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Abstract— Advances in remote sensing hardware have led
to a significantly increased capability for high-quality data
acquisition, which allows the collection of remotely sensed images
with very high spatial, spectral, and radiometric resolution. This
trend calls for the development of new techniques to enhance
the way that such unprecedented volumes of data are stored,
processed, and analyzed. An important approach to deal with
massive volumes of information is data compression, related to
how data are compressed before their storage or transmission.
For instance, hyperspectral images (HSIs) are characterized by
hundreds of spectral bands. In this sense, high-performance
computing (HPC) and high-throughput computing (HTC) offer
interesting alternatives. Particularly, distributed solutions based
on cloud computing can manage and store huge amounts of data
in fault-tolerant environments, by interconnecting distributed
computing nodes so that no specialized hardware is needed.
This strategy greatly reduces the processing costs, making the
processing of high volumes of remotely sensed data a natural
and even cheap solution. In this paper, we present a new cloud-
based technique for spectral analysis and compression of HSIs.
Specifically, we develop a cloud implementation of a popular
deep neural network for non-linear data compression, known
as autoencoder (AE). Apache Spark serves as the backbone of

Manuscript received January 15, 2019; revised May 4, 2019 and
July 3, 2019; accepted July 16, 2019. Date of publication August 14, 2019;
date of current version November 25, 2019. This work was supported in
part by the Ministerio de Educación (Resolución de 26 de diciembre de
2014 y de 19 de noviembre de 2015, de la Secretaría de Estado de Educación,
Formación Profesional y Universidades, por la que se convocan ayudas para
la formación de profesorado universitario, de los subprogramas de Formación
y de Movilidad incluidos en el Programa Estatal de Promoción del Talento y
su Empleabilidad, and en el marco del Plan Estatal de Investigación Científica
y Técnica y de Innovación 2013-2016), in part by the Junta de Extremadura
(decreto 14/2018, ayudas para la realización de actividades de investigación y
desarrollo tecnológico, and de divulgación y de transferencia de conocimiento
por los Grupos de Investigación de Extremadura) under Grant GR18060,
in part by the MINECO Project under Grant TIN2015-63646-C5-5-R, in part
by the National Science Foundation under Grant ACI-1548562, and in part
by the European Union under Grant 734541-EXPOSURE. (Corresponding
author: Juan M. Haut)

J. M. Haut, J. A. Gallardo, M. E. Paoletti, J. Plaza, and A. Plaza are with
the Hyperspectral Computing Laboratory, Department of Technology of Com-
puters and Communications, Escuela Politécnica, University of Extremadura,
10003 Cáceres, Spain (e-mail: juanmariohaut@unex.es; mpaoletti@unex.es;
jplaza@unex.es; aplaza@unex.es).

G. Cavallaro is with the Jülich Supercomputing Center, 52428 Jülich,
Germany (e-mail: g.cavallaro@fz-juelich.de).

M. Riedel is with the Jülich Supercomputing Center, 52428 Jülich, Germany,
and also with the Faculty of Industrial Engineering, Mechanical Engineering
and Computer Science, University of Iceland, 107 Reykjavik, Iceland (e-mail:
m.riedel@fz-juelich.de)

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2019.2929731

our cloud computing environment by connecting the available
processing nodes using a master–slave architecture. Our newly
developed approach has been tested using two widely available
HSI data sets. Experimental results indicate that cloud comput-
ing architectures offer an adequate solution for managing big
remotely sensed data sets.

Index Terms— Autoencoder (AE), cloud computing, dimen-
sionality reduction (DR), high-performance computing (HPC),
high-throughput computing (HTC), hyperspectral images (HSIs),
speedup.

I. INTRODUCTION

EARTH observation (EO) has evolved dramatically in the
last decades due to the technological advances incor-

porated into remote sensing instruments in the optical and
microwave domains [1]. With their hundreds of contiguous and
narrow channels within the visible, near-infrared, and short-
wave infrared spectral ranges, hyperspectral images (HSIs)
have been used for the retrieval of bio-chemical, geo-chemical,
and physical parameters that characterize the surface of the
earth. These data are now used in a wide range of applications,
aimed at monitoring and implementing new policies in the
domain of agriculture, geology, assessment of environmental
resources, urban planning, military/defense, disaster manage-
ment, and so on [2]–[4].

Most of the developments carried out over the last decades
in the field of imaging spectroscopy have been achieved via
spectrometers onboard airborne platforms. For instance, the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [5]
has been dedicated to remote sensing of the earth in a
large number of experiments and field campaigns since the
late 1980s. Other examples of airborne missions include the
European Space Agency (ESA)’s Airborne Prism Experiment
(APEX) (2011–2016) [6] or the Compact Airborne Spectro-
graphic Imager (CASI) [7] (since 1989), among many others.

The vast amount of data collected by airborne platforms
has paved the way for EO satellite hyperspectral missions.
The Hyperion instrument onboard National Aeronautics and
Space Administration (NASA)’s Earth Observing One (EO-1)
spacecraft (2000–2017) [8] and the Compact High Resolution
Imaging Spectrometer (CHRIS) on ESA’s Proba-1 microsatel-
lite [9] (since 2001) have to be the main sources of space-
based HSI data in the last decades. Currently, there are several
HSI missions under development, including the Environmen-
tal Mapping and Analysis Program (EnMAP) [10] and the
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Prototype Research Instruments and Space Mission technology
Advancement (PRISMA) [11], among others.

The adoption of an open and free data policy by the
NASA [12] and, more recently, by ESA’s Copernicus initia-
tive (the largest single EO program) [13] is now producing
an unprecedented amount of data to the research commu-
nity. Even though the Copernicus space component (i.e., the
Sentinels) has not included a hyperpectral instrument yet
(Sentinel-10 is an HSI mission expected to be operational
around 2025–2030), it has been shown that the vast amount of
open data currently available calls for re-definition of the chal-
lenges within the entire HSI life cycle (i.e., data acquisition,
processing, and application phases). It is not by coincidence
that remote sensing data are now described under the big data
terminology, with characteristics such as volume (increasing
scale of acquired/archived data), velocity (rapidly growing data
generation rate and real-time processing needs), variety (data
acquired from multiple sources), veracity (data uncertainty/
accuracy), and value (extracted information) [14], [15].

In this context, traditional processing methods, such as
desktop approaches (i.e., MATLAB, R, SAS, and ENVI), offer
limited capabilities when dealing with such large amounts of
data, especially regarding the velocity component (i.e., the
demand for real-time applications). Despite modern desktop
computers and laptops are becoming increasingly more pow-
erful, with multi-core and many-core capabilities, including
graphics processing units (GPUs), the limitations in terms of
memory and core availability currently limit the processing of
large HSI data archives. Therefore, the use of highly scalable
parallel/distributed architectures (such as GPUs, clusters [16],
grids [17], or clouds [18], [19]) is a mandatory solution
to improve the access to and the analysis of such great
amount of complex data, in order to provide decision-makers
with clear, timely, and useful information [20], [21]. In this
context, parallel and distributed computing approaches can
be categorized into high-performance computing (HPC) or
high-throughput computing (HTC) solutions. Contrary to an
HPC system [22] (generally, a supercomputer that includes a
massive number of processors connected through a fast ded-
icated network, i.e., a cluster), an HTC system (for instance,
a grid) is more focused on the execution of independent
and sequential jobs that can be individually scheduled on
many different computing resources, regardless of how fast
an individual job can be completed. Cloud computing is the
natural evolution of grid computing, adopting its backbone
and infrastructure [19] but delivering computing resources as
a service over the network connection [23]. In other words,
the cloud moves desktop and laptop computing (via the Inter-
net) to a service-oriented platform using large remote server
clusters and massive storage to data centers. In this scenario,
computing relies on sharing a pool of physical and/or virtual
resources rather than on deploying local or personal hardware
and software. The process of virtualization has enabled the
cost-effectiveness and simplicity of cloud computing solu-
tions [24] (i.e., it exempts users from the need to purchase and
maintain complex computing hardware), such as infrastructure
as a service (IaaS), platform as a service (PaaS), or software
as a service (SaaS). Several cloud computing resources are

currently available commercially on a pay as you go model
from providers, such as Amazon Web Services (AWS) [25],
Microsoft Azure [26], and Google’s Compute Engine [27].

Cloud computing infrastructures can rely on several com-
puting frameworks that support the processing of large
data sets in a distributed environment. For example, the
MapReduce model [28] is the basis of a large number of
open-source implementations. The most popular ones are
Apache Hadoop [29] and its variant, Apache Spark [30]
(an in-memory computing framework). Despite the recent
advances in cloud computing technology, not enough efforts
have been devoted to exploiting cloud computing infrastruc-
tures for the processing of HSI data. However, cloud comput-
ing offers a natural solution for the processing of large HSI
databases, as well as an evolution of the previously developed
techniques for other kinds of computing platforms, mainly due
to the capacity of cloud computing to provide Internet-scale,
service-oriented computing [31]–[33].

In this paper, we focus on the problem of how
to develop scalable data analysis and compression
techniques [4], [34]–[36] with the goal of facilitating
the management of remotely sensed HSI data. In this
sense, deep learning (DL) methods based on neural network
architectures have gained significant interest in HSI image
analysis and processing [37] due to the flexibility of their
architectures, their learning models, and the amount of tasks
that they can perform [38]. As a result, dimensionality
reduction (DR) of HSIs is a fundamental pre-processing
step that is applied before many data transfer, store, and
processing operations. On the one hand, when HSI data are
efficiently compressed, they can be handled more efficiently
onboard satellite platforms with limited storage and downlink
bandwidth. On the other hand, since HSI data live primarily
in a subspace [39], a few informative features can be extracted
from the hundreds of highly correlated spectral bands that
comprise HSI data [40] without significantly affecting the
data quality (lossy compression of HSIs can still retain
informative data for the subsequent processing steps).

Specifically, this paper develops a new cloud implemen-
tation of HSI data compression based on neural networks.
As in [41], we adopt the Apache Spark framework as well as
a map-reduce methodology [24] to carry out our implemen-
tation. In addition, we address the DR problem using a non-
linear deep autoencoder (AE) neural network instead of the
standard linear principal component analysis (PCA) algorithm.
In fact, we implement a new scalable cloud implementation
of the neural model proposed in [42], which is character-
ized by its flexibility to perform different tasks beyond DR,
such as classification [42] or spectral unmixing [43], and
therefore, the proposed methodology can be easily adapted
to perform different tasks. Focusing on DR, the performance
of our newly proposed cloud-based AE is validated using
two widely available and known HSI data sets. Our exper-
imental results show that the proposed implementation can
effectively exploit cloud computing technology to efficiently
perform non-linear compression of large HSI data sets while
accelerating significantly the processing time in a distributed
environment.
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The remainder of this paper is organized as follows.
Section II provides an overview of the theoretical and opera-
tional details of the considered AE neural network for HSI
data compression and the considered optimization method.
Section III presents our cloud-distributed AE network for
HSI data compression, describing the details of the network
configuration and the distributed implementation. Section IV
evaluates the performance of the proposed approach using
two widely available HSI data sets, considering the quality
of the compression and signal reconstruction and also the
computational efficiency of the implementation in a real cloud
environment. Finally, Section V concludes this paper, summa-
rizing the obtained results and suggesting some future research
directions.

II. BACKGROUND

HSI data are characterized by their intrinsically complex
spectral characteristics, where samples of the same class
exhibit high variability due to data acquisition factors or
atmospheric and lighting interferers. DR and feature extrac-
tion (FE) methods are fundamental tools for the extraction of
discriminative features that reduce the intra-class variability
and inter-class similarity [44] present in the HSI data sets.
Furthermore, by reducing the high spectral dimensionality of
HSIs, these methods are able to alleviate the curse of dimen-
sionality [45], which makes HSI data difficult to interpret by
supervised classifiers due to the Hughes phenomenon [46].

Several methods have been developed to perform DR and
FE from HSIs, For instance, Kang et al. [47] proposed a
decolorization method to reduce the spectral dimensionality
of HSI scenes, preserving most of the information contained
in them. In [48], they adopted DR methods with data filtering,
implementing image fusion and recursive filtering (IFRF)
to preserve the physical meaning of the spectral pixels.
In [49], they implemented morphological attribute thinning
and thickening (attribute filtering) to perform advanced FE
for HSI interpretation. Other interesting DR and FE methods
are the independent component analysis (ICA) [50], [51]
or the maximum noise fraction (MNF) [52], [53], being
PCA [54]–[56] one of the most widely used methods for
FE purposes. This unsupervised, linear algorithm reduces
the original high-dimensional and correlated feature space
to a lower dimensional space of uncorrelated factors [also
called principal components (PCs)] by applying an orthogonal
transformation through a projection matrix, which makes it
a simple yet efficient algorithm. However, PCA is restricted
to a linear map projection and is not able to learn non-
linear transformations. In this context, auto-associative1 neural
networks, such as AEs [57], offer a more flexible architecture
for FE and DR purposes, managing the non-linearities of
the data through an architecture made up of stacked layers
and non-linear activation functions [called stacked AE (SAE)]
that can provide more detailed data representations from the
original input image (one per layer), which can be easily
reused by other HSI processing methods [42], [43].

1Auto-associative networks are those whose inputs can be inferred from the
outputs. The proposed implementation of a non-linear AE belongs to this kind
of networks.

Fig. 1. Graphic representation of a traditional AE for spectral compression
and restoration of HSIs.

A. Autoencoder Neural Network

Let us consider an HSI data cube X ∈ R
n1×n2×nbands ,

where n1 × n2 are the spatial dimensions and nbands is the
number of spectral bands. X is traditionally observed by pixel-
based algorithms as a collection of n1 × n2 spectral samples,
where each xi ∈ R

nbands = [xi,1, xi,2, . . . , xi,nbands ] contains
the spectral signature of the observed surface material. In this
sense, the goal of DR methods is to obtain, for each xi , a vector
ci ∈ R

nnew that captures the most representative information of
xi in a lower feature space, being nnew << nbands. To achieve
this goal, the SAE applies an unsupervised symmetrical deep
neural network to encode the data in a lower dimensional latent
space, performing a traditional embedding and then decoding
it to the original space through a reconstruction stage. In fact,
the SAE can be interpreted as a mirrored net, where three main
parts can be identified, as shown in Fig. 1: 1) the encoder
or mapping layers; 2) the middle or bottleneck layer; and
3) the decoder or demapping layers. Based on the traditional
multilayer perceptron (MLP), the lth layer defined in the SAE
performs an affine transformation between the input data x(l)

i
and its set of weights W(l) and biases b(l), as shown in the
following equation:

x(l+1)
i = H(x(l)

i ·W(l) + b(l)) (1)

where x(l+1)
i ∈ R

n(l)
is an abstract representation (or feature

representation) of the original input data xi in the feature
space obtained by the n(l) neurons that compose the lth
layer, where the output of the kth neuron is obtained as the
dot product between the n(l−1) outputs of the previous layer
and its weights, passed through an activation function that is
usually implemented by the rectified linear unit (ReLU) [58],
i.e., H(x) = max(0, x). Finally, the kth feature in x(l+1)

i can
be obtained as

x (l+1)
i,k = H

⎛
⎝n(l−1)�

j=1

(x (l)
i, j ·w(l)

k, j )+ b(l)

⎞
⎠. (2)
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With this in mind, the SAE applies two main processing
steps to each input sample xi . The first one, known as coding
stage, performs the embedding of the data, mapping it from
R

nbands space to R
nnew latent space, that is, the nencoder layers

of the encoder map their input data to a projected representa-
tion following (1) and (2) until reaching the bottleneck layer.
As a result, the bottleneck layer contains the projection of each
xi ∈ R

nbands in its latent space, defined by its nnew neurons,
ci ∈ R

nnew . As a result, the SAE allows to generate compressed
(nnew < nbands), extended (nnew > nbands), or even equally
(nnew = nbands) dimensional representations, depending on
the final dimension of the code vector ci .

The second stage performs the opposite operation, i.e., the
decoding, where the network tries to recover the original
information, obtaining an approximate reconstruction of the
original input vector [59]. In this case, the ndecoder layers
of the decoder demap the code vector ci until reaching the
output layer, where a reconstructed sample x�i is obtained.
Equation (3) shows an overview of the encoding–decoding
process followed by the SAE:
ci ← For l in nencoder: x(l+1)

i = H�
x(l)

i ·W(l) + b(l)�
x�i ← For ll in ndecoder: c(ll+1)

i = H�
c(ll)

i ·W(ll) + b(ll)�. (3)

In order to obtain a lower dimensional (but more discrimina-
tive) representation of the input data, the network parameters
are iteratively adjusted in an unsupervised fashion, where
the optimizer minimizes the reconstruction error between the
input data at the encoding stage, xi , and its reconstruction at
the end of the decoding stage, x�i . This error function, given
by (4), is usually implemented in the form of a mean squared
error (MSE)

E(X) = min � X− X� �2= min
n1·n2�
i=1

� xi − x�i �2 . (4)

B. Broyden–Fletcher–Goldfarb–Shanno Algorithm
After describing the operational procedure of SAEs, it is

now important to observe the network optimization process.
As any artificial neural network with backpropagation, the
optimizer tries to find the set of parameters (synaptic weights
and biases) that, for a given network architecture, minimize
the error function E(X) defined by (4). This function evaluates
how well the neural network fits the data set X and depends
on the adaptative and learnable parameters of the network,
which can be denoted as W , so E(X,W). As E(X,W) is
non-linear, its optimization must be carried out iteratively,
reducing its value until an adequate stopping criterion is
reached. In this sense, standard optimizers back-propagate the
error signal through the network architecture calculating, for
each learnable parameter, the gradient of the error, i.e., the
direction and displacement that the parameter must undergo
in order to minimize the final error (also interpreted as the
importance of that parameter when obtaining the final error).
Mathematically, the updating of W in the tth epoch can be
calculated by

Wt+1 = Wt +�W
being �W = μt · pt (5)

where μt and pt are the learning rate (a positive scalar) and
the descent search direction, respectively [60]. The main goal
of any optimizer is to obtain the correct pt in order to descend
properly in the error function until the minimum is reached.

As opposed to standard optimizers, traditional Newton-
based methods determine the descent direction pt using
the second derivative information contained into the Hessian
matrix, rather than just the gradient information, thus stabiliz-
ing the process

Ht · pt = −∇E(X,Wt )

pt = −H−1
t · ∇E(X,Wt )

Wt+1 = Wt − μt ·H−1
t · ∇E(X,Wt ) (6)

where ∇E(X,Wt ) is the gradient of the error function eval-
uated with the network’s parameters at the tth epoch, Wt ,
and Ht and H−1

t are, respectively, the Hessian matrix and its
inverse obtained at the tth epoch. However, these methods
obtain the Hessian matrix and its inverse at each epoch,
which is quite expensive to compute, requiring a large amount
of memory. Instead of that, the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method [61] performs an estimation of how
the Hessian matrix has changed in each epoch, obtaining an
approximation (instead of the full matrix) that is improved
for every epoch. In fact, as any algorithm of the family of
multivariate minimization quasi-Newton methods, the BFGS
algorithm modifies the last expression of (6) as follows:

Wt+1 =Wt − μt ·Gt · ∇E(X,Wt ) (7)

where Gt is the inverse Hessian approximation matrix (usually,
when t = 0 the initial approximation matrix is the identity
matrix, G0 = I). This Gt is updated at each epoch by means
of an update matrix

Gt+1 = Gt + Ut . (8)

However, such an update needs to comply with the quasi-
Newton condition, which is described next. Assuming that
E(X,W) is continuous for Wt and Wt+1 (with gradients
gt = ∇E(X,Wt ) and gt+1 = ∇E(X,Wt+1), respectively)
and the Hessian H is constant, then (9) is satisfied

qt ≡ gt+1 − gt and pt ≡Wt+1 −Wt

Secant condition on the Hessian: qt = H · pt

Secant condition on the inverse: H−1 · qt = pt . (9)

Since G = H−1, the last expression in (9) can be modified to
G · qt = pt , so the approximation matrix G can be obtained
(at each epoch t) as a combination of the linearly indepen-
dent directions and their respective gradients. Following the
Davidon–Fletcher–Powell (DFP) rank 2 formula [62], G can
be updated using

Gt+1 = Gt + pt · p�t
p�t · qt

−Gt · qt · q�t
q�t ·Gt · qt

·Gt . (10)

Finally, the BFGS method updates its approximation matrix
by computing the complementary formula of the DFP method,
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Algorithm 1 BFGS Algorithm
1: procedure BFGS(Wt : current parameters of the neural

network, E(X,W): Error function, Gt : current approx-
imation to the Hessian)

2: gt = ∇E(X,Wt )
3: pt = −Gt · gt

4: Wt+1 =Wt + μt · pt 	 μt by linear search
5: gt+1 = ∇E(X,Wt+1)
6: qt = gt+1 − gt

7: pt =Wt+1 −Wt

8: A =
	

1+ q�t ·Gt ·qt

q�t ·pt



·
	

pt ·p�t
p�t ·qt



9: B = pt ·q�t ·Gt+Gt ·qt ·p�t

q�t ·pt
10: Gt+1 = Gt + A− B

return Wt+1, Gt+1
11: end procedure

changing G by H and pt by qt , and therefore, (10) is finally
modified as follows:

Ht+1 = Ht + qt · q�t
q�t · pt

−Ht · pt · p�t
p�t ·Ht · pt

·Ht . (11)

As the BFGS method intends to compute the inverse of H and
G = H−1, it inverts (11) to analytically obtain the final update
of the approximation matrix

Gt+1 = Gt +
�

1+ q�t ·Gt · qt

q�t · pt

�
·
�

pt · p�t
p�t · qt

�

− pt · q�t ·Gt +Gt · qt · p�t
q�t · pt

. (12)

Algorithm 1 provides a general overview of how the
BFGS method works in one epoch. As shown in line 4 of
Algorithm 1, as opposed to most optimization algorithms, the
learning rate is inferred by performing a linear search instead
of using an input parameter. A weakness of BFGS is that it
requires the computation of the gradient on the full data set,
consuming a large amount of memory to properly run the
optimization. Considering the dimensionality of HSIs, we can
conclude that this method is not able to scale with the number
of samples [63]. In order to overcome this limitation, and with
the aim of speeding up the computation of both the forward
(affine transformations) and backward (optimizer) steps of the
AE for DR of HSIs, in Section III, we develop a distributed
solution for cloud computing environments.

III. PROPOSED IMPLEMENTATION

A. Distributed Framework
We have developed a completely new distributed AE for

HSI data analysis2 that follows the diagram shown in Fig. 2,
where it is shown that the proposed cloud-based neural model
has been implemented as a master–slave, multi-node environ-
ment. In this context, two problems have been specifically
addressed in this paper: 1) the computing engine and 2) the
distributed programming model over the cloud architecture.

2Code available on: https://github.com/jgallardst/cloud-nn-hsi

Fig. 2. Diagram summarizing the overall framework of the proposed cloud
implementation, where the master node takes the HSI data and partitions it
between the different workers’ nodes, which apply the tasks extracted from
the graph of transformations, executing the forward and backward steps over
their data. The obtained gradients are collected and pooled by the master
node, which transmits the final gradient to the neural models stored by each
worker node.

Regarding the first problem, our distributed implementation of
the network model is run on top of a standalone Spark cluster,
due to its capacity to provide fast processing of large data
volumes on distributed platforms, in addition to fault tolerance.
Furthermore, the Spark cluster is characterized by a master–
slave architecture, which makes it very flexible. Specifically,
a Spark cluster is formed by a master node, which manages
how the resources are used and distributed in the cluster by
hosting a Java virtual machine (JVM) driver, and the scheduler,
which distributes the tasks between the execution nodes and
N worker nodes (which can be more than one per node) that
execute the program tasks by creating a Java distributed agent,
called executor (where tasks are computed), and store the data
partitions (see Fig. 3).

In relation to the second point, the adopted programming
model to perform the implementation of the distributed AE
is based on organizing the original HSI data in tuples or
key/value pairs, in order to apply the MapReduce model [41],
which divides the data processing task into two distributed
operations: 1) mapping, which processes a set of data tuples,
generating intermediate key–value pairs and 2) reduction,
which gathers all the intermediate pairs obtained by the
mapping to generate the final result. In order to achieve
this behavior, data information in Spark is abstracted and
encapsulated into a fault-tolerant data structure called Resilient
Distributed data set (RDD). These RDDs are organized as
distributed collections of data, which are scattered by Spark
across the worker nodes when they are needed on the succes-
sive computations, being persisted in the memory of the nodes
or on the disk. This architecture allows for the parallelization
of the executions, achieved by performing MapReduce tasks
over the RDDs on the nodes. Moreover, two basic operations
can be performed on an RDD: 1) the so-called transformations
that are based on applying an operation to every row on a
partition, resulting in another RDD and 2) actions that retrieve
a value or a set of values that can be both RDD data or the
result of an operation where some RDD data are involved.
Operations are queued until an action is called; the needed
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Fig. 3. Graphic representation of a generic Spark cluster, which is composed
by one client node and N worker nodes, where in each node, several executor
JVMs are running in parallel over several data partitions.

transformations are placed into a dependence graph, where
each node is a job stage, following a lazy execution paradigm.
This means that operations are not performed until they are
really needed, avoiding the repetition of a single operation
more than once.

In order to enable a simple and easy mechanism for man-
aging large data sets, the Spark environment provides another
level of abstraction that uses the concept of Dataframe. These
Dataframes allow data to be organized on named columns,
being easier to manipulate (as in relational tables, columns
can be accessed by the column name instead of by the index).
With this in mind, the Spark standalone cluster functionality
can be summarized as follows.

1) The master node (also called driver node) creates and
manages the Spark driver (see Fig. 3), a Java process
that contains the SparkContext of the application.

2) The driver context performs the data partitioning and
parallelization between the worker nodes, assigning to
each one a number of partitions, which depends on two
main aspects: the block size and the way that the data
are stacked. Also, the driver creates the executors on the
worker nodes, which store data partitions on the worker
node and perform tasks on them.

3) When an action is called, a job is launched and the
master coordinates how the associated tasks are dis-
tributed into the different executors. In order to reduce
the data exchanging time, the Spark driver attempts to
perform “smart” task allocations so that there are more
possibilities to assign a task to the executor, located in
the worker where the data partition used by the task to
perform the operation has been allocated.

4) When all the tasks on a given stage are finished,
the Scheduler allocates another stage of the job (if it
was a transformation) or retrieves the final output (if it
was an action).

Algorithm 2 Iterative Process
1: procedure SPARK FLOW

2: Parti tioned Data← Spark.parallelizeData()
3: t ← 0
4: while t < niterat ions do
5: broadcast Output Data().
6: foreach parti tion ∈ Parti tioned Data do
7: Parti tioned Data.applyTask().
8: end for
9: retrieveOutput Data().

10: t ← t + 1
11: end while
12: end procedure

Algorithm 2 shows a general overview of how our algorithm
is pipelined in the considered Spark cluster.

B. Cloud Autoencoder Pipeline Implementation:
Training and Optimization Process

This section describes in detail the full distributed training
process, from the parallelization of HSI data across nodes to
the intrinsic logic of each training step, explaining the benefits
of our distributed training algorithm. Fig. 4 shows a general
overview of the full data pipeline developed in this paper.

In the beginning, the original 3-D HSI data cube X ∈
R

n1×n2×nbands , where n1×n2 are the spatial dimensions (height
and width) and nbands is the spectral dimension given by
the number of spectral channels, is reshaped into an HSI
matrix X ∈ R

npixels×nbands , where npixels = n1 × n2, i.e., each
row collects a full spectral pixel, being each column the
corresponding value in the spectral band. This matrix X is
read by the Spark Driver, which collects the original HSI data
and partitions it into P smaller subsets that are delivered to
the worker nodes in parallel. These workers store the obtained
partitions on their local disks. In this sense, each data partition
composes an RDD.

It must be noted that complex neural network topologies
derive on greedy RAM memory usage on the driver node.
Since Spark transformations apply an operation to every row of
the RDD, the fewer the number of rows, the fewer the number
of operations that must be carried out. In order to improve
the computation of the distributed model, a blocksize (BS)
hyperparameter is provided, with the aim of indicating how
many pixels should be stacked into a single row in order
to compute them together. With this observation in mind,
the pth data partition (with p = 1, . . . , P) can be seen as
a 2-D matrix (p)D ∈ R

nrows×(BS·nbands) composed by nrows
rows, where each one stores BS concatenated spectral pixels,
i.e., (p)d j ∈ R

(BS·nbands) = [xi , xi+1, . . . , xi+BS]. In the end,
each data partition (p)D stores BS·nrows pixels. The resulting
partitions are then distributed across the worker nodes. Such
distribution allows the executors, located in each worker node,
to apply the subsequent tasks to those partitions that each
worker receives.

After distributing the data into RDDs, a distributed data
analysis process begins prior to the application of neural
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Fig. 4. Data pipeline of our distributed AE, where the input HSI cube is first
reshaped into a matrix and then split into several partitions allocated into the
Spark worker nodes, composed by several rows where each one contains BS
spectral pixels. These data partitions are then duplicated in order to obtain
the input network data and the corresponding output network data. The AE
is then executed and, for each iteration t , the gradients are collected by the
Spark driver, which calculates the final gradient and performs the optimization
with the L-BFGS algorithm. The updated weights are finally broadcasted to
each neural model contained in the cluster.

network-based processing. In the first step, the data contained
in each partition (p)D are scaled in a distributed way, taking
advantage of the cloud architecture and the available paral-
lelization of resources. In this sense, each partition’s row (p)d j

(and, internally, each pixel contained within) is transformed
based on the global maximum and minimum features (xmax
and xmin) of the whole image X, and the column local
maximum and minimum features [(p)dmax and (p)dmin] of the
pth partition where the data are allocated

(p)d̂ j =
(p)d j −(p) dmin

(p)dmax −(p) dmin
(p)d j = (p)d̂ j · (xmax − xmin)+ xmin. (13)

Once the HSI data have been split into partitions and scaled,
the next step consists of the application of the AE model.
The proposed AE is composed of five layers, as summarized
in Table I. These layers are: l(1), the input layer that receives
the spectral signature contained in each pixel xi of X (i.e., the
rows of the distributed partitions), composed by as many

TABLE I

TOPOLOGY OF THE PROPOSED AE NEURAL
NETWORK FOR HSI ANALYSIS

neurons as spectral bands; l(2), l(3), and l(4), the hidden AE
layers, and l(5), the output layer that obtains the reconstructed
signature x�i , composed also by as many neurons as spectral
bands.

With the topology described in Table I in mind, the encoder
part is composed by l(1), l(2), and l(3), which performs the
mapping from the original spectral space to the latent space
of the bottleneck layer l(3). In addition, the decoder part is
composed by l(3), l(4), and l(5), which performs the demapping
from the latent space of l(3) to the original spectral space.

At this point, it is interesting to briefly comment the
performance of the AE network. In order to correctly prop-
agate the data through the network, from each partition
(p)D ∈ R

nrows×(BS·nbands), a matrix of unstacked pixels (p)X ∈
R

(BS·nrows)×nbands is extracted, i.e., the BS spectral pixels that
are contained in each (p)d j = [xi , xi+1, . . . , xi+BS] (with
j = 1, . . . , nrows and i = 1, . . . , npixels) are each extracted to
create, one by one, the rows of (p)X, denoted as (p)xk [with
k = 1, . . . , (BS · nrows)] in order to determine the level at
which the AE is working.

Every training iteration t is performed using the traditional
neural network forward–backward procedure, in addition to a
tree-aggregate operation that computes and sums the execu-
tors’ gradients and losses to return a single loss value and
a matrix of gradients. Each executor computes its loss by
forwarding the input network data (p)X through the AE layers
and comparing the l(5) layer’s output vector with the vector
of input features, following (4) and obtaining (at each t) the
corresponding MSE of the partition: (p)MSEt = E((p)X,Wt ).
Gradients are then computed by back-propagating the error
signal through the AE, obtaining for each partition the (p)Gt

matrix at iteration t . Each gradient matrix is reduced in the
Driver, which runs the optimizer in order to obtain the final
matrix �Wt . This matrix indicates how much each neuron
weight should be modified before finishing the tth training
iteration, based on how that neuron impacts the output. Fig. 5
shows a graphical overview of the adopted training procedure.

If we denote by P the number of total partitions and
by (p)X ∈ R

(BS·nrows)×nbands the pth unstacked partition
data, composed by (BS × nrows) normalized rows/feature
vectors of nbands spectral features, i.e., (p)xk ∈ R

nbands =
[(p)xk,1, . . . ,

(p) xk,nbands ], and considering the lth layer of the
AE model, composed by n(l)

neurons, its output is denoted by
(p)X(l+1) and it is computed by adapting (1) into (14) as the
matrix multiplication

(p)X(l+1) = H((p)X(l) ·W(l) + b(l)) (14)

where the meaning of each term is given in the following.
1) (p)X(l+1) ∈ R

(BS×nrows)×n(l)
neurons is the matrix that rep-

resents the output of the neurons in layer l with size
(BS · nrows) × n(l)

neurons, where n(l)
neurons is the number of
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Fig. 5. Distributed forward and backward pipelines of the training stage (at iteration t) after unstacking the hyperspectral pixels in each distributed data
partition (each one allocated to a different worker node).

neurons of the lth layer (in the case that l = 5 and
n(5)

neurons = nbands).
2) (p)X(l) ∈ R

(BS×nrows)×n(l−1)
neurons is the matrix that serves

as the input to the lth layer, which contains the
(BS·nrows) pixel vectors represented in the feature space
of the previous layer, defined by n(l−1)

neurons neurons.
3) W(l) ∈ R

n(l−1)
neurons×n(l)

neurons is the matrix of weights, which
connects the current n(l)

neurons neurons with the n(l−1)
neurons

neurons of the previous layer, and b(l) is the bias of
the current layer.

4) H is the ReLU activation function, which gives the
following non-linear output: ReLU(x) = max(0, x).

After data forwarding, the reconstructed data (p)X� in the
pth partition at the tth iteration are compared to the original
input (p)X by applying the MSE function defined by (4) on
each executor. Executors then retrieve the error computed by
their carried data, obtaining a value (p)MSEt per partition.
Then, the final error is obtained as the mean of all executor
errors, as shown in the following equation:

(p)MSEt = 1

(BS× nrows)

(BS×nrows)�
k=1

�(p) xk −(p) x�k �2

MSEt = 1

P

P�
p=1

(p)MSEt (15)

where (BS× nrows) is the number of pixels that compose the
pth data partition, whereas (p)xk ∈(p) X and (p)x�k ∈(p) X� are
the original input sample and output reconstructed sample in
the pth data partition, respectively. Those partition errors are
then back-propagated to compute the gradient (p)Gt matrix of
each partition at iteration t . In this sense, for each layer in
the neural model (using the resulting outputs), the impact that
each neuron has on the final error is obtained as the result
of the ReLU’s derivative of every output, which is defined as
follows:

H�(x) =



0, if x ≤ 0

1, if x > 0.
(16)

Such impact can be denoted as (p)gL
t = [(p)g(1)

t , . . . ,(p) g(5)
t ],

where the lth element (p)g(l)
t stores the impact of the n(l)

neurons

allocated into the lth layer of the network.
The gradient of each partition, (p)Gt , is then computed by

applying the double-precision general matrix to matrix multi-
plication (DGEMM) operation where, given three input matri-
ces (A, B, and C) and two constants (α and β), the obtained
results are calculated by (17) and stored in C

C = α ∗ A ∗ B+ β ∗ C. (17)

DGEMM is performed to compute the entire gradient matrix
in parallel, instead of computing each layer gradient vectors
separately. This allows us to make neural computations faster
and efficient in terms of reducing power consumption. In this
sense, each item of (17) has been replaced by the following
parameters.

1) α = (1/nbands) is a parameter regularizer.
2) A =(p) X is the input data partition matrix.
3) B =(p) gL

t is the matrix representing the impact of each
neuron on every layer of the neural network.

4) β = 1 is also a parameter regularizer. As C should be
unchanged, it has been set to 1.

5) C =(p) Gt−1 is initially the older gradient matrix of
the pth partition. After the updates resulting from the
DGEMM operation, the current gradient (p)Gt is stored
on C.

Finally, the gradient matrix Gt of the whole network is
computed as the average of the sum of all partition’s gradi-
ents: (p)Gt . The entire training process on each data partition
is graphically shown in Fig. 5.

The final optimization step is performed locally on the
master node using a variant of the BFGS algorithm, called
limited BFGS (L-BFGS). Since BFGS needs a huge amount
of memory for the computation of the matrices, L-BFGS limits
the memory usage, so it fits better into our implementation.
The optimizer uses the computed gradients and a step-size
procedure to get closer to a minimum of (4). The procedure
is repeated until a desired number of iterations, niterations,
is reached.
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Fig. 6. False RGB color map of the BIP scene, represented using the visualization method in [47].

IV. EXPERIMENTAL EVALUATION

A. Configuration of the Environment

In order to test our newly developed implementa-
tion, a dedicated hardware and software environment
based on a high-end cloud computing paradigm has been
adopted. The virtual resources have been provided by the
JetStream Cloud Services33 at the Indiana University Per-
vasive Technology Institute (PTI) through XSEDE alloca-
tion TG-ASC180012 [64]–[66]. Its user interface is based on
Atmosphere computing platform44 and uses Openstack55 as
the operational software environment.

The hardware environment consists of a collection of cloud
computing nodes. In particular, the cluster consists of one
master node and eight slave nodes that are hosted in virtual
machines with six virtual cores at 2.5 GHz each. Every node
has 16 GB of RAM and 60 GB of storage via a Block Storage
File System. As mentioned earlier, Spark performs as the
backbone for node interconnection; meanwhile, data transfers
are supported by a local 4 × 40 Gb/s dedicated network.

Each virtual machine runs Ubuntu 16.04 as operating
system, with Spark 2.1.1 and Java 1.8 serving as run-
ning platforms. The Spark framework provides a distributed
machine learning library known as Spark Machine Learning
Library (MLLib),6 which is used as support for the imple-
mentation of our distributed AE network for remotely sensed
HSI data analysis. Moreover, the proposed implementation
has been coded in Scala 2.11, compiled into Java bytecode
and interpreted in JVMs. Finally, mathematical operations
from MLLib are handled by Breeze (the numerical processing
library for Scala), in its 0.12 version, and by Netlib 1.1.2.
In this sense, Netlib wraps JVM calls into low-level Basic
Linear Algebra Subprograms (BLAS) calls, and therefore,
those calls are executed faster than the traditional executions.

B. Hyperspectral Data Sets

With the aim of testing the performance of our newly
developed cloud-based and distributed AE network model,
two different HSI data sets have been considered in our
experiments. These data sets correspond to the full version of
the AVIRIS Indian Pines scene, referred hereinafter as the big
Indian Pines (BIP) scene, and a set of images corresponding to
six different zones captured by the Hyperion spectrometer [67]
onboard NASA’s EO-1 Satellite, which we have designated
as the Hyperion data set (HYPERION). Both data sets are

3https://jetstream-cloud.org/
4https://www.atmosphereiot.com/platform.html
5https://www.openstack.org/
6https://spark.apache.org/mllib

characterized by their huge size, which makes them ideal to be
processed in a cloud-distributed environment. In the following,
we provide a description of the aforementioned data sets.

1) The BIP scene scene (see Fig. 6) was collected
by AVIRIS in 1992 [5] over agricultural fields in
northwestern Indiana. The image comprises a full flight-
line with a total of 2678× 614 pixels (with 20 m/pixel
spatial resolution), covering 220 spectral bands from
400 to 2500 nm.

2) The Hyperion data set (HYPERION) is composed by
six full flightlines (see Fig. 7) collected in 2016 by the
Hyperion spectrometer mounted on NASA’s EO-1 satel-
lite, which collects spectral signatures using 220 spectral
channels ranging from 357 to 2576 nm with a 10-nm
bandwidth. The captured scenes have a spatial reso-
lution of 30 m/pixel. The standard scene width and
the length are 7.7 and 42 km, respectively, with an
optional increased scene length of 185 km. In particular,
the considered images have been stacked and treated
together as a single image comprising 20 401 × 256
pixels with the spectral range mentioned earlier. These
images have been provided by the Earth Resources
Observation and Science (EROS) Center in GEOTIFF
format.7 Also, each scene is accompanied by one iden-
tifier in the format YDDDXXXML, which indicates the
day of acquisition (DDD), and the sensor that recorded
the image (XXX, denoting Hyperion, ALI, or AC with
0 = OFF and 1 = ON), the pointing mode (M, which can
be N for nadir, P for pointed within path/row or K for
pointed outside path/row) and the scene length (L, which
can be F for full scene, P for partial scene, Q for second
partial scene, and S for swath). Also, other letters
can be used to create distinct entity IDs, for example,
to indicate the ground/receiving station (GGG) or the
version number (VV). In this case, the identifiers of
the six considered images are: 065110KU, 035110KU,
212110KR, 247110KW, 261110KR, and 321110KR.

C. Experiments and Discussion

Four different experiments have been conducted in order to
validate the performance of our cloud-distributed AE for HSI
data compression:

1) The first experiment analyzes the scalability of our
cloud-distributed AE using a medium-sized data set.
For this purpose, the BIP data set has been processed
with a fixed number of training samples in the cloud

7These scenes are available online from the Earth Explorer site,
https://earthexplorer.usgs.gov
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Fig. 7. False RGB color map of the Hyperion data set (HYPERION), represented using the visualization method in [47].

environment described earlier, using one master and
different numbers of worker nodes. Here, we have
reduced the dimensionality of the BIP data set using
the implemented cloud AE model to obtain a reduced
data representation with 60 spectral channels.

2) The second experiment illustrates the internal paral-
lelization (at the core level) of the worker nodes. Our
main goal is to show that using a fixed amount of work-
ers and increasing only the data volumes, speedups grow
linearly as well the computing times. For this purpose,
the HYPERION data set has been processed using four
different percentages of training data and eight worker
nodes in the considered cluster, each with six virtual
cores. As in the previous experiment, we reduced the
dimensionality of the HYPERION data set using the
implemented cloud AE network, extracting 60 spectral
channels.

3) The third experiment tests the performance of our
cloud-distributed AE using different numbers of train-
ing samples and worker nodes over a large data set
to illustrate how efficiency grows with the number
of workers. This experiment allows us to understand
the internal operation of data partitions. In this sense,
the HYPERION data set used in the previous experiment

has been considered again using four different training
percentages and six different numbers of worker nodes.

4) The fourth experiment compares the compression per-
formance of our considered AE implementations (using
different activation functions: linear and ReLU) ver-
sus the compression performance of a state-of-the-art
method, such as PCA. In this experiment, we use a
subset of the BIP data that have been widely used in the
hyperspectral imaging community, with 145×145 pixels
and 200 spectral bands.

At this point, it is important to emphasize that the earlier
experiments have been performed by running 400 training
iterations, with the BS set to 256. Also, in order to evaluate
the performance of the proposed cloud method, the MSE,
the mean absolute error (MAE), and the spectral angle dis-
tance (SAD) metrics have been considered.

1) Experiment 1: Our first experiment evaluates the perfor-
mance of the distributed implementation of the proposed AE,
using the BIP scene, reduced to 60 spectral channels. In this
case, the network employs 80% of randomly selected samples
to create the training set and the remaining 20% of the samples
to create the test set. In order to demonstrate the scalability
of our cloud-distributed AE, the cloud environment has been
configured with one master node and different numbers of
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TABLE II

AVERAGE RUNTIME AND SPEEDUP WITH THE PROCESSING TIMES AND SPEEDUPS OBTAINED FOR
DIFFERENT NUMBERS OF WORKERS WHEN PROCESSING THE BIP IMAGE

Fig. 8. Scalability of the proposed cloud-distributed network when processing
the BIP data set with 1, 2, 4, 8, 12, and 16 worker nodes and 1 master node.
Red line: theoretical speedup value. Blue bars: actual values reached.

TABLE III

PERFORMANCE EVALUATION USING THE BIG AND HYPERION DATA

SETS (THE FIRST ONE WITH A FIXED NUMBER OF TRAINING
SAMPLES AND DIFFERENT NUMBERS OF WORKER NODES,

AND THE SECOND ONE WITH DIFFERENT NUMBERS

OF TRAINING SAMPLES AND WORKER NODES)

worker nodes, specifically 1, 2, 4, 8, 12, and 16 workers.
In order to show the robustness of our model, five Monte Carlo
runs have been executed, obtaining as a result the average and
the standard deviation of those executions.

Fig. 8 shows the obtained speedup in a graphical way.
Such speedup has been calculated as T1/Tn , where T1 is
the execution time of the slowest execution with one worker
node and Tn is the average time of the executions with n
worker nodes. Comparing the theoretical and real speedup
values obtained, it can be observed that the model is able
to scale very well, reaching a speedup value that is very

close to the theoretical one with two, four, and eight workers.
However, for 12 workers and beyond, we can see that the
communication times between the nodes hamper the speedup
due to the insufficient amount of data, a fairly common
behavior in cloud environments, in which the main bottleneck
occurs in the communication between the nodes. As a result,
it is important to make sure that there exists an adequate
balance between the total amount of data to be processed and
the number of processing nodes. Tables II and III tabulate the
performance data collected in this experiment, coupled with
the reconstruction errors, computation times, and speedups.
In particular, Table III compares the obtained results with a
parallel version of the same AE architecture using a standard
DL-framework (Torch). As we can observe, the proposed
cloud methodology is able to obtain a similar MSE than a
traditional DL-framework; however, both the MAE and the
SAD measurements are significantly smaller (in particular,
the SAD), demonstrating that the proposed implementation is
able to improve the performance of a current DL-framework.
Also, Fig. 9 shows the evolution of the training loss of the
proposed method compared with the one exhibited by the
Torch implementation. As we can see in Fig. 9(a), the proposed
implementation is more stable than the parallel version, being
able to reduce the loss faster than the Torch implementation,
until both lines converge on Fig. 9(c), being the train loss of
the proposed method slightly lower.

These very low errors are finally reflected in Fig. 10, which
shows three reconstructed signatures of different materials in
the BIP scene. As it can be seen in Fig. 10, the reconstructed
signatures are extremely similar to the original ones, a fact that
allows for their exploitation in advanced processing tasks, such
as classification or spectral unmixing.

2) Experiment 2: Our second experiment explores the inter-
nal parallelization of each worker node (at the core level) in
order to illustrate that computation and communication times
grow in a similar (linear) way. For this purpose, the cloud-
distributed AE has been tested on the HYPERION data set,
again reducing the spectral dimensionality to 60 spectral bands
and randomly collecting 20%, 40%, 60%, and 80% of training
samples to create the training set and the remaining 80%, 60%,
40%, and 20% to create the test set. Moreover, one master
node and eight worker nodes (each one with six virtual cores)
have been considered to implement the cloud environment.

Fig. 11(a) shows the results obtained in this experiment.
If we compare the theoretical speedup values and the real ones
obtained, it can be seen that our implementation is able to
reach a speedup that is almost identical to the theoretical one.
This is quite important, as the obtained results indicate that
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Fig. 9. Training loss evolution of the proposed cloud AE compared with a parallel version implemented with the Torch DL-framework on the BIG data set
during (a) first 20 epochs, (b) first 80 epochs, and (c) first 200 epochs.

Fig. 10. Comparison between the original (blue line) and reconstructed (red dotted line) spectral signatures extracted from the BIP scene by the proposed
cloud AE implementation using eight workers.

Fig. 11. Scalability of the proposed cloud-distributed network when processing the HYPERION data set in experiments 2 and 3 with (a) 8 worker nodes and
1 master node, considering 20%, 40%, 60%, and 80% of training data (experiment 2), (b) 1, 2, 4, 8, 12, and 16 worker nodes and 1 master node, considering
20% and 40% of training data (experiment 3, first part), and (c) 2, 4, 8, 12, and 16 worker nodes and 1 master node, considering 60% and 80% of training
data (experiment 3, second part). The numbers in the parentheses indicate the total amount of data used in MB. Red lines: theoretical speedup value (red
continuous line) and linear speedup value (red dotted line). Blue and orange bars: actual values reached.

the scalability achieved in each node (in terms of computing
time) is almost linear with regard to the size of the HSI
scenes considered in each node, thanks to the cores available
in each node. In this way, the proposed cloud-distributed
AE implementation takes full advantage of all the available
resources, both in parallel (multi-core) and distributed fashion.

3) Experiment 3: Our third experiment evaluates how the
performance of the proposed cloud AE for HSI data com-
pression is affected by the number of workers available in
the cloud environment and the amount of training data using
a very large-sized data set. The HYPERION images have
been considered for this purpose. Due to the great amount
of data, this experiment has been split into two parts. The
first part performs a comparison over a cloud environment
composed by 1, 2, 4, 8, 12, and 16 worker nodes, and 1 master

node, employing the 20% and 40% of the samples to create
the training set, and the remaining 80% and 60% of data to
create the test set. However, due to the memory limitations
of the workers, the second part performs a comparison over
a cloud environment composed by 2, 4, 8, 12, and 16 worker
nodes, and 1 master node, employing the 60% and 80% of the
samples to create the training set, and the remaining 40% and
20% of data to create the test set. In this context, it must be
noted that while in the first part the speedup is obtained based
on the implementation with one worker node, in the second
one, the speedup is obtained based on the implementation with
two worker nodes.

Fig. 11(b) and (c) shows the results obtained by the two
parts of this experiment in a graphical way. In this case, it is
interesting to observe that the theoretical speedup and the
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TABLE IV

AVERAGE RUNTIME AND SPEEDUP WITH THE PROCESSING TIMES AND SPEEDUPS OBTAINED FOR DIFFERENT NUMBERS OF WORKERS
AND DIFFERENT AMOUNTS OF TRAINING DATA WHEN PROCESSING THE HYPERION DATA SET

linear speedup values do not coincide. When we talk about
linear speedup, we normally refer to the expected speedup
when linear partitioning is performed in the cluster. However,
in a real environment, the partitioning is not always linear.
In fact, we can observe a performance gap in the eight-
node configuration. This can be explained by the relationship
between the total number of cores in the cluster, C (obtained
as the number of cores per node multiplied by the number of
nodes), and the number of existing data partitions, P , given by

(λ− 1) · C < P < λ · C (18)

where λ is a scalar. For instance, when using eight-node
configuration, its value is set to λ = 2. Taking (18) into
consideration and assuming that the cluster cores execute tasks
when they are free, the noncompliance of (18) leads to the fact
that some cores remain idle after finishing their first allocated
tasks, so the fine-grained parallelism is not fully exploited in
this case.

In the considered cluster, since each node has six cores,
a total of C = 6 × N working cores can be exploited.
Furthermore, these C working cores allow for the processing
of the data partitions in batches of C tasks at most. For
instance, when a configuration of eight nodes is used, the clus-
ter environment is made up of a total of C = 6 × 8 = 48
working cores. This indicates that, at most, in one processing
batch, Spark will launch 48 tasks. As Spark splits the HSD
data into 58 data partitions, 58 tasks must be executed over
each partition. However, in each batch, only 48 tasks can be
performed. This means that two batches must be run: the first
one with 48 tasks and the second one with only 10. As a result,
the second batch cannot fully exploit fine-grained parallelism
as only 10 cores are being used, with 38 idle nodes. This
results in an unnecessary waste of computing resources.

However, when the idle cores from the second batch are
used, the performance improves. This is the case of the
12-node configuration (C = 72), where the partitioning
becomes more efficient, complying with (18). Linear speedup
based on workers needs to be added to this core-level speedup,
leading to a new speedup that is calculated as the multiplica-
tion of those speedups, as indicated by

T w
1

T w
n
· T p

1

T p
n

, (19)

where T w
n is the processing time at the worker level and T p

n

the processing time at the core level.
With the aforementioned observations in mind, and focusing

on the results given by the first part of the experiment
and reported in Fig. 11(b), we can observe that for each
configuration and training with 20% and 40% of the available
samples, the proposed AE exhibits quite similar speedups, with
slight variations due to the distribution of data and the role
of idle nodes. It is interesting to observe with 1–8 nodes
how the speedup is quite similar to the theoretical one,
while with 12–16 nodes, the differences between the obtained
and theoretical speedup values are higher, indicating that the
proposed AE with only 20% and 40% of training samples
does not take full advantage of the cloud environment’s
potential.

On the other part, Fig. 11(c) shows the obtained results
of the second part of this experiment. In this case, the base
implementation of the AE is conducted on a cloud environment
with two worker nodes, employing 60% and 80% of training
data. With 2 and 4 worker nodes, the obtained speedup values
are very similar, employing 60% and 80% of the available
samples, while with 8, 12, and 16 nodes, it is clear how the
version with more training data is able to achieve a superior
speedup, reaching a value very similar to the theoretical one
with 16 nodes. This indicates that the amount of data handled
in this case is more convenient to take full advantage of the
way that Spark organizes data partitions and tasks in batches,
achieving better parallelization at the core level (fine-grained
parallelism) and also better distribution at the worker level
(coarse-grained parallelism). These conclusions are supported
by the data tabulated in Table IV where the speedup employing
20% and 40% of training data has been obtained taking
as base times the cloud environment with one node, while
for 60% and 80% of training data, the speedup is obtained
comparing with the environment composed by two worker
nodes due to the exhausting use of memory. Regarding the
compression performance, Table III compares the MSE, MAE,
and SAD obtained by the proposed version and a standard
implementation using the DL framework Torch. In this case,
the MSE is slightly worse than the parallel version, while the
MAE and SAD are quite similar. It is interesting to observe
that the considered measures keep constant with different
amounts of training data, which indicates that the network is
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Fig. 12. Obtained compression metrics. (a) MSE, (b) SAD, and (c) MAE for different bottleneck sizes, after using PCA and the proposed AE implementation
with different activation functions: linear and non-linear (ReLU). In all cases, we train the models using 75% of the AVIRIS Indian Pines image, which is
actually a subset of the BIP image (composed by 145× 145 pixels with 200 bands).

able to optimize very well, without overfitting the parameters
when 60% or 80% of the available training samples are used,
but also avoiding underfitting when a few samples are used
for training purposes.

4) Experiment 4: In order to evaluate the compression
performance against another state-of-the-art method, a com-
parison between the proposed AE implementation and the
well-known PCA is given in Fig. 12. Specifically, this experi-
ment reports three different compression metrics (MSE, MAE,
and SAD) obtained (for different bottleneck sizes) using the
PCA algorithm, the linear AE, and the non-linear AE (ReLU).
This experiment has been carried out by training the consid-
ered methods with 75% of the small AVIRIS Indian Pines
data set (a subset of the BIP image with a size of 145 ×
145 pixels and 200 spectral bands). In this sense, with the
aim of providing a fair and in-depth comparison between
the PCA and the proposed neural-inspired models, we have
scaled the input data, introducing batch normalization to the
models’ layers in order to center the data, as the considered
implementation of PCA standardizes the data before the singu-
lar vector decomposition (SVD; employing LAPACK solver).
Moreover, the considered bottleneck sizes are in the range
from 1 to 32, with the steps of 2n and n = {0, 1, 2, 3, 4, 5}.
As we can clearly see in Fig. 12, when reducing the number
of dimensions, our proposed implementation (with a linear
activation function) performs as well as PCA. However, our
proposed implementation (with non-linear activation function)
clearly outperforms PCA. This is due to the fact that the
ReLU-based AE is able to find non-linear relationships in the
data, which assists in the task of reducing the dimensionality
of such data and provides a more effective dimensionality
reduction strategy than linear methods such as PCA, whose
performance clearly decays as we attempt to reduce the data
to a small number of dimensions. In this case, the PCA (as a
linear method) is not able to find such non-linear correlations
between the variables. It is also remarkable that as the target
dimensionality grows, the difference between both methods
tends to be smaller. From this experiment, we can conclude
that the small error obtained with the non-linear AE when
reducing the data into a small number of dimensions makes
it a highly desirable alternative against linear solutions such

as PCA, as it is able to represent the input data better than
PCA in a reduced dimension space.

V. CONCLUSION

This paper presents a new cloud-based AE neural network
for remotely sensed HSI data analysis in a distributed fashion.
This kind of artificial neural network finds non-linear solu-
tions when compressing the data, as opposed to traditional
techniques such as PCA. In this sense, the proposed approach
is more suitable for complex data sets, such as HSIs. The
proposed AE implementation over a Spark cluster exhibits
a great performance, not only in terms of data compression
and error reconstruction but also in terms of scalability when
processing huge data volumes, which cannot be achieved by
traditional (sequential) AE implementations. Those sequential
algorithms may be a valid option when the data to be managed
and analyzed can be stored in a single machine with limited
processing and memory resources. However, for large amounts
of HSI data, sequential implementations can easily run out of
memory or require a vast amount of computing time, which
cannot be assumed when reliable processing is needed in a
reasonable time. In this regard, both HPC and HTC alternatives
have provided new paths to solve those problems, including
parallelization on GPUs and distribution/parallelization on
clusters with cloud computing-based solutions. The experi-
ments carried out in this paper demonstrate that cloud versions
of HSI data processing methods provide efficient and effective
HPC-HTC alternatives that successfully solve the inherent
problems of sequential versions by increasing hardware capa-
bilities in a cheaper way compared with other solutions,
such as grid computing. Also, the obtained results reveal that
the computation performance of cloud-based solutions easily
increases with larger data sets, taking advantage of the compu-
tational load distribution when there is a good balance between
the amount of data and the cluster complexity. Encouraged by
the good results obtained in this paper, in the future, we will
develop other implementation of HSI processing techniques in
cloud computing environments. Further work will also explore
the design of more sophisticated scheduling algorithms in
order to circumvent the negative impact introduced by idle
processing cores in our current implementation.
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