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Abstract— The current trend in remote sensing image
superresolution (SR) is to use supervised deep learning models
to effectively enhance the spatial resolution of airborne
and satellite-based optical imagery. Nonetheless, the inherent
complexity of these architectures/data often makes these methods
very difficult to train. Despite these recent advances, the huge
amount of network parameters that must be fine-tuned and the
lack of suitable high-resolution remotely sensed imagery in actual
operational scenarios still raise some important challenges that
may become relevant limitations in the existent earth observation
data production environments. To address these problems, we
propose a new remote sensing SR approach that integrates a
visual attention mechanism within a residual-based network
design in order to allow the SR process to focus on those
features extracted from land-cover components that require
more computations to be superresolved. As a result, the network
training process is significantly improved because it aims at
learning the most relevant high-frequency information while
the proposed architecture allows neglecting the low-frequency
features extracted from spatially uninformative earth surface
areas by means of several levels of skip connections. Our exper-
imental assessment, conducted using the University of California
at Merced and GaoFen-2 remote sensing image collections, three
scaling factors, and eight different SR methods, demonstrates that
our newly proposed approach exhibits competitive performance
in the task of superresolving remotely sensed imagery.

Index Terms— Deep learning, remote sensing, single-image
superresolution (SR), visual attention (VA).

I. INTRODUCTION

OVER the past years, the superresolution (SR) techniques
have become very helpful due to their great potential to

overcome the physical resolution constraints of remote sensing
imaging sensors [1]. As a result, many of the most important
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operational satellites are currently focused on providing super-
resolved data products, mainly because this kind of technology
is able to generate enhanced remotely sensed imagery which
is very useful to deal with current and future challenges
and societal needs [2], [3]. For instance, fine-grained satellite
image classification [4], [5], hyperspectral remote sensing data
analysis [6]–[9], remote target identification [10], [11], and
detailed land cover mapping [12]–[14] are some of the most
popular remote sensing applications in which SR has provided
important advantages.

Broadly speaking, SR [15]–[17] refers to those algorithmic
tools aimed at increasing the spatial resolution of remotely
sensed data while providing spatial information beyond the
sensor resolution, that is, spatial details not present in the
lower resolution (LR) image captured by the sensing instru-
ment. In the literature, it is possible to distinguish between
two different trends that have been successfully adopted to
superresolve remotely sensed data: multi-image SR [18] and
single-image SR [19]. Whereas, multi-image techniques
require several multi-angular shots within a very short time
span, single-image SR offers a more flexible scheme for
remote sensing applications, because the SR process is con-
ducted using a single LR image of the target scene. In par-
ticular, there are two main factors that make single-image SR
methods particularly attractive in the context of remote sensing
applications. On the one hand, many of the currently opera-
tional satellites can only offer a revisiting period of at least sev-
eral days [20], which does not allow using the straightforward
multi-image SR approach because of the existing temporal
gap among different earth observations. On the other hand,
the single-image SR can be applied without the need of using
any satellite constellation, which eventually results in substan-
tial cost savings and provides a good opportunity for small
platforms, with low resolution and cheap instruments [21].

When focusing on the single-image SR domain [22], it is
also possible to identify two different kinds of techniques,
depending on the required training data: unsupervised and
supervised methods. Regarding the unsupervised category,
these SR approaches estimate the high-resolution (HR)
details present in the superresolved output from the LR
input image itself. One of the simplest unsupervised SR
methods was developed by Irani and Peleg [23], where
several back-propagation iterations were applied to gradually
enhance the gradient of the upscaled LR image. Since then,
other more advanced unsupervised SR methods have been
successfully applied to the remotely sensed data. This is the
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case of the work published in [24], where the authors
present an innovative self-learning procedure based on the
regularized patch-search criteria across scales to generate
the corresponding superresolved result. Another relevant
work is [25], where the authors adopt a generative neural
network to address the SR problem from an unsupervised
perspective. Despite the evident benefits of not using any
external training set, the performance of the unsupervised
SR approach typically becomes rather limited under the most
challenging remote sensing scenarios because of the limited
spatial information present in the LR input image. Note that
remote sensing images are usually fully focused multi-band
shots with plenty of complex spatial details, which makes the
SR process particularly challenging [19].

In this sense, supervised methods are able to provide a
more robust SR scheme by learning the relationships between
LR and HR image domains by means of an external training
set. One of the most popular supervised SR methods was
introduced by Yang et al. [26], and it was later adapted
to remote sensing problems in [27]. These approaches take
advantage of the fact that natural images tend to be sparse
when they are represented as a linear combination of small
patches. Therefore, it is possible to learn an SR mapping by
forcing the LR and HR training images to share the same
sparse codes. Alternative works, such as [28]–[30], follow a
similar idea but using different image characterization spaces
that are able to provide specific advantages. Nonetheless,
convolutional neural networks (CNNs) represent certainly one
of the most important paradigms within the supervised SR field
due to their great potential to uncover high-level features from
the optical data. Hence, multiple authors have successfully
presented different methods based on CNNs. For instance,
Dong et al. [31] proposed a deep learning architecture to super-
resolve LR images. More specifically, this method initially
upscales the input LR patches by means of a bi-cubic (BC)
interpolation, and then uses a 3-layer CNN to learn the
mapping between the LR and HR image domains. Other
authors have introduced additional improvements over this
baseline work in order to achieve superior results. For instance,
a relevant extension is presented in [32], where the authors
define a deeper architecture that reduces the input feature space
(and also removes the initial interpolation step) by providing
an actual end-to-end mapping. Another important work is the
one described in [33], where Kim et al. [33] propose a 20-layer
CNN architecture that considers image residuals together with
data augmenting and multi-scaling learning schemes. Despite
the remarkable performance achieved by all these methods
when considering standard images, the special complexity of
airborne and space-borne optical data usually limits their SR
performance in several remote sensing tasks.

Consequently, other CNN-based SR methods have been
designed to specifically manage remotely sensed imagery. For
instance, Lei et al. [34] define a multi-level CNN architec-
ture able to capture multi-scale features, which allow the
network to simultaneously take into account local and global
image features when introducing new spatial details in the
SR process. Another relevant work was presented in [35],
where the authors introduce several improvements on the

network design in order to effectively superresolve remotely
sensed data. Specifically, residual units and skip connections
were adopted to uncover more relevant features on both local
and global image areas. In addition, the superresolved image
reconstruction process was conducted using a network-in-
network architecture [36], which improved model discrim-
inability for different image features. In spite of all the efforts
directed to designing highly accurate CNN-based SR models
for remotely sensed data, many of the existing approaches
still face challenges related to the convergence of network
parameters, which eventually leaves room for improvement,
especially when dealing with challenging remotely sensed
data. Note that the most advanced deep learning SR mod-
els are very difficult to train because of their own com-
plexity and also because of the lack of significant training
data [37], which may become an important limitation in some
preoperational airborne and space-borne optical acquisition
scenarios.

With all these considerations in mind, this paper presents
a new supervised SR network architecture that is especially
designed to effectively superresolve remotely sensed imagery.
Some of the most recent CNN-based SR methods used in
remote sensing applications assume that all the features
extracted from the LR input image are equally important
[34], [35]. This fact is fundamentally due to the behavior
of the convolutional kernel itself, where a sliding weight
window (defined by the receptive field) is equally applied
to the entire volume of data. However, this assumption may
result in a lack of flexibility when analyzing different kinds
of features that are typically present in aerial shots. While
the features extracted from smoother areas in the surface of
the earth are not expected to incorporate many HR spatial
details, the SR process itself is mainly focused on enhancing
the most textured areas, where the corresponding features are
expected to introduce new high-frequency information. In this
scenario, our newly proposed SR approach adopts a visual
attention (VA) mechanism [38]–[40] that guides the network
training process toward the most informative features, thus
focusing the attention of the model on those earth surface
features related to structural components that require finer HR
details. Note that convolutional kernels are able to capture
specific land-cover features from the input data. As a result,
the considered attention mechanism can provide competitive
advantages to superresolve remote sensing data, since the
network filters are able to inherently involve multiple related
spatial locations over the surface of the earth. In addition,
in order to take full advantage of the information contained
in the hierarchical features obtained from the LR-image, our
newly proposed approach incorporates several residual units
associated with multiple levels of skip connections that allow
the network architecture to neglect low-frequency features,
which correspond to spatially irrelevant areas on the surface
of the earth. Our experimental assessment, conducted using
the University of California at Merced (UC Merced) and
GaoFen-2 remote sensing image collections, three scaling
factors, and eight different single-image SR methods, reveals
that the proposed approach exhibits competitive advantages
when compared to other state-of-the-art SR methods.
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The rest of this paper is organized as follows. Section II
describes some related works. Section III describes our newly
proposed architecture to superresolve remotely sensed data.
Section IV describes our experimental assessment, where
eight different SR methods were tested using two different
remote sensing image collections in order to thoroughly dis-
cuss and validate the performance of our newly developed
approach. Finally, Section V concludes this paper with some
remarks and hints at plausible future research lines.

II. RELATED WORKS

A. CNNs as Feature Extractors

The CNN model has been widely used in a large range of
remote sensing applications (including object detection [41],
image classification [42], [43], segmentation [44], and
SR [45]) due to its great potential for extracting highly
discriminative mid- and high-level abstract features from
raw remote sensing data, without involving the hand-crafted
selection of these features [46], [47].

As any deep neural network (DNN), the CNN’s goal is to
approximate a function of the form f : X → Y through
the hierarchical concatenation of transformation blocks. In this
way, and focusing on the SR problem, the basic performance
of a CNN used for SR purposes relies on the sequential and
successive transformation of the input LR data, which can be
denoted as X = X ∈ R

n1×n2×n3 , obtaining a highly abstract
and discriminative output representation composed by neuron
activation values, to which a final mapping is applied in order
to obtain the desired HR image Y = Y ∈ R

m1×m2×m3 , being
n1 < m1, n2 < m2 and n3 = m3.

However, instead of adopting a standard fully con-
nected (FC) architecture, the CNN model applies the concept
of local receptive field to connect the neurons in the lth
layer to local smaller windows of each input data X(l). This
idea is inspired by the working mechanism of visual cortex
neurons, which are excited by certain stimuli in their receptive
area, producing a neural response of higher or lower inten-
sity depending on the stimulus, an effect know as neuronal
tuning [48]. That is, these neuronal cells are able to look for
specific characteristics. Moreover, the neural tuning process
becomes more complex as we delve higher into visual areas.
In fact, it can be seen as a hierarchical structure, where
the visual information is stored in sequences of increasingly
complex patterns (feature representations) in sequential order
along the visual stream [49]. For instance, neurons in the
primary visual cortex (V1) usually respond to simple stimuli,
such as edges and shapes, while neurons in higher level visual
respond to more complex stimuli, such as familiar faces.

Two fundamental aspects are drawn from the way the visual
cortex operates: 1) the hierarchical extraction of higher level
abstraction features in a stacked-layer architecture and 2) the
local connectivity of neurons to small areas of the input
data. Regarding the first aspect, the CNN model simulates the
hierarchical transformations of the visual stream by applying
a deep architecture, composed by a stack of trainable feature
extraction stages, while the application of these stages to the
data is performed by following a local connectivity design.

Fig. 1. Graphical visualization of the lth 2-D convolutional layer of our
model, denoted by C(l) and composed by K (l) filters. Each filter is defined
by the receptive field of the layer, with dimensions k(l)×k(l), creating a small
window that slides over the input volume X(l) with stride s(l). In each filter,
the convolution of the window over the input patches generates a feature,
and the collection of features extracted by a filter comprise its feature map.
Finally, after applying the activation function and the pooling (omitted for
clarity), the resulting collection of feature maps generate the output volume
of the layer, X(l+1).

Usually, each feature extraction stage is composed of three
main steps, indicated by (1): 1) the convolutional layer;
2) the nonlinear layer; and 3) the downsampling or pooling
layer. The first one is the basic feature extractor of the
CNN model. It is defined by a kernel of weights, whose
dimensions determine the receptive field of the layer. In this
sense, the convolutional layer acts as a traditional sliding-
window algorithm, where the linear kernel convolves (∗) its
weights W(l) and bias b(l) on local patches of the input
data by sliding and overlapping the filter over the input.
At every location, the convolutional layer applies an affine
transformation between the kernel’s weights and the current
input data location, obtaining an output volume (set of feature
maps), as shown by the first part of the following equation:

O(l+1) = W(l) ∗ X(l) + b(l)

Ô(l+1) = H(O(l+1))

X(l+1) = Pk×k(Ô(l+1)). (1)

Fig. 1 graphically illustrates the performance of a 2-D
convolutional layer, denoted as C(l). This layer receives

X(l) ∈ R
n(l−1)

1 ×n(l−1)
2 ×K (l−1)

as the input volume. Such volume
is characterized by two spatial dimensions, i.e., the volume’s
height and width n(l−1)

1 × n(l−1)
2 , and by one spectral dimen-

sion, given by the number of filters computed by the previous
layer K (l−1). It must be noted that, for C(1) (i.e., the first
layer), the number of channels of the input image is given
by K (0) = n3. The convolutional layer applies its K (l) filters
on the input volume X(l), with the receptive field defined by
k(l) × k(l). As it can be observed, those kernels are slid over
the input, using a stride value s(l) (which usually performs a
subsampling of the input volume). Each application of those
kernels performs a linear elementwise multiplication between
the kernel’s weights and the current input data location, sum-
ming up the obtained results in order to obtain the final feature,
which is allocated into the corresponding filter position of the
output volume. Equation (2) gives the mathematical expression
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of the obtained feature a(l)z
i, j at the (i, j)th position of the zth

filter in the lth convolutional layer

a(l)z
i, j = (W(l) ∗ X(l) + b(l))i, j

a(l)z
i, j =

k(l)∑

î=1

k(l)∑

ĵ=1

x (l)
(i·s(l)+î),( j ·s(l)+ ĵ )

· w(l)
î , ĵ

+ b(l). (2)

Following the second part of (1), the obtained output
volume is passed through the nonlinear layer, which applies
an elementwise nonlinear activation function H(·) in order
to obtain an activity volume that encodes nonlinear internal
structures and relationships that are hidden in the data. Usually,
H(·) is implemented as the rectified linear unit (ReLU) [50].

Finally, at the end of the feature extraction stage, a down-
sampling step, performed by a pooling layer Pk×k(·) with a
kernel of dimensions k × k, is added in order to comprise the
obtained features in the output volume X(l+1) ∈ R

n(l)
1 ×n(l)

2 ×K (l)
,

and to provide some kind of invariance to small translations
of the data.

B. Limitations of CNNs in Remote Sensing Image SR

The application of CNNs to feature extraction from
remotely sensed data, in general, and to single-image SR,
in particular, has been explored by plenty of works [51],
demonstrating very good performance. However, CNN models
still face two main limitations in this context. The first one is
the fact that there is a direct relationship between the model’s
depth (i.e., the level of abstraction of data representations),
and the quality of the SR method [52], [53]. In this sense,
(very) deep CNNs are difficult to train due to the vanishing
gradient [54] and data degradation [55] problems, not to
mention the intrinsic complexity associated with the task of
optimizing a nonconvex problem by means of fine-tuning the
model’s parameters, which can be hampered by the presence
of multiple local minima.

Residual learning [55] represents an important evolution
in the state-of-the-art DNNs, as it introduces an identity
mapping between groups of feature extraction stages, denoted
as residual units, whose operation on the input data is indicated
as F(·) and is affected by the weights W and biases B of those
convolutional layers that compose the unit, as the following
equation:

O(l+1) = F(W, X(l),B) + X(l)

X(l+1) = H(O(l+1)). (3)

Direct data propagation through residual and skip connec-
tions can alleviate the data degradation problem, thus leading
to the development of very deep models for single-image
SR [52], [56]. However, despite the fact that connection
mechanisms improve information propagation across layers,
these CNNs still suffer from a second limitation, related to
the intrinsic characteristics of remote sensing images and the
internal operation of the convolutional kernel. In particular,
remotely sensed image data suffer from certain degradations
during their acquisition process due to atmospheric interferers
and sensor noise (among other factors). This often introduces

an important amount of noise and variability in the data
(in addition to abundant low-frequency information [57]).
An optimal feature extractor would be able to discard such
irrelevant (or even damaging) information in order to enhance
the system’s performance. However, the convolutional kernel
treats all image content equally, without making any distinc-
tions between relevant and/or useless information, which in
the end can hinder the whole SR procedure.

In order to overcome the aforementioned shortcomings,
certain efforts have been made to equip DNN models with
VA mechanisms, allowing them to focus selectively on the
most relevant features [38], [39], [58], [59]. These mechanisms
are again inspired by the human visual cortex, where the eye
tracks those objects or regions in the scene that stand out
from the visual field, following two main components [60]:
1) bottom-up components, which are stimulus-driven features
extracted from raw data in an automatical and involuntary
way, i.e., without the understanding of the scene’s context
information and 2) top-down components, which are task-
driven or goal-oriented features extracted through voluntary
attention to some scene characteristics, which implies the
explicit understanding of the scene’s context.

Usually, VA has been included into DNNs by adding a
mask or gating mechanism, computed from the original data
and applied to the features obtained by the network in order
to single out the most relevant ones. In fact, VA mechanisms
allow to recalibrate and refine the feature maps obtained by
the CNN model, leading to a more effective training stage.
The use of VA mechanisms directed to spatial components
of the image has been extensively studied, along with other
mechanisms to improve the spatial encoding of data [61].
However, no significant attention has been given as of yet
to the spectral component of the data, resulting in the fact
that there is currently a lack of methods able to exploit
channel relationships [62]. This greatly limits the convolution’s
flexibility and its representational capacity [63].

III. DEEP RESIDUAL CHANNEL ATTENTION MODEL FOR

REMOTE SENSING IMAGE SUPERRESOLUTION

In this section, we introduce a new convolutional-based
neural network for remote sensing image SR that employs
residual and skip connections to devise a very deep archi-
tecture, transferring the information processed at different
levels of abstraction and alleviating data degradation problems.
At the same time, the internal feature extraction stages in our
network have been equipped with VA mechanisms in order
to efficiently take the advantage of this kind of techniques,
which have demonstrated to be very useful in many differ-
ent high-level tasks related to a wide range of application
domains [64], such as natural image classification tasks [63].
Inspired by the squeeze-and-excitation (SE) building blocks
of [63], our proposal integrates the attention technique into
a deep-learning-based architecture, adapting it to perform the
SR of remote-sensing images. In particular, channel attention
blocks (see Fig. 2) have been developed in order to learn
and recover high-frequency information, paying attention to
channelwise feature responses and reducing the computations
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Fig. 2. Graphical visualization of the lth channel attention block of our
model, allocated in the llth residual group, B(ll)

l . It comprises the first
and second SC levels.

related to low-frequency information. Specifically, our newly
developed network relies on improving the obtained deep
data representations by modeling the relationships between
the channels of the convolved feature maps for each layer,
applying a VA gating mechanism over them to extract relevant
and high-frequency information. In this context, four levels
of skip connections have been included into the proposed
architecture in order to enforce different feature levels across
different groups of attention blocks, reinforcing also the spatial
details not captured in the LR domain by the remote imaging
sensor, as shown in Figs. 2 and 3. Following other deep
learning-based SR approaches [25], [35], our newly developed
network is composed by three main parts: 1) the network’s
head; 2) the feature processing body; and iii) the network’s
tail.

1) Network’s Head: The architecture of the proposed net-
work starts with a first convolutional layer C(1) that transforms
the original LR input data X ∈ R

n1×n2×n3 into a first-level
feature representation, in order to prepare the information that
will be fed to the subsequent parts of the network.

2) Network’s Feature Processing Body: This can be con-
sidered as the main architectural body of the network, as it
encodes its main structure. In this section, the data flows
through different levels of shortcut connections (SCs) in order
to facilitate the forward propagation of the feature maps result-
ing from each block. These SCs provide a direct and effective
way to combine low- and high-level features, improving the
network’s performance and enhancing its computational effi-
ciency [65]. In fact, the network’s body has been developed
under a residual paradigm, following a so-called ResNet of
ResNets (RoR) architecture [66] that creates four levels of
SCs to improve the optimization ability of residual units.
In this sense, each SC level groups the network’s layers into
different structural blocks, creating an architecture of relatively
simple blocks embedded into more complex ones, as depicted
in Figs. 2 and 3.

From the “internal” or simple structures to the more
“external” and complex ones, the network implements the first
and second SC levels, circumscribing the basic building block
of our SR model, denoted as channel attention block. This
block performs two steps: 1) a feature extraction step and 2) a
channel attention step. In mathematical terms, we denote the
input volume of the feature extraction step in the lth channel
attention block as X(l). Similarly, we denote the input and
output volumes of the channel attention step as X(l)

FE and X(l)
CA,

respectively. Finally, we denote the output of the channel
attention block as X(l+1). Fig. 2 shows a graphical overview of
these blocks. It can be observed that the feature extraction step
is performed by two convolutional layers, C(l)

1 and C(l)
2 , which

are connected through a nonlinear layer. Each layer extracts
more refined features from X(l), while the nonlinear layer
applies the ReLU function to obtain the activation values. As a
result, the X(l)

FE ∈ R
n(l)

1 ×n(l)
2 ×K (l)

contains the K (l) feature maps

extracted by C(l)
2 . These feature maps are sent to the channel

attention step to be recalibrated. A first average pooling layer
is then applied over the spatial dimensions in order to squeeze
the spatial information, reducing the collection of feature maps
to a channel descriptor denoted as d̂ ∈ R

K (l)
[63]. This vector

collects the global spatial information, where each vector
element dz is obtained by the following equation:

d̂z = 1

n(l)
1 · n(l)

2

·
n(l)

1∑

i=1

n(l)
2∑

j=1

x (l)
FE(i, j )

, with z = 1, . . . , K (l). (4)

After the squeeze step, an excitation process is adopted
to fully capture the internal relationships and dependencies
between the feature channels. In this way, a gating mechanism
is implemented by a spectral encoder–decoder architecture,
where the encoder layer, C(l)

3 , performs a channel down-
scaling step followed by a ReLU function, and the decoder
layer, C(l)

4 , recovers the spectral dimension, performing a
channel upscaling step (both layers comprise 1 × 1 kernels).
Finally, the sigmoid function is employed to obtain a scaled
channel descriptor d whose values lie in the interval [0, 1].
The following equation gives a mathematical expression for
the aforementioned excitation and scaling procedures

d = Hσ

(
C(l)

4

(
ReLU

(
C(l)

3 (d̂)
)))

. (5)

The channelwise statistics contained in d act as a traditional
VA mask, scaling the feature maps that comprise the volume
X(l)

FE. As a result, the channel-attention output volume X(l)
CA

is obtained by performing the first SC level, as the following
equation:

X(l)
CA = d · X(l)

FE. (6)

The channel attention block ends with the aggregation of
the original input volume X(l) and the channel-attention
volume X(l)

CA through the second SC level, given by the
following equation. This allows to improve the block’s input
features, thanks to the enhancement made by (6):

X(l+1) = X(l)
CA + X(l). (7)



9282 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

Fig. 3. Architecture of the proposed residual channel attention-based neural network model for remotely sensed image SR. Three different parts of the
implemented network can be clearly differentiated in the figure: 1) a first convolutional layer C(1) that processes the original LR image X ∈ R

n1×n2×n3 to
extract an initial output volume composed of K (1) feature maps, which feeds 2) five residual groups (R(ll) with ll = 1, . . . , 5) that are composed by ten
channel attention blocks (B(ll)

l with l = 1, . . . , 10) and one final convolution layer, C(ll)
1 . SCs of second and third levels are applied in order to exploit low-

and high-level features that enhance the network’s performance. The output volume of R(5) is processed by the C(2) convolutional layer to perform feature
extraction before adding the fourth skip connection level, complementing the information extracted by the previous residual groups with the original features.
This information is finally 3) upsampled and processed by C(3) to obtain the HR image Y ∈ R

m1×m2×m3 , with n1 < m1, n2 < m2 and n3 = m3.

The third SC level groups several channel attention blocks
into a complex structure, denoted as residual group: R(ll).
As we can observe in Fig. 3, each R(ll) is composed by
ten channel attention blocks B(ll)

l that perform the deep
feature extraction stage of the network. A final convolu-
tional layer, C(ll)

1 , is added before conducting the aggregation
between the residual group’s input volume and the C(ll)

1 output
feature maps.

Finally, the network implements a fourth SC level that
directly connects the output of the network’s head with the
input of the network’s tail by means of an aggregation func-
tion, circumscribing the network’s body. This allows us to
reuse the low-level features extracted by the first convolutional
layer, C(1), without any additional computational cost, and the
more abstract features obtained by the five implemented resid-
ual blocks that are processed by the body’s final convolutional
layer, C(2), before the final aggregation.

3) Network’s Tail: After the body of the network has been
executed, an output volume composed by very deep feature
maps is obtained. Inside, each channel has been recalibrated
by the aforementioned channel attention mechanism, creating
a volume of highly informative data. Based on this, upsam-
pling of the data cube is now carried out, expanding the
volume’s spatial dimensions to those of the target HR image,
i.e., Y ∈ R

m1×m2×m3 . In this sense, the upsampling procedure
consists of several pairs of convolution and pixel-shuffle
layers, denoted as Ui layers, whose number and associated
parameters depend on the considered scaling factor. Finally,
at the end of the network, the C(3) convolutional layer extracts
the necessary information—already scaled—to generate the
desired HR image Y.

The details of the network’s parameters are listed in Table I.
The architectural design of the proposed SR-network has
been inspired by some recent convolutional models devel-
oped for image SR and available in the remote sensing

TABLE I

TOPOLOGY OF THE PROPOSED NETWORK ARCHITECTURE. FOR

SIMPLIFICATION, ONLY ONE RESIDUAL GROUP IS SHOWN.
ll = 1, . . . , 5 AND l = 1, . . . , 10. * UPSAMPLING LAYERS

EMPLOY A FACTOR OF 2 FOR 2× AND 4× SCALES, AND A

FACTOR OF 3 FOR 3×. ONE U LAYER IS EMPLOYED

FOR 2× AND 3×, WHILE TWO LAYERS, U1 AND U2 ,
IS EMPLOYED FOR 4×

literature [34], [35], where convolutional filters of size 3 × 3
have proven to be large enough to take advantage of the spatial
information contained in neighborhood windows without los-
ing the level of detail. Moreover, the proposed architecture has
been designed to maintain the size of the input volume until
reaching the upscaling step, being the layers of each channel
attention block the ones that reduce and recover the spatial
dimensions of the data volume. For instance, giving an input
LR image X ∈ R

24×24×3, the network’s head prepares the
input, elongating the spectral information from 3 to 64 chan-
nels and keeping constant the spatial dimension by including
zero-padding, obtaining a volume of 24 × 24 × 64. In this
regard, each channel attention block B(ll)

l compacts the spatial
information to a single element through the average pooling
layer. As shown in Fig. 2, the volume X(l)

F E keeps the original
size of 24 × 24 × 64, and then the average pooling obtains a



HAUT et al.: REMOTE SENSING IMAGE SR USING DEEP RESIDUAL CHANNEL ATTENTION 9283

Fig. 4. Examples of the land-use classes present in the UC Merced remote sensing image collection: (a) agricultural, (b) airplane, (c) baseball diamond,
(d) beach, (e) buildings, (f) chaparral, (g) dense residential, (h) forest, (i) freeway, (j) golf course, (k) harbor, (l) intersection, (m) medium residential,
(n) mobile-home-park, (o) overpass, (p) parking lot, (q) river, (r) runway, (s) sparse residential, (t) storage tanks, and (u) tennis court.

spectral vector of size 1 × 1 × 64, which is processed by C(l)
3

and C(l)
4 to obtain the channel descriptor d ∈ R

1×1×64. The
multiplication of the volume X(l)

F E by the channel descriptor d
gives as a result the feature volume X(l)

C A ∈ R
24×24×64,

recovering the original spatial dimensions. This process is
repeated by each block B(ll)

l . At the end, the size of the input
and output volumes of the network’s body is kept constant
until reaching the upscaling layer Ui∗, which scales the spatial
dimensions of the feature volume depending on a scale factor.
For instance, if the scale factor is 2×, the obtained volume
will be of size 48 × 48 × 64. Finally, the last convolutional
layer C(3) reduces the spectral dimension to 3 channels, giving
as a result the output volume Y� ∈ R

48×48×3.
In addition, the proposed network is trained to minimize the

error between the desired HR image, Y, and the obtained one,
Y�, as follows:

E = |Y − Y�|. (8)

The ADAM optimizer [67] has been adopted to minimize (8),
using 100 epochs with a learning rate lr = 2e−4 and a learning
decay of 10.

In Section IV, a set of experiments has been conducted
to evaluate the performance of the proposed network in SR
problems involving remotely sensed imagery collected from
spaceborne and airborne instruments.

IV. EXPERIMENTAL RESULTS

A. Data Sets

The experimental part of this work has been conducted
using two different remote sensing image collections as
follows.

1) UC Merced [68]: This data set is one of the most popular
image collections within the remote sensing community.
It contains a total of 2100 images of the surface of the
earth, which are uniformly distributed in 21 different
land-use classes [see Fig. 4: (a) agricultural, (b) airplane,
(c) baseball diamond, (d) beach, (e) buildings,
(f) chaparral, (g) dense residential, (h) forest, (i) freeway,
(j) golf course, (k) harbor, (l) intersection, (m) medium
residential, (n) mobile-home-park, (o) overpass,
(p) parking lot, (q) river, (r) runway, (s) sparse
residential, (t) storage tanks, and (u) tennis court].
In particular, these images were originally downloaded
from the United States Geological Survey (USGS)
National Map of different US regions, and they consist
of aerial RGB orthoimagery with a size of 256 ×
256 pixels and spatial resolution of one foot per pixel.

2) GaoFen-2 [34]: This data set consists of two different
remotely sensed multi-spectral data products acquired
by the GaoFen-2 satellite over a region in China.
Specifically, both scenes have nominal spatial resolution
of 3.2 m/pixel and only the RGB channels from the
visible spectrum have been considered for the
experiments. These data have been provided in [34]
and will be used for qualitative assessment purposes.

B. Experimental Settings

In order to test the performance of the proposed remote
sensing SR model, two kinds of experiments have been
conducted on the UC Merced and GaoFen-2 data sets,
using the following supervised single-image SR meth-
ods available in the literature: SC [26], SR convolutional
neural network (SRCNN) [31], fast SR convolutional neural
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TABLE II

PSNR (dB) AND SSIM ASSESSMENT FOR THE CONSIDERED SR METHODS (IN COLUMNS) USING THREE DIFFERENT SCALING FACTORS (IN ROWS)

network (FSRCNN) [32], CNN-7 [34], LGCNet [34], and deep
compendium model (DCM) [35]. It should be also mentioned
that the BC interpolation algorithm is provided as the baseline
result.

On the one hand, the UC Merced collection has been used
to train and test the proposed network, taking into account the
high variety of classes and samples present in this data set.
Specifically, the UC Merced data collection has been randomly
split into two balanced halves to generate equitable training
and test partitions with 1050 samples each. In addition, 20% of
the available training data (i.e., 10 images per class) is used for
validation purposes to set the hyperparameters of the proposed
approach and the other tested SR methods. Regarding the
experimental protocol of the testing phase, the original UC
Merced HR images have been downsampled according to
three different scaling factors: 2×, 3× and 4×, using the
BC interpolation kernel to generate the corresponding LR
counterparts. Moreover, five different Monte Carlo runs have
been conducted for each test image, which makes a total of
9450 runs per SR method.

On the other hand, the GaoFen-2 data set has been employed
to validate the generalization ability of the proposed approach
when considering a completely external test image collection.
In particular, the 3× and 4× scaling factors used for UC
Merced training have been adopted to superresolve the two
additional GaoFen-2 data products, with the ultimate goal
of assessing the performance of SR methods in the task of
transferring the knowledge learned from the UC Merced data
set to a different remote sensing image collection.

Regarding the assessment protocol, two different full-
reference image metrics have been used to quantitatively
evaluate the obtained SR results: the peak signal-to-noise ratio
(PSNR) [69] and the structural similarity index (SSIM) [70].
Finally, the hardware and software environments used for the
experiments are made up of the following components: an
Intel Core i7-6700K processor, a graphics processing unit
NVIDIA GeForce GTX 1080, 40 GB of DDR4 RAM, a 2
TB Toshiba DT01ACA HDD, an ASUS Z170 motherboard,
Ubuntu 18.04.1 × 64 as operating system, and Pytorch
0.4.1 with CUDA 9.

C. Results

Table II presents the PSNR (dB) and SSIM quantitative
assessment for the SR experiments carried out over the test
set of the UC Merced collection. In particular, the considered
scaling factors are presented in rows, whereas different SR
methods and metrics are provided in columns. In addition,
Table III details the average PSNR (dB) metric results per
class, when considering a 3× upscaling factor. We emphasize
that each table contains the average values after five Monte

TABLE III

CLASS-BASED UC MERCED QUANTITATIVE SR ASSESSMENT
CONSIDERING A 3× SCALING FACTOR

Fig. 5. Qualitative assessment of the UC Merced airplane test image
considering a 3× scaling factor.

Carlo runs of the corresponding SR methods, and the best
metric results are highlighted using a bold font.

For qualitative purposes, Figs. 5 and 6 display the corre-
sponding superresolved outputs of the considered SR methods
when considering two test images of the UC Merced airplane
and road classes, and 3× and 4× scaling factors, respectively.
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Fig. 6. Qualitative assessment of the UC Merced road test image considering
a 4× scaling factor.

In addition, Figs. 7 and 8 show the output results when
superresolving the GaoFen-2 airport and factory test images,
respectively, using the UC Merced training information for the
3× and 4× scaling factors.

D. Discussion

According to the quantitative results reported
in Tables II and III, there are some relevant points that
need to be emphasized. The first important aspect concerns
the impact of the scaling factor on the final performance of
the tested SR methods. In this sense, Table II reveals that
both PSNR and SSIM metrics decrease when considering
higher scaling factors. This is because the amount of available
visual information logically diminishes with the LR input
image size. However, it is also possible to observe that the
proposed approach provides quantitative improvements with
respect to the other considered methods. When considering
the PSNR metric, the proposed architecture achieves the
best average result, which is substantially higher than the
one obtained by any other SR method. More specifically,
the gains obtained by the proposed method with regards to
the other ones in terms of average PSNR are as follows:
+0.71dB (DCM), +0.91dB (LGCNet), +1.10dB (FSRCNN),
+1.16dB (CNN-7), +1.41dB (SRCNN), +1.66dB (SC), and
+2.88dB when compared to the BC interpolation baseline.
In the case of the SSIM metric, the proposed approach also
outperforms, on average, DCM (+0.010 units), LGCNet
(+0.023), FSRCNN (+0.029), CNN-7 (+0.030), SRCNN
(+0.037), SC (+0.041), and the BC interpolation (+0.079).

This initial quantitative comparison shows that the most
recent deep learning SR methods in the literature (DCM,
LGCNet, and FSRCNN) provide the best results for all
the considered scaling factors. Nonetheless, the proposed
approach is able to obtain superior average PSNR and SSIM
results, especially when considering the highest scaling fac-
tors, i.e., 3× and 4×. Note that the remote sensing SR problem
becomes particularly challenging as the scaling ratio increases
because less visual information is available for the SR process
itself. In this context, the novel attention mechanism integrated
within our newly presented architecture allows the proposed
approach to exploit better those LR image regions that require
more computations to effectively introduce additional HR
spatial details, and which cannot be easily recovered from
a global deep learning SR perspective (in which all image
features are equally relevant).

Another important point is related to the consistency of
the proposed approach regarding the obtained quantitative
results per class (Table III). As it is possible to observe,
the proposed remote sensing SR architecture obtains the best
PSNR results in 15 of the 21 UC Merced categories when
considering a 3× scaling factor, which certainly indicates that
our approach exhibits a great potential to manage a broader
range of remotely sensed imagery. Despite the fact that other
recent deep learning models, such as DCM and LGCNet, also
exhibit a good overall SR performance, the PSNR results per
class reported in Table III reveal that our method is particularly
effective when dealing with classes that contain spatially
detailed structures mixed with relatively invariant land-cover
surfaces, which is a typical scenario in remotely sensed
images. The PSNR performance improvements obtained in
some classes, such as harbor, mobile-home-park or parking lot,
indicate that the implemented attention mechanism is able to
effectively focus the network computations toward the image
components that require most of the HR details, for example,
boats, houses, or cars, providing competitive advantages (from
a remote sensing standpoint) with regard to other SR methods.

The effectiveness of the proposed approach is also supported
by the qualitative results displayed in Figs. 5–8. Specifically,
Figs. 5 and 6 show the superresolved output of two UC Merced
test images, i.e., airplane and road, considering two different
scaling factors, i.e. 3× and 4×, respectively. As shown in
visual results, each specific SR model encourages a particular
kind of feature on the superresolved output. Whereas, SC
and SRCNN methods appear to very sensitive to aliasing
and moire effects, because they are unable to distinguish
between the relevant high-frequency image components and
the upscaling noise, the most recent deep learning approaches,
i.e., FSRCNN, CNN-7, LGCNet, DCM, and the proposed
approach can effectively attenuate these undesirable anom-
alies. This is because these methods use deeper architectures,
which allows them to recover more precise HR image pat-
terns. A clear example of this is shown in the airplane wing
in Fig. 5, where BC, SC, and SRCNN introduce a significant
aliasing effect, while the other methods are able to generate a
superresolved result with higher quality.

Despite the fact that FSRCNN, CNN-7, LGCNet, and DCM
are generally able to provide satisfactory SR performance, it is
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Fig. 7. Qualitative assessment of the GaoFen-2 airport test image considering a 3× scaling factor.

Fig. 8. Qualitative assessment of the GaoFen-2 factory test image considering a 4× scaling factor.

Fig. 9. Average PSNR evolution (per epoch) for the UC Merced validation set when considering 2× (left), 3× (center), and 4× (right) scaling factors.

possible to appreciate some important advantages of the pro-
posed architecture in the task of superresolving remote sensing
data by analyzing the visual results in more detail. Specifically,
according to Fig. 6, the proposed approach certainly provides
the sharpest edges and the most similar output with regards to
the corresponding groundtruth HR counterpart. In fact, there
is a main factor that differentiates the result obtained by the
proposed approach result from the other results: the image
blur, and also the noise reduction. As it is possible to observe
in Fig. 5, the proposed method is the most effective one when
reducing the noise present in the airplane wing. In addition,
Fig. 6 shows that the proposed approach is able to produce
the clearest road lines and the most homogeneous concrete
surface. In addition to all these observations, the qualitative SR
results presented in Figs. 7 and 8 also suggest the robustness
of the proposed approach in the task of transferring the knowl-
edge acquired from the UC Merced collection to the GaoFen-2
data set, in spite of the existing spatial resolution differences.
More specifically, it is possible to see that the proposed method
is able to reduce blur and ringing artifacts, eventually leading
to a better visual quality in the superresolved output.

At this point, it is important to emphasize that the most
recent deep learning-based SR methods, i.e., [33]–[35], aim
to enhance remotely sensed optical data by using deeper
architectures, which allows them to uncover more repre-
sentative convolutional features and introduce additional HR
components in the superresolved result. Nonetheless, these

architectures often become very difficult to train because of
their large number of hidden layers and parameters, which
eventually leads to a poor propagation of activations and
gradients in the back-propagation process, i.e., the so-called
vanishing gradient problem [37]. Precisely, these undesirable
effects, together with the special complexity of remotely
sensed imagery, generate a degradation of the convolutional
features that may introduce blur and noise artifacts in the final
result. The proposed remote sensing SR approach mitigates
these problems by implementing a novel attention mechanism
over a residual block architecture, which allows the network
to focus on those image components that require more com-
putations to be superresolved. Note that this aspect takes on
special importance when dealing with remote sensing data
because earth surface acquisitions are rather complex aerial
captures in which different image regions typically demand
different processing levels. A clear example of this fact can be
observed in Fig. 6, where the concrete surface does not require
substantial changes (unlike the road lines, which need to be
completely recovered at a 4× scale). In this sense, the pro-
posed approach intelligently discards the low-frequency image
components through the network in order to focus on the
most spatially relevant earth surface areas and, consequently,
improve the network convergence. Specifically, Fig. 9 shows
the average PSNR evolution per epoch for the UC Merced
validation set, in order to illustrate the fast and consistent
convergence of our newly proposed architecture. As it is
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possible to observe, the network is able to converge after
30 epochs for the three considered scaling factors, i.e., 2×,
3× and 4×. Accordingly, the improvements introduced by
the proposed approach lead to higher remote sensing SR
performance when compared to other state-of-the-art methods.

V. CONCLUSION

This paper presents a new single-image SR approach that
has been especially designed for dealing with the particular
complexity of remotely sensed imagery. Specifically,
the proposed deep learning architecture incorporates a new
attention mechanism into a residual-based network design.
Such mechanism allows our method to focus the SR process
on those earth surface components that require more compu-
tations to be superresolved. In this way, the less informative
low-frequency features (that is, visual characteristics extracted
from spatially irrelevant Earth surface areas) are intelligently
discarded by means of four different levels of skip connections.
Consequently, the performance of the proposed SR approach
improves significantly, since the network convergence is
driven by the most relevant high-frequency information. Our
experiments, conducted using the UC Merced and GaoFen-2
remote sensing image collections, three scaling factors, and
eight different single-image SR methods, reveal that the
proposed approach offers the state-of-the-art performance
when superresolving remotely sensed optical data.

One of the most important conclusions that arises from
this paper is the importance of adopting an effective attention
mechanism within the network design when superresolving
airborne and space-borne optical data with deep learning
models. Whereas, the current trends in CNN-based SR of
remotely sensed data, see [34], [35], do not identify the most
important convolutional features from the input acquisition
instrument, the qualitative and quantitative SR results
obtained by our newly proposed approach reveal that guiding
the network training process toward the most informative high-
frequency features leads to very competitive performance
with respect to other state-of-the-art remote sensing SR
models. Despite the fact that the proposed approach exhibits
remarkable potential, our future work will be directed toward
the following improvements: 1) adapting the proposed
architecture to the unsupervised self-learning SR paradigm;
2) extending the model cost function to simultaneously assess
multiple image quality metrics; and 3) expanding the network
formulation to intersensor tandem platforms.
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