissertation
Award from Universitat Jaume I in 2017.

Javier Plaza (M’09–SM’15) received the M.Sc. and
Ph.D. degrees in computer engineering from the
Department of Technology of Computers and Com-
munications, University of Extremadura, Cáceres,
Spain, in 2004 and 2008, respectively.

He is currently a member of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. He has authored over 150 publications,
including over 50 JCR journal papers, 10 book
chapters, and 90 peer-reviewed conference proceed-

ing papers. His research interests include hyperspectral data processing and
parallel computing of remote sensing data.

Dr. Plaza was a recipient of the Outstanding Ph.D. Dissertation Award from
the University of Extremadura in 2008, the Most Highly Cited Paper Award
from the Journal of Parallel and Distributed Computing from 2005 to 2010,
and the Best Column Award of the IEEE Signal Processing Magazine in 2015.
He received the best paper awards from the IEEE International Conference on
Space Technology and the IEEE Symposium on Signal Processing and Infor-
mation Technology. He has guest edited four special issues on hyperspectral
remote sensing for different journals. He is currently an Associate Editor
of the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS and the IEEE
Remote Sensing Code Library. http://www.umbc.edu/rssipl/people/jplaza.

Antonio Plaza (M’05–SM’07–F’15) received the
M.Sc. and Ph.D. degrees in computer engineering
from the Department of Technology of Computers
and Communications, University of Extremadura,
Cáceres, Spain, in 1999 and 2002, respectively.

He is currently the Head of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. He has authored over 600 publica-
tions, including over 200 JCR journal papers (over
160 in IEEE journals), 23 book chapters, and around

300 peer-reviewed conference proceeding papers. His research interests
include hyperspectral data processing and parallel computing of remote
sensing data.

Dr. Plaza was a member of the Editorial Board of the IEEE Geoscience and
Remote Sensing Newsletter from 2011 to 2012 and the IEEE Geoscience and
Remote Sensing Magazine in 2013. He was also a member of the Steering
Committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (JSTARS). He is a fellow of IEEE
for the contributions to hyperspectral data processing and parallel computing
of Earth observation data. He was a recipient of the Recognition of Best
Reviewers of the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
in 2009 and the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING in 2010, for which he served as an Associate Editor from 2007 to
2012. He was a recipient of the Most Highly Cited Paper Award from the Jour-
nal of Parallel and Distributed Computing from 2005 to 2010, the 2013 Best
Paper Award of the JSTARS journal, and the Best Column Award of the IEEE
Signal Processing Magazine in 2015. He received the Best Paper Awards
at the IEEE International Conference on Space Technology and the IEEE
Symposium on Signal Processing and Information Technology. He has guest
edited 10 special issues on hyperspectral remote sensing for different journals.
He served as the Director of Education Activities for the IEEE Geoscience
and Remote Sensing Society (GRSS) from 2011 to 2012 and the President
of the Spanish Chapter of the IEEE GRSS from 2012 to 2016. He has
reviewed over 500 manuscripts for over 50 different journals. He served
as the Editor-in-Chief for the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING from 2013 to 2017. He is an Associate Editor of the IEEE
ACCESS (receiving a recognition as an outstanding Associate Editor of the
journal in 2017). http://www.umbc.edu/rssipl/people/aplaza.



2160 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 4, APRIL 2019

Jun Li (SM’16) was born in Loudi, Hunan, China,
in 1982. She received the Engineering Degree in
geographical information systems from Hunan Nor-
mal University, Changsha, China, in 2004, the M.Sc.
degree in remote sensing and photogrammetry from
Peking University, Beijing, China, in 2007, and the
Ph.D. degree in electrical and computer engineering
from the Instituto Superior Tecnico, Technical Uni-
versity of Lisbon, Lisbon, Portugal, in 2011.

From 2011 to 2012, she was a Post-Doctoral
Researcher with the Department of Technology of

Computers and Communications, University of Extremadura, Badajoz, Spain.
She is currently a Professor with the School of Geography and Planning,
Sun Yat-sen University, Guangzhou, China, where she also founded her own
research group on hyperspectral image analysis in 2013. Since 2013, she has
obtained several prestigious funding grants at the national and international
level. She has published a total of 69 journal citation report papers, 48
conference international conference papers, and one book chapter. She has
received a significant number of citations to her published works, with
several papers distinguished as Highly Cited Papers in Thomson Reuter-
sâŁ™ Web of Science–Essential Science Indicators. Her research interests
include remotely sensed hyperspectral image analysis, signal processing,
supervised/semisupervised learning, and active learning.

Dr. Li’s students have also received important distinctions and awards at
international conferences and symposia. She has served as a Guest Editor
of a Special Issue in the prestigious PROCEEDINGS OF THE IEEE journal.
She has also served as a Guest Editor of a Special Issue in the prestigious
ISPRS Journal of Photogrammetry and Remote Sensing journal. He has been
serving as an Associate Editor of the IEEE JOURNAL OF SELECTED TOPICS

IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING since 2014.

Filiberto Pla received the B.Sc. and Ph.D. degrees
in physics from the Universitat de Valéncia,
Valencia, Spain, in 1989 and 1993, respectively.

He is currently a Full Professor with the Departa-
ment de Llenguatges i Sistemes Informatics, Univer-
sitat Jaume I, Castellón de la Plana, Spain. He has
been a Visiting Scientist with the Silsoe Research
Institute, University of Surrey, Guildford, U.K.,
the University of Bristol, Bristol, U.K., CEMA-
GREF, Montpellier, France, the University of Genoa,
Genoa, Italy, the Instituto Superior Técnico, Lisbon,

Portugal, the Swiss Federal Institute of Technology, ETH Zurich, Zürich,
Switzerland, the idiap Research Institute, Switzerland, the Delft University of
Technology, Delft, The Netherlands, and the Mid Sweden University, Sweden.
He has been the Director of the Institute of New Imaging Technologies,
Universitat Jaume I. His research interests include color and spectral image
analysis, visual motion analysis, 3-D image visualization, and pattern recog-
nition techniques applied to image processing.

Dr. Pla is a member of the Spanish Association for Pattern Recognition
and Image Analysis, which is part of the International Association for Pattern
Recognition.


