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Abstract— The large amount of data produced by satellites
and airborne remote sensing instruments has posed important
challenges to efficient and scalable processing of remotely sensed
data in the context of various applications. In this paper,
we propose a new big data framework for processing massive
amounts of remote sensing images on cloud computing platforms.
In addition to taking advantage of the parallel processing abilities
of cloud computing to cope with large-scale remote sensing data,
this framework incorporates task scheduling strategy to further
exploit the parallelism during the distributed processing stage.
Using a computation- and data-intensive pan-sharpening method
as a study case, the proposed approach starts by profiling a
remote sensing application and characterizing it into a directed
acyclic graph (DAG). With the obtained DAG representing
the application, we further develop an optimization framework
that incorporates the distributed computing mechanism and
task scheduling strategy to minimize the total execution time.
By determining an optimized solution of task partitioning and
task assignments, high utilization of cloud computing resources
and accordingly a significant speedup can be achieved for remote
sensing data processing. Experimental results demonstrate that
the proposed framework achieves promising results in terms
of execution time as compared with the traditional (serial)
processing approach. Our results also show that the proposed
approach is scalable with regard to the increasing scale of remote
sensing data.
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I. INTRODUCTION

THE amount of data available from remote sensing systems
is increasing at an extremely fast pace due to recent

advances in modern earth observation technologies [1]–[3].
The tremendous amount of remotely sensed data has posed
serious challenges for efficient and scalable processing of
remotely sensed data in the context of various applications.
Considering the high volume and fast generation velocity of
remotely sensed data, the processing of such data can be
naturally regarded as a big data problem [4], [5].

Cloud computing offers the capability to tackle big data
processing by means of its distributed computing mechanism.
The use of cloud computing for the analysis of large-scale
remote sensing data repositories represents a natural solution,
as well as an evolution of previously developed techniques.
With the continuously increasing demand for massive data
processing in remote sensing applications, there have been
several efforts in the literature oriented toward exploiting cloud
computing infrastructure for processing remote sensing big
data [6]–[10]. For example, Wu et al. [8] proposed a parallel
and distributed implementation of the principal component
analysis algorithm for hyperspectral dimensionality reduction.
Based on the MapReduce parallel model [11], this imple-
mentation utilizes Hadoop’s distributed file system (HDFS) to
realize distributed storage and uses Apache Spark to perform
parallel computing of hyperspectral data. Quirita et al. [9]
proposed a new distributed architecture for supervised clas-
sification of large volumes of earth observation data. This
architecture supports distributed execution, network commu-
nication, and fault tolerance to the user. However, the existing
cloud computing solutions are mainly developed toward solv-
ing big data problems in a specific category of remote sensing
applications.

In addition to the parallel and distributed computing mech-
anism, a majority of existing cloud computing platforms rely
on task scheduling strategies to further exploit the paral-
lelism in workflow processing and to promote the utilization
of cloud computing resources [12]–[14]. Similar to other
general-purpose applications, a remote sensing application
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can be divided into a set of subtasks that allow for the
distribution of the application’s data processing workloads
across multiple computing resources [15], [16]. In general,
there are certain dependencies among the tasks belonging
to a specific application, which impose an order of prece-
dence on their execution [16]–[18]. For instance, in remote
sensing image classification applications, the training of the
classification model is required to be completed prior to the
classification of a testing data set [9], [19]. Similarly, in many
remote sensing image superresolution and pan-sharpening
applications, the procedure of image reconstruction cannot
start execution until the necessary preprocessing procedure has
been finished [20], [21]. When processing a remote sensing
application in cloud computing environments, a crucial step
referred to as scheduling [22], [23] is to determine an appro-
priate assignment of tasks onto computing resources and the
order of their execution. The quality of scheduling solution
fundamentally determines the application’s parallelism and
eventually the efficiency of big data processing on clouds.

In this paper, we propose a novel big data processing frame-
work for massive remote sensing image processing that makes
use of cloud computing technologies. This framework not only
takes advantage of the parallel processing abilities of cloud
computing to cope with large-scale remote sensing data but
also incorporates the task scheduling strategy to further exploit
the parallelism during the distributed computing stage. The
proposed framework starts by profiling the remote sensing data
processing application and characterizing the application as a
directed acyclic graph (DAG). With the obtained DAG repre-
senting the application, we develop an optimization framework
that incorporates the distributed computing mechanism and
task scheduling strategy to minimize the total execution time.
A distinguishing property of the proposed framework is that
we take into account task divisibility during the scheduling
procedure. The decision variables of the optimization problem
include not only task assignments but also the number of
data partitions for each task that can be partitioned and
processed in parallel on Spark (i.e., the required number
of computing resources assigned for executing it). The for-
mulated scheduling model is, therefore, complicated and in
the requirement of an efficient scheduling algorithm. For
this reason, we propose a metaheuristic scheduling strategy
based on a quantum-inspired evolutionary algorithm (QEA)
to solve the scheduling problem. By solving this optimization
problem, high utilization of cloud computing resources and,
therefore, a significant speedup can be achieved for processing
of remote sensing big data. It is worth mentioning several
existing distributed processing approaches [24], [25] that also
make use of the parallelism information provided by DAGs.
These approaches use an effective strategy to exploit task and
data parallelism, in which a task can start executing once its
predecessor tasks are completed. Built upon a more compli-
cated optimization model, our framework can be expected to
explore a more efficient solution of distributed processing.
We use a pan-sharpening method based on deep neural net-
works (DNNs) as a study case to demonstrate the efficiency,
scalability, as well as the superiority of our proposed big data
processing framework.

Specifically, the technical contributions of this paper can be
summarized as follows.

1) This paper provides a scheduling-enabled cloud com-
puting solution to the efficient processing of remote
sensing applications in which the workflows can be well
represented by DAGs.

2) It develops an optimization framework that searches
for an optimal distributed processing solution, includ-
ing the numbers of partitions for partitionable tasks
and the assignments of workers executing all tasks,
under the constraint of limited computing resources.

3) It further develops a cost-effective, QEA-based
metaheuristic scheduling algorithm to solve the
above-mentioned optimization problem and obtain the
optimized distributed processing solution.

4) Experimental results demonstrate that the proposed
framework achieves promising results in terms of exe-
cution time and speedups as compared with the serial
processing approach and is scalable to the increasing
scale of remotely sensed data sets.

The remainder of this paper is organized as follows.
Section II discusses the processing flow of a typical
pan-sharpening method, which is used as the testcase in this
paper. Section III introduces the distributed mechanism and
task scheduling strategy in cloud computing and then details
the proposed optimization framework. Experimental results
on a private cloud environment are presented in Section IV.
Section V discusses potential strategies to extend the proposed
framework to cope with public and/or commercial clouds.
Finally, Section VI concludes this paper with some remarks.

II. SERIAL FLOW OF A PAN-SHARPENING METHOD

USING DEEP NEURAL NETWORKS

Multispectral pansharpening is a postprocessing method that
is widely used in remote sensing data processing to produce
a high spatial resolution image by fusing the information of a
set of panchromatic images [26]. This section briefly describes
the fundamental process of a pan-sharpening method using
DNNs [20]. We show that the processing flow of this method
involves not only expensive computational cost but also strong
dependencies among the subtasks.

DNN has a significant representational power for complex
image structures and has demonstrated superior performance
in the field of image processing [27]–[29]. The DNN-based
method in [20] aims to reconstruct high-resolution (HR) mul-
tispectral images with high spatial resolution and small spec-
tral distortions. It mainly consists of three operations: patch
extraction for generating a training set, DNN training, and
image reconstruction. Fig. 1 presents the complete flowchart
of the fusion process based on DNN training.

The inputs include an HR panchromatic image and a
low-resolution (LR) multispectral image. We performed inter-
polation amplification on the LR multispectral image and fur-
ther compute the weighted average of all bands of the ampli-
fied LR multispectral image to generate an LR panchromatic
image. At the training stage, we use a small convolution matrix
to randomly sample a sufficiently large number of HR image
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Fig. 1. Flowchart of the DNN-based pan-sharpening method in [20].

patches and LR image patches from the HR panchromatic
image and the LR panchromatic image generated from the
LR multispectral image, respectively. We select a subset of
the randomly generated image patches for DNN training. The
selected HR image patches and LR image patches together
form the training set, based upon which the DNN model can
be trained.

At the reconstruction stage, each band of the LR multispec-
tral image is divided into LR multispectral image patches {y j

k }
with overlapping, where k represents the kth band, and j
stands for the j th image patch. The HR multispectral image
patches {x j

k } are obtained by feedforwarding the test LR
multispectral image patch y j

k using the trained DNN. Finally,
the sharpened multispectral image is reconstructed by the
overlapping image patches in all individual bands.

The feedforward procedure for obtaining the HR multi-
spectral image is as follows. Let {xi

p}Ni=1 and {yi
p}Ni=1 denote

the HR and LR image patches in the training set, where N
denotes the number of image patches used for training. The
feedforward functions consist of an encoder and a decoder
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where s(x) = (1 + exp(−x))−1 is the sigmoid activation
function, W and b are the encoding weights and biases,
W ′ and b′ are the decoding weights and biases, h(yi

p) is the
hidden layer’s activation, and x(yi

p) is the reconstruction of
the input. Once the DNN has been trained, for each LR multi-
spectral image patch y j

k , the trained DNN can reconstruct the
corresponding HR multispectral image patch x j

k . Specifically,
if we use y j

k as the input to the trained DNN, the sharpened
HR multispectral image patch x j

k can be obtained according
to the feedforward functions in (1) and (2).

By observing the fusion process in Fig. 1, we note that the
training and tuning of DNN would inevitably lead to a high

computational complexity [30], [31]. The serial processing of
large-scale remote sensing data would be computationally
intractable on a single machine, due to insufficient mem-
ory. In fact, when processing a 24.3-MB HR panchromatic
image and a 6.1-MB LR multispectral image by using the
DNN-based pan-sharpening method, the fusion process would
generate about 1.8 GB of training data and up to 5.7 GB
of image patches in the reconstruction stage. Therefore, it is
highly required to process such remote sensing big data
through parallel and distributed computing. More importantly,
the subtasks of the fusion process exhibit strong dependencies
among each other. These dependencies would exert constraints
on the execution order of the tasks when assigning the tasks
onto computing resources. Therefore, it is also important to
determine an optimal assignment of these subtasks on cloud
computing resources to achieve better efficiency. These two
observations reveal the importance of our proposed framework
that integrates distributed computing and task scheduling.

III. PROPOSED OPTIMIZATION FRAMEWORK

Motivated by the conclusions drawn in Section II, this
section introduces a new distributed mechanism and task
scheduling concept for cloud computing architectures and
further details our proposed optimization framework for accel-
erating remote sensing data processing. The main strategies
used in the optimization framework are described as follows.

1) By employing the MapReduce mechanism, when execut-
ing certain subtasks of a specific application, the original
data set can be divided into a set of partitions to facil-
itate the parallel and distributed processing. Under the
constraint of a limited number of computing resources,
an appropriate MapReduce solution would be beneficial
for reducing the duration time of computation-intensive
operations and therefore the total execution time.

2) As discussed previously, there are, in general, prece-
dence relationships among operations that restrict the
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Fig. 2. Overview of the proposed optimization framework.

order of their execution. Task scheduling aims at deter-
mining the optimal assignment of application tasks on
computing resources. A high-quality scheduling solution
is beneficial for maximizing the utilization of computing
resources and minimizing the application’s makespan.

With the above-mentioned optimization strategies in mind,
Fig. 2 illustrates the overview of the proposed optimization
framework built upon Apache Spark [32]. For a specific
remote sensing application that can be profiled as a DAG,
this framework provides an optimized solution for processing
remote sensing big data in cloud computing environments.
With the profiled DAG and a limited number of computing
resources, this framework is able to obtain the optimal distrib-
uted processing solution considering both MapReduce and task
scheduling strategies, by solving a formulated optimization
problem. Guided by the obtained solution, the Spark platform
assigns the tasks to cloud computing resources for distributed
processing in an optimal manner.

In this paper, we use Apache Spark instead of Hadoop
to implement distributed computing, in order to take full
advantage of the high-performance in-memory computing
engine provided by Apache Spark. A variety of remote
sensing algorithms involve data-intensive and/or computation-
intensive operations, which are in need of efficient

in-memory computations. Different from Apache Hadoop,
which only supports simple one-pass computations
(e.g., aggregation or database queries), Apache Spark
is generally more appropriate for multipass algorithms.
By implementing a fault-tolerant abstraction for in-memory
cluster computing, Spark provides fast and general data
processing on large clusters. It not only supports simple
one-pass computations but also can be extended to the
case of multipass algorithms that are commonly required
for more complex data analytics. Spark extends the
MapReduce model to include primitives for data sharing,
named resilient distributed data sets (RDDs) and offers an
application programming interface based on coarse-grained
transformations that allow them to recover data efficiently
using lineage. In addition, Apache Spark has an advanced
execution engine that supports cyclic data flow and in-memory
computing and, therefore, can run programs up to 100× faster
than Hadoop MapReduce in memory or 10× faster on disk.

A. Accelerating Data Processing by Distributed Computing

Apache Spark is an advanced computing platform for
large-scale data processing, which implements a fault-tolerant
abstraction for in-memory cluster computing, and provides fast
and general data processing on large clusters. Spark extends
the MapReduce model to include primitives for data sharing,
named RDDs. To implement distributed processing on Spark,
the user needs to write a driver program that defines one or
more RDDs, invokes actions on them, and tracks the lineage
of RDDs. The driver program is usually connected to a cluster
of workers, which are long-lived processes that can store RDD
partitions in random access memory across operations [33].

Referring to the fusion processing of the DNN-based pan-
sharpening method in Fig. 1, for certain operations, e.g., DNN
training and DNN parameter tuning, the original data set can
be partitioned to facilitate distributed processing. On Spark
platform, we store the original remote sensing data sets on
HDFS in a distributed and flexible way. Since the original
data sets are divided into many spatial-domain partitions,
we read every partition of the data on HDFS as a key-value
pair in which the key is the offset of this partition in the
original data set, and the value is the corresponding data
partition. When performing the pan-sharpening procedure,
we use TensorFlowOnSpark [34], a Spark implementation of
an open-source software library for machine learning across
a range of tasks, to train the DNN. The TensorFlowOnSpark
implementation classifies the computation jobs into a parame-
ter server (PS) job and a number of worker jobs. The PS job is
responsible for storing and updating the model’s parameters.
The worker jobs are responsible for optimizing the parameters
and updating the parameters to the PS job.

Fig. 3 provides an illustrative explanation of how data
partitions are mapped onto designated computing resources,
as well as how the distributed computing outcomes are reduced
to produce the required results. When performing the training
procedure, we first load the data partitions of HR and LR
panchromatic images from HDFS. A “map” operation is
required to convert the loaded data partitions into RDD format.
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Fig. 3. Partitioning of remote sensing image for distributed processing of
the DNN-based fusion method.

The data partitions after conversion, denoted by XpanRDD
and YpanRDD, can be then processed in parallel on Spark.
We further use a “zip” operation to merge the obtained RDDs,
in order to generate the training data set trainRDD. Guided by
the tuned training parameters, all worker nodes take actions to
establish the training model simultaneously in a parallel way.
At the reconstruction stage, the RDD partitions of LR multi-
spectral image YmsRDD are generated in the same manner by
performing the “map” operation. Then, relying on the trained
DNN, the HR multispectral image can be reconstructed by
fusing the data sets stored in YmsRDD partitions. Each worker
node is responsible for sending the updated weights to the
PS node after each iteration of computation. The PS node is
in charge of averaging the weights received from all worker
nodes and broadcasting the averaged weight to all workers for
the next iteration of weight calculation.

The distributed processing of data partitions has the capabil-
ity to accelerate the processing of large-scale remote sensing
data. However, it is worth emphasizing the tradeoff between
computational efficiency and the time overhead introduced by
distributed computing. The increasing number of workers may
induce a substantial amount of time overhead, including the
following: 1) the time cost spent in creating and initializing
MapReduce jobs; 2) the time elapsed during the job synchro-
nization process; and 3) the time cost for data transmission
and information exchange (e.g., the weight parameters of the
DNN model). Taking into account the above-mentioned time
overhead introduced by the MapReduce mechanism inherently,
the speedup achieved by distributed computing does not grow
linearly with the increasing number of distributed computing
resources. Fig. 4 shows the speedup of execution time achieved
by performing the DNN training process on TensorFlowOn-
Spark, with regard to the number of workers for different sizes
of training data. We assume a single PS node and observe

Fig. 4. Speedup achieved by distributed processing of DNN training process
on Spark.

the speedup achieved with different numbers of worker nodes.
For different sizes of training data, the speedup exhibits
approximately a linear increase if the number of workers is
below eight. However, if we keep on increasing the number of
workers, the communication overhead becomes comparable to
the execution time, leading to a less significant improvement of
speedup. For example, the speedup is compromised to 9.39×
for a data set of size 156 MB. As a result, in the proposed
optimization framework, it would be of great importance to
determine an optimal number of partitions that a particular task
can be divided into, and accordingly the number of workers
required for executing this task.

B. Exploiting Parallelism by Task Scheduling

This section introduces the concept of task scheduling
in distributed processing of a remote sensing application.
A scheduling model consists of an application, a target com-
puting environment, and evaluation criteria for scheduling.
In general, an application is fundamentally composed of sets
of tasks, e.g., the fusion process of the DNN-based pan-
sharpening method in Fig. 1. Tasks within a particular flow
may have dependencies among them, while tasks from dif-
ferent flows tend to have very few or no dependencies among
them. In this manner, an application is usually represented by a
DAG, denoted by G = (V , E), where V = {v1, v2, . . . , vn} is
a set of tasks to be executed, and E = {(i, j)} is a set of edges
between the tasks. Each edge (i, j) ∈ E specifies a precedence
constraint on two connected tasks: task vi must be completed
before v j can start. In addition, each task is associated with
a weight value Di representing the duration time of task vi .
Fig. 5 provides a simple example of a task graph.

Let Si and Sj denote the starting times for vi and v j ,
respectively. The precedence relationship exerts the following
set of constraints:

Si + Di ≤ Sj , ∀(i, j) ∈ E (3)

where Di stands for the actual execution time of task vi on a
computing resource, in terms of the number of time slots. It is
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Fig. 5. Task graph representing a task flow.

worthwhile to mention that depending on the partitioning of
original remote sensing data set, Di is a varying value rather
than a fixed value in the scheduling model.

The scheduling problem is fundamental to determine the
mapping function that maps each task to a computing resource
for minimizing the scheduling goal. A schedule of a DAG on
available computing resources can be illustrated as a Gantt
chart that consists of a list of all computing resources, and
for each computing resource, a list of assigned tasks of which
the execution order is determined by task starting and ending
times [35]. In this paper, the scheduling goal is to minimize
the total completion time of a remote sensing application. This
performance measure is known as the makespan of application,
which is determined by the maximum ending time of any task.

We now discuss how to profile the processing flow of
a remote sensing application into a DAG representation. In a
DAG, a task without any parent is called an entry task and a
task without any child is called an exit task. In certain cases,
the scheduling problem requires single-entry and single-exit
DAGs. However, there might be more than one entry/exit tasks
on the DAG. For instance, the processing flow in Fig. 1 has two
entry tasks. To deal with this situation, the multiple entry tasks
are connected to a zero-weight pseudo entry/exit task, which
has no effect to the schedule [36]. In addition, when profiling
a remote sensing application, if there exist loops within the
processing flow, the entire loop should be considered as a
single task on the DAG. Moreover, the task weights associated
with the DAG have to be normalized.

Performance and efficiency are two characteristics used
to evaluate a scheduling strategy. We should evaluate a
scheduling system based on the quality of the produced task
assignment and the efficiency of the scheduling algorithm. The
produced schedule is judged based on the performance metric
to be optimized, while the scheduling algorithm is evaluated
based on its time complexity. As pointed out in the litera-
ture, the scheduling problem is known to be computationally
intractable in many cases [37].

C. Problem Formulation

Based upon the optimization strategies for improving the
efficiency of distributed computing, this section formulates the
considered problem as an optimization problem and provides

the formal optimization model. Assume that the capacity of
the resource pool is R, i.e., the number of available computing
resources. Given a remote sensing application represented by
a DAG, we define a binary variable epi to indicate a specific
precedence constraint. epi = 1 denotes that task v p is a
predecessor of task vi , and epi = 0 otherwise. We accordingly
define Pi = {p|epi = 1} as the predecessor set of task vi .

We first discuss the decision variables and constraints of
the optimization model. Let xit be an binary variable. xit = 1
denotes that task vi is in execution on time slot t , and xit = 0
otherwise. Accordingly, the starting time of the i th task Si is
given by

arg min {t|xit = 1}. (4)

Obviously, in order to satisfy the precedence relationships
between task vi and its predecessors, we have the following
set of constraints:

Si ≥ max {Sp + Dp} ∀p ∈ Pi (5)

where Si and Sp stand for the starting time of task i and
starting time of task v p , respectively, and Dp denotes the
duration time of task v p whose value is dependent on the
number of computing resources assigned for executing it. Note
that in the proposed scheduling model, for a task that can
be partitioned and processed in parallel by the MapReduce
mechanism, its duration time is a varying metric depending
on the number of partitions the original task is divided into,
or equivalently the required number of computing resources
assigned for executing this task. Therefore, not only the task
assignments but also the numbers of partitions for partitionable
tasks would have a direct impact on the total execution time
of a given application.

Combining (4) and (5) together, the precedence constraints
can be expressed as follows:

arg min {t|xit = 1} ≥ max {arg min {t|x pt = 1} + Dp}. (6)

Let cω be the makespan of the specified application, the con-
sidered problem can be formulated as the following integer
program (IP) (7)–(11):

min cω = max{Si + Di }
= max{arg min {t|xit = 1} + Di } (7)

s.t. arg min {t|xit = 1}
≥ max {arg min {t|x pt = 1} + Dp}, ∀p ∈ Pi (8)

xit ∈ {0, 1}, ri ∈ {1, 2, . . . ,mi } (9)
n∑

i=1

xit ri ≤ R (10)

variables xit , ri , i = 1, 2, . . . , n. (11)

In this model, (7) describes the optimization goal, which is
intended to minimize the total execution time of remote sens-
ing data processing. Equation (11) lists the decision variables
in the optimization model, including a set of variables xit

indicating the mapping relationships of tasks onto computing
resources, as well as a set of variables ri indicating the
number of data partitions for a specified task. The optimiza-
tion model also involves several constraints to formulate the
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scheduling framework. Equation (8) implies the execution
order of dependent tasks for satisfying precedence relation-
ships. Equation (9) forces that the mapping variables xit must
be binary, and ri must be integer variables. Equation (10) indi-
cates that the total number of computing resources occupied
for processing the application cannot exceed the capacity of
the resource pool.

We now revisit the dependence of task duration upon the
number of partitions for a specific task that can be partitioned
and processed in parallel on Spark. On the one hand, as indi-
cated in Fig. 4, the speedup in task execution time achieved by
distributed computing would be compromised as the number
of partitions increases for a data set of a particular size. On the
other hand, we observe from the experimental results that with
a fixed number of workers, task execution time is directly
proportional to the size of data set. For this reason, we use the
following fitting method to model task duration as a function
of data size as well as the number of workers:

Di = D(S#, ri ) ∀vi ∈ V and ri ≤ mi (12)

where S# denotes the size of data set, ri denotes the number
of data partitions for task vi (which is exactly the number of
workers that it requires), and mi denotes the upper bound limit
of ri , i.e., the maximum number of partitions that task vi can
be divided into. Obviously, mi = 1 implies that task vi cannot
be processed in parallel. Based upon this fitting model, task
duration time for a particular data set can be easily obtained
according to the number of assigned workers. In this manner,
we only need to measure task durations for a few number of
configurations and data sets. At the scheduling stage, we rely
on the fitting model to predict the durations of partitionable
tasks and to further evaluate the total execution time of the
target application.

For the pan-sharpening application studied in this paper,
task duration is modeled to have a linear dependence upon
data size (as will be verified in experimental results). Also,
according to the analysis in Section III-A, task duration is
inversely proportional to the number of workers. For appli-
cations in which the tasks are not well-behaved in terms
of execution times, a more complicated fitting function is
required to accurately model the dependence of task duration
upon data size and worker configuration. For tasks that have
certain stochastic components depending on the distribution
of input data, we need to either develop a stochastic model to
capture the variations of task processing times or employ an
uncertainty set to reduce the resultant stochastic optimization
problem to a deterministic one. However, these potential
solutions are in requirement of advanced uncertainty analysis
techniques and, therefore, are beyond the scope of this paper.
Moreover, the current framework can be easily adapted to
cope with applications in which the processing times can
be influenced by certain parameters, by rebuilding the fitting
model based on premeasured task durations.

We further discuss the practicability of this task duration
fitting model. On the one hand, for a particular application,
building a fitting model upon a small set of premeasured dura-
tion data is a one-time operation. For different data set sizes
and worker configurations, we can use the established fitting

model to predict task durations and eventually determine the
optimal scheduling solution. On the other hand, for different
applications, it may be necessary to rebuild the fitting model
based on measured task durations. Once the fitting model is
established, the duration of a partitionable task of any data
size with any number of workers can be predicted, and the
optimal solution that minimizes the total execution time can
be determined by the scheduling procedure.

The optimization problem formulated in (7)–(11) is fun-
damentally an IP, which is known to be NP-hard [38]. The
varying values of task durations in this distributed processing
framework, which are closely associated with the decision
variables ri s, differentiate the scheduling strategy from tradi-
tional schedulers. Assigning appropriate values of ri s accord-
ing to the computation loads of partitionable tasks is beneficial
for improving the efficiency of parallel processing. Scheduling
strategies that are popularly used in existing cloud com-
puting platforms [23], [39], e.g., round-robin and first come
first served, cannot solve this scheduling problem properly.
Therefore, this paper proposes using metaheuristic algorithms
to solve the optimization problem in (7)–(11). Metaheuristics
do not guarantee optimal solutions to the problem but attempt
to find near-optimal solutions alternatively. In Section III-D,
we develop a scheduling algorithm based on QEA to solve the
formulated IP.

D. QEA-Based Scheduling Algorithm

This section details an efficient QEA-based algorithm
for solving the optimization problem described in (7)–(11).
Similar to other existing evolutionary algorithms, e.g., genetic
algorithms [40], [41] and evolutionary programming [42], [43],
QEA is also characterized by the representation of individual
(i.e., a solution candidate in search space), the evaluation
function, and the population dynamics. The main advantage
of QEA is that the Q-bit representation in QEA has a better
characteristic of population diversity than the representations
in other evolutionary algorithms, eventually resulting in a
high-quality optimization solution.

1) Preliminaries of Quantum Computing: Before describing
the proposed QEA-based algorithm, we briefly introduced the
preliminaries of quantum computing. The smallest information
unit used in QEA is called a Q-bit, which may be in the
“1” state or in the “0” state, or in the linear superposition
of the two states. The state of a Q-bit can be represented as

|ψ〉 = α|0〉 + β|1〉 (13)

where α and β are two complex numbers. |α|2 and |β|2 denote
the probabilities of a Q-bit being the state of “0” and that
of “1,” and they satisfy |α|2 + |β|2 = 1. More explanations
are provided in [44].

A Q-bit individual consisting of m Q-bits can be expressed
as follows: (

α1 α2 …
αm

β1 β2 βm

)
(14)

where |α|2 + |β|2 = 1 holds for (i = 1, 2, . . . ,m). A Q-bit
individual can be converted to a binary string by collapsing
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each state into either the “0” state or the “1” with the
probabilities of |α|2 and |β|2, respectively. This collapsing
procedure is, in fact, used to convert a quantum state into
a single deterministic state [45], [46].

The state of a Q-bit can be changed by a quantum gate [44].
A quantum gate is a reversible gate and can be denoted as a
unitary operator U acting on the Q-bit states. The operator
U satisfies U+U = UU+ = I , where U+ is the Hermitian
adjoint of U . There are several kinds of quantum gates,
among which rotation gate is the one most commonly adopted
in QEAs, which can be represented as

U(�θ) =
[

cos(�θ) − sin(�θ)
sin(�θ) cos(�θ)

]
(15)

where �θ is the rotation angle. In terms of the rotation gate,
the parameters of a Q-bit can be updated by the following
rule:[

α′
β ′

]
= U(�θ)

[
α
β

]
=

[
cos(�θ) − sin(�θ)
sin(�θ) cos(�θ)

] [
α
β

]
. (16)

The value of �θ can be determined by a predetermined
lookup table [44], [47] or can be calculated in terms of the
normalized difference between the objective values of Q-bit
individuals [48].

2) Solution Representation, Initialization, and Rotation
Gate: In this paper, the scheduling solution can be represented
by a binary string of length m× k, where k is an integer with
the restriction 2(k−1) ≤ R ≤ 2k (R is the total number of
available computing resources). Note that by decoding each k
consecutive bits to a decimal number, this binary string can
be mapped to a decimal string of length m, representing the
mapping relationships between tasks and computing resources.
Let the i th k consecutive bits be mapped to a decimal
number qi . This means that the qi th resource is allocated to the
task i . It is worth emphasizing that qi may be greater than R,
in this scenario, the following mod operation is required:

qi ← (qi mod R). (17)

In this QEA-based algorithm, we use the initialization
method and the rotation gate in [44]. All Q-bits in a Q-bit
individual are initialized as (1/

√
2, 1/

√
2) under the assump-

tion that all Q-bits have identical probabilities to collapse to
“0” or “1.” In this paper, we use a predetermined lookup table
introduced in [44] to decide the value of rotation angle �θ ,
based on which a new Q-bit individual can be generated.

3) Solution Evaluation: Given a solution (i.e., a binary
string), after obtaining its corresponding decimal string,
we need to calculate its objective to evaluate the solution’s
quality. In this paper, we propose an evaluation method
to achieve this target. The evaluation starts with a task
sequence (ts) which is generated by arranging all tasks in
a nondescending order by their earliest starting times (EST).
In our considered problem, a task may have multiple dura-
tions corresponding to different the number of its allocated
resources. To solve this problem, we consider the shortest
one among each task’s all durations as its duration when we
calculate tasks’ ESTs. Obviously, all predecessors of a task
should be positioned in front of the task in “ts.” The evaluation

Algorithm 1 Solution Evaluation
Input: A solution ζ , and a task sequence ts
Output: The objective of the input solution cω(ζ )
1: Decode the input solution ζ to generate its corresponding

decimal string ζd ;
2: for l = 1 to n do
3: Get the l-th task from ts and get this obtained task’s

index i ;
4: Get the i -th decimal number in ζd and set it as qi ;
5: Calculate the maximal ending time of all predecessors

of the task i and set it as Si ;
6: if (mi = 1) then 
 for tasks that cannot be partitioned
7: From the time slot si , find the first available time of

the qi -th resource (denoted as t) while the qi -th resource
is available between the time slots from t to t + Di − 1;

8: Set eti ← t + Di − 1;
9: Set the qi -th resource to be unavailable at time slots

from t to t + Di − 1;
10: else 
 for partitionable tasks
11: Set eti ← M AX ; 
 a sufficiently large number
12: for j = 1 to mi do
13: Set ri ← j ;
14: Use the task duration fitting model to predict the

duration time Di ;
15: From the time slot si , find the first available time

of ri resources (denoted as t j ) while these ri resources are
all available between the time slots from t j to t j + Di − 1;

16: if (t j + Di − 1 < eti ) then
17: Set eti ← t j + Di − 1;
18: Add the indices of these allocated resource to

a set 	;
19: end if
20: end for
21: Set each resource with the index in 	 to be unavail-

able at time slots from t j to t j + Di − 1;
22: end if
23: end for
24: Calculate cω(ζ ) according to (7);
25: Return cω(ζ );

schedules each task i in ts one by one to determine their
starting times Si , ending times eti and the number of resources
allocated to them (ri ). To be specific, Si should not be earlier
than the maximal ending time of all its predecessors, i.e., to
satisfy precedence constraint (5). In order to minimize the
makespan, task durations for all possible number of workers
should be checked and the one with the minimal ending
time will be accepted. The procedure of solution evaluation
is described in Algorithm 1.

In what follows, we briefly discuss the computational com-
plexity of Algorithm 1. The complexity of the evaluation pro-
cedure cannot be determined explicitly, because it is difficult to
decide the complexities of Lines 7 and 14. Instead, we evaluate
the lower bound complexity. The lower bound complexities of
Lines 7 and 14 are O(Di ) and O(mi×Di ), respectively. When
the termination condition in Line 6 is met, both the lower
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Algorithm 2 QEA-Based Scheduling Algorithm
1: Use EST to generate a task sequence ts;
2: Initialize all Q-bit individuals in 
;
3: for each φ ∈ 
 do
4: Convert φ to its corresponding solution ζφ;
5: Evaluate ζφ by the evaluation procedure shown in Algo-

rithm 1;
6: end for
7: Set the best obtained solution as ζbest ;
8: while (termination criterion is not met) do
9: for each φ ∈ 
 do

10: Update φ by means of the rotation gate;
11: Convert φ to its corresponding solution ζφ;
12: Evaluate ζφ through the evaluation procedure given

in Algorithm 1;
13: if (ζφ is better than ζbest ) then
14: ζbest ← ζφ;
15: end if
16: end for
17: return ζbest ;
18: end while

bound complexities of Lines 7 and 14 are O(ri × Di ). As a
result, the lower bound complexity of the evaluation procedure
is determined as O(n × m × r × d), in which m = min {mi },
r = min {ri } and d = min {Di }, respectively.

4) Optimization Algorithm Description: In order to solve
the optimization problem in (7)–(11), we propose a new
QEA-based algorithm based on the classical QEA in [44].
This new QEA-based algorithm consists of a basic QEA
structure, the solution representation in Section III-D2 as well
as solution evaluation method in Algorithm 1 to evaluate all
the individuals. The description of the QEA-based scheduling
procedure is presented in Algorithm 2. To start with, we first
generate a ts according to the ESTs of all tasks, which will
be later used in solution evaluation procedures. We then use
the initialization method in [44] to initialize all the Q-bit indi-
viduals in 
. For each Q-bit individual φ, we convert it to its
corresponding solution and perform the evaluation procedure
in Algorithm 1 to evaluate the solution’s quality. The solution
with the highest quality is identified as ζbest. Next, as long
as the termination criterion in Line 6 is not met, we apply
the updating rule in (16) to update φ and further obtain its
corresponding solution ζφ . We use Algorithm 1 to evaluate
the quality of the obtained solution ζφ . If ζφ outperforms ζbest

with higher quality, we use ζφ to replace ζbest, i.e., the best
solution identified in the previous iteration. When this iterative
procedure terminates, ζbest is returned as the final solution to
the scheduling problem.

The computational efficiency of the scheduling procedure
is dependent on the complexity of the solution evaluation
procedure described in Algorithm 1. It is worth mentioning
that the proposed scheduling algorithm is performed in a static
way (i.e., before the application’s tasks have been submitted
to cloud for execution). The time spent in determining an
optimized scheduling solution is, in fact, negligible compared

TABLE I

SOFTWARE DESCRIPTION OF EXPERIMENTAL ENVIRONMENT

with the execution time for the complete pan-sharpening
flow. As will be demonstrated in experiments, for different
numbers of workers and data sizes, solving the formulated
scheduling problem by the QEA-based algorithm can be done
in seconds. In contrast, by employing all available workers,
the execution time for the pan-sharpening flow can range
from several hundred seconds to over one thousand seconds.
Also, the computation cost of the scheduling procedure is
not associated with the input data size, as long as the task
duration fitting model in (12) has been established relying on
a set of premeasure duration data. Therefore, the overhead of
the QEA-based algorithm has very little impact on the overall
computational efficiency of the proposed approach.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, the cloud computing platform used for exper-
imental evaluation is built on a Spark cluster consisting of
one master node and six slave nodes. The master node is
a virtual machine built on a host equipped with eight-core
Intel Xeon E500 CPUs with 242-GB memory operating at
2.5 GHz. The six slave nodes are virtual machines built
on three blade machines, each of which is equipped with
eight-core Intel Xeon E5-2680 CPUs with 242-GB memory
operating at 2.5 GHz. After virtualization using VMware
vSphere, the master node is allocated with 24 cores (logic
processors) and 242-GB memory, and each slave node is
allocated with 24 cores and 240-GB memory. During Apache
Spark execution, every slave node launches 20 TensorFlowOn-
Spark worker instances, and each worker is allocated with one
core and 12-GB memory. All nodes have installed Apache
Spark, Hadoop, and Ubuntu as the operating system. The
parallel version of the DNN-based pan-sharpening method
was implemented by Java and Scala hybrid programming.
Table I lists all software and their version numbers used in
experiments.

We use QuickBird satellite data to verify the accuracy
and computational efficiency by using the proposed optimiza-
tion framework to execute the DNN-based fusion process.
The QuickBird satellite provides a panchromatic image with
0.7-m resolution and a multispectral image with 2.8-m reso-
lution and four bands. The remote sensing data set used in
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Fig. 6. QuickBird images and experimental results by the DNN-based pan-sharpening method. (a) LR multispectral image. (b) HR panchromatic image. (c)
Fused image by the serial implementation of the DNN-based method. (d) Fused image by the proposed cloud computing framework. (e) Pseudocolor image
of the reference multispectral image.

experiments was captured over North Island, New Zealand,
in August 2012. The size of the HR panchromatic image
is 600 × 600 pixels, while the size of the LR multispectral
image is 150× 150× 4 pixels. We first perform interpolation
amplification on the LR multispectral image to obtain an LR
multispectral image with 600×600×4 pixels and further obtain
the average-weighted LR panchromatic image with 600×600
pixels. At the training stage, we used a 7×7 convolution matrix
to extract 352 836 pairs from the HR and LR panchromatic
images and randomly selected 200 000 pairs among them
as the training data for the DNN model. The size of the
training data is accordingly 156 MB, including HR panchro-
matic image patches of size 78.8 MB (200 000 × 49 pixels)
and LR panchromatic image patches of size 78.8 MB
(200 000 × 49 pixels), respectively. The selected pairs of
image patches are used as the input data to train the DNN.
As claimed previously, when performing the pan-sharpening
flow, the original data set is split into multiple partitions to
facilitate distributed processing.

B. Accuracy Evaluation

We first show visually the pan-sharpening results by
using the proposed distributed parallel implementation of
the DNN-based method. We perform the DNN-based pan-
sharpening process by using the proposed framework that
incorporates both MapReduce mechanism and scheduling
strategy to explore the optimal cloud computing solution.
We also implement the serial version of the DNN-based
method, in which all subtasks of the pan-sharpening process

are executed in serial on a single baseline machine.
Fig. 6(a) and (b) shows the HR multispectral image and LR
panchromatic image, respectively. Fig. 6(c) and (d) presents
the fused image by the serial version DNN-based method
and the proposed method, respectively. For comparison pur-
pose, the pseudocolor image of the reference multispectral
image is also provided in Fig. 6(e). We can observe that the
DNN-based method performs well in remote sensing image
fusion, both in the serial version and the distributed version.

To quantitatively evaluate the accuracy of image pan-
sharpening, we use root-mean-square error (RMSE) to mea-
sure the spectral similarity between the fused image and
the original image. A small RMSE value indicates that the
pixel values of the fused image are close to the original
image, demonstrating high fusion accuracy. The RMSE value
is calculated as follows:

RMSEk =
√√√√ 1

MN

M∑
i=1

N∑
j=1

(Xk(i, j)− Yk(i, j))2 (18)

where Xk and Yk stand for the kth band of reference image X
and kth band of fused image, respectively, and the image of
each band is of size M × N . We average the RMSE values of
all bands, RMSEAVG, to evaluate the image fusion quality. For
comparison, we perform the same experiments by using two
traditional pan-sharpening methods, á trous wavelet transform
(ATWT) [49] and SparseFI [50], to justify the accuracy of the
proposed method. Table II lists the RMSEAVG values achieved
by different pan-sharpening methods.
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TABLE II

COMPARISON OF PAN-SHARPENING ACCURACY AMONG DIFFERENT METHODS

Fig. 7. Execution time comparison between the proposed scheduling
algorithm and round-robin algorithm with different numbers of workers.

“PS_DNN_S” and “PS_DNN_P” denote the serial version
and the parallel version of the DNN-based fusion method,
respectively. When executing “PS_DNN_P” by using the pro-
posed big data processing framework, we gradually increase
the number of workers and observe that the RMSEAVG value
keeps stable as the number of workers grows. More impor-
tantly, compared with ATWT and SparseFI methods, the pro-
posed method leads to smaller RMSEAVG values, indicating a
higher image fusion quality.

C. Computational Efficiency Evaluation

Having verified the image fusion accuracy by distributed
processing of the pan-sharpening method, we further evaluate
the computational efficiency of the proposed optimization
framework. One key contribution of this paper is to improve
computational efficiency by making decisions on both task
partitioning and task assignments. We first verify that the
proposed scheduling approach outperforms traditional sched-
ulers by reducing the total execution time. Based upon the
same optimization framework, we evaluated the execution
time of the DNN-based pan-sharpening flow by the proposed
QEA-based scheduling algorithm and compare it with the
result by round-robin algorithm, which is a widely used
scheduling strategy in existing cloud computing architectures.
The comparison results in Fig. 7 demonstrate that for various
numbers of workers as well as data sizes, the execution time
for the whole pan-sharpening flow on the original QuickBird
data set has been reduced to different extents. Note that

the number of workers on the horizontal axis denotes the
maximum number of all available workers deployed on Ten-
sorFlowOnSpark. As reported in Fig. 7, the reduction in
execution time ranges from 9.26% to 24.22%. The reason is
that in the round-robin strategy, tasks are randomly allocated
onto workers, whereas the QEA-based scheduling algorithm
is capable of assigning an appropriate number of workers for
partitionable tasks according to their computation loads. Note
that for each configuration of worker nodes, we repeat the
round-robin scheduling procedure several times and present
the average value of execution time.

We then evaluate the performance of the proposed optimiza-
tion framework for processing remote sensing data of different
sizes. For this purpose, we mosaicked the original QuickBird
data set (an HR panchromatic image and an LR multispectral
image) to produce large-scale images. It is worthwhile to
point out that due to the high computational complexity of
DNN training, even a small-scale data set would generate a
large amount of training data. To be specific, for the original
QuickBird data set, the amount of training data may reach
158 MB during the training stage and up to 556 MB during
the reconstruction stage. Following the same fusion process,
the amount of training data also grows proportionally to the
sizes of mosaicked panchromatic and multispectral images,
resulting in large-scale training data of sizes 884 MB, 1.8,
3.6, 7.2, and 14.4 GB, respectively. When performing the
DNN-based pan-sharpening flow, it would be a particularly
challenging task to deal with remotely sensed big data on a
single machine.

Table III presents the execution time statistics by this
parallel processing framework for various data sizes with
different number of workers. The first column provides the
amounts of training data generated used for DNN training.
Training sets of sizes 884 MB, 1.8, 3.6, 7.2, and 14.4 GB
are taken into consideration in experiments. As the number of
workers increases, the execution time of the whole processing
flow for each data set is reported. Also, we use the scenario
of a single worker as the baseline scenario (i.e., to perform
the pan-sharpening flow in a serial manner) and evaluate
the computational efficiency in other scenarios with multiple
workers over the baseline scenario. The speedup achieved by
increasing the number of workers, which is calculated as the
ratio of execution time, is provided in Fig. 8. Each curve
illustrates the speedup trend with regard to worker count for
a data set of a particular size.

Referring to the execution time statistics reported
in Table III and Fig. 8, we observe that when the number of
workers is below a certain value, the speedup shows roughly a
linear increase with regard to worker count. This observation
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TABLE III

EXECUTION TIME STATISTICS (SECONDS) FOR VARIOUS DATA SIZES WITH DIFFERENT NUMBERS OF WORKERS

Fig. 8. Speedup achieved by the proposed method for various data sizes
with different numbers of workers.

is due to the fact that with few worker nodes, the actual
task computation time dominates the communication time
among nodes. However, if we keep on adding more workers,
the speedup would be compromised. For example, when the
size of training data is 1.8 GB, employing 32 workers leads
to a 16.08× speedup, and the speedup has been improved to
18.64% by doubling the number of workers. Similar speedup
trends with regard to worker count can be observed for all
data sets. The reason is that with an increasing number of
workers, the communication overhead between the PS node
and worker nodes also increases considerably. The amount
of time spent in updating node parameters and synchronizing
node jobs is no longer negligible compared to the amount of
actual computation time. This observation also validates the
importance of the optimization strategy in the proposed frame-
work to fully utilize the computing resources. Having studied
the dependence of speedup upon the number of workers,
we further investigate the relationship between computational
efficiency and data size. The last column in Table III lists the
speedups achieved for different data sizes with worker count
fixed at 64. The results demonstrate that the computational
efficiency has been continuously improved as data size scales
up. For example, the speedup is merely 8.23× for the original

Fig. 9. Execution time comparison between the proposed scheduling
algorithm and round-robin algorithm for different data sizes with 64 workers.

data set of size 158 MB but reaches 26.36× for the largest data
set of size 14.4 GB. This improvement is because the system
and communication overhead is more closely dependent on
worker count rather than data size. With the increasing data
size, the actual computation time starts to account for a major-
ity of the overall execution time, as its ratio to the induced
time overhead goes up. It is also worth mentioning that
the scheduling strategy also contributes to reducing the total
execution time and improving the computational efficiency for
large-scale data sets.

Finally, we verify the applicability and scalability of the
proposed optimization framework when processing large-scale
remote sensing data. With the number of workers fixed at
64, we further observe the change in execution time for
performing the whole pan-sharpening flow as the training
data size increases. Fig. 9 presents the execution time for
processing 884-MB, 1.8-, 3.6-, 7.2-, and 14.4-GB training
data, respectively. For comparison purpose, the execution
time statistics for these data sets by round-robin strategy
are also provided. By using QEA-based scheduling strategy,
the execution time for processing 884-MB data is 145.10 s.
When the data size increases by four times (3.6 GB),
the execution time is 590.65 s, and the execution time for
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14.4 GB data is 1663.93 s. The results verify the scalability
of the proposed method when processing large-scale remote
sensing data. More importantly, compared with round-robin
scheduling strategy, the QEA-based scheduling algorithm
can produce high-quality scheduling results, leading to up to
23.17% reductions in execution time.

V. EXTENSION TO PUBLIC/COMMERCIAL CLOUDS

In this paper, we assume that the distributed processing
of remote sensing big data was done in a private cloud
environment. For this reason, only resource constraints are
considered in the optimization procedure. In this section,
we discuss strategies to extend the current framework to be
applicable for public clouds and hybrid clouds.

Specifically, we consider the following two different sce-
narios in public clouds.

1) One the one hand, cloud users may rent a fixed number
of computing resources. In this scenario, there exists
an upper bound limit on available computing resources,
which is similar to our experimental environment, and
our proposed method can accordingly fit into a public
cloud environment.

2) On the other hand, if cloud users can rent cloud
resources in an on-demand manner and pay per use,
cost would become the primary concern, which is dis-
tinct from our problem concerning computing resource
capacity.

To cope with various cloud environments, the proposed
optimization framework has to be adapted by incorporating
a set of additional optimization objectives and constraints for
different purposes, e.g., energy efficiency [51], [52], quality-
of-service improvement, and cost minimization.

Another important concern in public cloud environments
is that task durations may vary slightly due to glitches in
the virtualization mechanisms or unpredictable latency issues.
To cope with such variations, task durations should be mod-
eled as random variables rather than deterministic values.
Consequently, the scheduling problem becomes a stochastic
optimization problem, in which task starting times and ending
times would have uncertainties induced by task duration varia-
tions. Under this circumstance, a straightforward method is to
replace the nominal task duration by its interval information
(i.e., its upper bound value and lower bound value), based
upon which we can predict the range of task completion
time and satisfy the precedence constraints. We may also
employ advanced uncertainty analysis techniques, e.g., expan-
sion methods and stochastic response surface methods, to han-
dle the variations of task durations and the resultant uncer-
tainty in the scheduling framework. Nevertheless, by using
either interval analysis or uncertainty analysis methods, it is
necessary to know in advance the stochastic characteristics of
task durations in public/commercial clouds.

VI. CONCLUSION

This paper presents a new cloud computing framework
that integrates a distributed processing mechanism and a task
scheduling strategy into an optimization procedure to enable

efficient and scalable processing of large-scale remotely sensed
data. As a case study, we optimize a DNN-based fusion
method on Spark to verify the efficiency of the proposed
framework. Experimental results demonstrate that the pro-
posed framework achieves promising speedups as compared
with the serial processing approach. More importantly, this
framework is also scalable with regard to the increasing scale
and dimensionality of remote sensing data.

The proposed framework for parallel processing of remote
sensing applications involves both theoretical optimization
and practical implementation. On the one hand, we used a
theoretical analysis to construct a rigorous optimization model
for the concerned scheduling problem. The decision variables
of the optimization problem include task assignments as well
as the number of data partitions for each partitionable task.
We further develop a QEA-based metaheuristic algorithm
to solve this complicated optimization problem. During the
problem-solving procedure, certain practical information is
required to determine the task durations for specified configu-
rations. On the other hand, we can apply the results obtained
by theoretical optimization to the practical implementation of
the parallel pan-sharpening flow on Spark. The optimization
results include the numbers of partitions for partitionable tasks
and the assignments of workers executing all tasks. By incor-
porating these results into Spark and replacing the built-in
scheduler, the practical execution time for the pan-sharpening
flow can be expected to reduce significantly.
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